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Abstract. Starting with the formula for the number of leaves of a tree,
two of the authors recently defined a new graph invariant called Omega
denoted by Ω(G) only in terms of a given degree sequence. This invari-
ant is shown to have many important combinatorial applications in graph
theory and gives direct information compared to the better known Euler
characteristic on the realizability, connectedness, cyclicness. Also some
extremal problems are recently solved by means of it. In this paper, some
new properties of Omega invariant, especially those related to the cyclic-
ness and the number of components of the realized graphs are obtained.
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1 Introduction

We denote a graph with | V (G) |= n vertices and | E(G) |= m edges by G = (V,E).
Usually, the numbers n and m are called the order and size of G. For v ∈ V (G), the
degree of v will be denoted by dv. A vertex of degree one is usually called a pendant
vertex. We use the term ”pendant edge” for an edge having a pendant vertex. The
biggest vertex degree in a graph is often denoted by ∆. A graph is called connected
if we can find a path between every pair of vertices, and disconnected otherwise.

Written with multiplicities, a degree sequence is written as

D(G) = {d1
(a1), d2

(a2), d3
(a3), · · · ,∆(a∆)},

where di’s and ai’s are non-negative integers. It is also possible to state a degree
sequence as

D(G) = {0(a0), 1(a1), 2(a2), 3(a3), · · · ,∆(a∆)},

where some of ai’s could be zero. Here 0(a0) means that there are a0 isolated vertices
and naturally in such a case, the graph is disconnected.

Let D = {d1, d2, d3, · · · ,∆} be a set of non-decreasing non-negative integers. We
say that a graph G is a realization of the set D if the degree sequence of G is equal
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to D. In such a case, the set D will be called realizable.

It is clear from the definition that for a realizable degree sequence, there is at
least one graph having this degree sequence. For example, the completely different
two graphs in Figure 1 have the same degree sequence:

Figure 1 Graphs with the same DS

There are results to determine whether a given set is realizable or not, such as
Havel-Hakimi, Erdös-Gallai, Ryser, Berge, Fulkerson-Hoffman-McAndrew, Bollobas,
Grunbaum, Hasselbarth, Sierksma and Hoogeveen criteria, see [1], [2], [3], [4], [7], [8],
[9], [10], [11], [12], [13]. Of course, the most basic criteria says that the sum of all
vertex degrees must be even, as it is equal to twice the number of edges.

In many occasions, we classify our graphs under consideration according to whether
they have at least one cycle or not. Those graphs having no cycle will be called acyclic.
For example, all trees are acyclic. The remaining graphs are called cyclic graphs.

There are two special types of edges: An edge connecting a vertex to itself is called
a loop, and at least two edges connecting two vertices are called multiple edges. When
there are no loops nor multiple edges, then the graph is called simple.

Since 1980s, molecules are modelled as graphs by replacing atoms and chemical
bonds with vertices and edges of the graph, respectively. We call this type of graph
a molecular graph.

Figure 2 Ethane C2H6

Figure 3 Graph corresponding to Ethane C2H6

When a situation is modelled by a graph, we can study this graph by mathemati-
cal methods to obtain several mathematical results. These mathematical results help
us to comment on the properties of this situation. This means that easily calculated
mathematical formulae are preferred over more geometric, electrostatic and chemical
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methods usually needing expensive laboratory equipments and a lot of time.

By means of mathematical models of chemical substances, we can calculate the
boiling and melting points, molecular weights, atomic weights, density, branchedness,
isomeration, reformation, spectroscopic properties and many other structural proper-
ties of atoms and molecules. We do these by means of some mathematical formulae
called as topological graph indices.

The first topological graph index capable of characterizing the branchedness of
alkanes was proposed by Wiener in 1947 to predict the boiling points of isomeric
alkanes. The Wiener index was defined as the sum of the distances between any two
carbon atoms in an alkane molecule and helped to order the isomers of alkanes ac-
cording to their boiling points.

In this paper, we study several properties of graphs by means of recently defined
mathematical formula which appears to be a topological graph invariant.

2 Omega invariant

First we recall from [5] the definition of this new graph invariant:

Definition 2.1. Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)} be the degree sequence of a
graph G. The Ω(G) is defined only in terms of the degree sequence as

Ω(G) = a3 + 2a4 + 3a5 + · · ·+ (∆− 2)a∆ − a1

=

∆∑
i=1

(i− 2)ai.

Many properties of this invariant have just been obtained in [5] and [6]. For a
given degree sequence, it has been shown that if Ω ≤ −4, then the graph is certainly
disconnected, if Ω = −2 and the graph is connected, then the graph is certainly
acyclic, and if Ω ≥ 0 and the graph is connected, then the graph is certainly cyclic.
If Ω is odd, we can directly say that the given degree sequence is not realizable. In
[5], it has been shown that omega invariant can be stated in terms of the numbers of
vertices and edges:

Theorem 2.1. For any graph G,

Ω(G) = 2(m− n).

In that sense, the invariant Ω is related to the cyclomatic number.

It was also shown that Ω of a graph G is additive over the set of the components
of G. Two of the most important properties of this new invariant has been given in
[5] as follows:

Theorem 2.2. The number r of faces in any realization G of a given degree sequence
D is

r =
Ω(D)

2
+ 1.
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Corollary 2.3. Let D = {1(a1), 2(a2), 3(a3), · · · ,∆(a∆)} be realizable as a graph G
with c components. The number r of faces of G is given by

r =
Ω(G)

2
+ c.

Proof. As Ω(G) is additive, r is additive, too. By Theorem 2.2, we know

r(Gi) =
Ω(Gi)

2
+ 1⇒

c∑
i=1

r(Gi) =

c∑
i=1

Ω(Gi)

2
+

c∑
i=1

1

⇒ r(G) =
Ω(G)

2
+ c.

�

We now obtain some new properties of this invariant:

Theorem 2.4. Let D be a degree sequence and let G be a connected realization of it.
If Ω(D) = −2, then G is an acyclic graph, in other words, a tree.

Proof. Let Ω(D) = −2. By Theorem 2.2, we can say that the number of faces of G
is r = −2

2 + 1 = 0. That means that there are no faces in this arbitrary realization of
D. Therefore any realization of D must be a tree. �

Another direct result of Theorem 2.2 is as follows:

Theorem 2.5. Let D be a degree sequence and let G be a connected realization of it.
If Ω(D) = 0, then G is a unicyclic graph, in other words, it has only one face.

Proof. Let Ω(D) = 0. By Theorem 2.2, we can say that the number of faces of G is
r = 0

2 + 1 = 1. That means that there is only one face in this arbitrary realization of
D. Therefore any realization of D must be a unicyclic graph. �

The following can easily be obtained similarly:

Theorem 2.6. Let D be a degree sequence and let G be a connected realization of it.
If Ω(D) = 2, then G is a bicyclic graph, in other words, a graph with two faces.

Theorem 2.7. Let D be a degree sequence and let G be a connected realization of it.
If Ω(D) = 4, then G is a tricyclic graph, in other words, a graph with three faces.

This results can be generalized and a new result can be given for any required
number of faces of any realization of a given arbitrary degree sequence.

The number of components is an important notion in the study of graphs. Espe-
cially, in the study of connectedness, we need to know that there is only one com-
ponent. The following is a new relation between the number of components of any
arbitrary realization of a given degree sequence and its omega invariant:
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Corollary 2.8. For each graph G, we have

c ≥ −Ω(G)

2
.

Equivalently,
c ≥ n−m.

Proof. By Corollary 2.3, we know that r = Ω(G)
2 + c. Also by Theorem 2.1, we have

Ω(G) = 2(m−n) implying that r = m−n+c. As the number of faces r is non-negative,
we conclude that c ≥ n−m, as required. �
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