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Abstract. We define the notion of projective limit of local shift morphisms
of type (r, s) and endow the space of such mathematical objects with an
adapted differential structure. The notion of shift Poisson tensor P on
a Hilbert tower corresponds to such a morphism which is antisymmetric
and whose Schouten bracket with itself [P, P ] vanishes. We illustrate this
notion with the example of the famous KdV equation on the circle S1 for
which one can associate a pair of such compatible Poisson tensors on the
Hilbert tower

(
Hn(S1)

)
n∈N∗ .
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1 Introduction

In Mathematical Physics, different frameworks exist in the litterature for interesting
evolution equations (KdV, Burgers, ...). The notion of projective limits of shift Pois-
son tensors on Hilbert towers (whose set can be endowed with a Fréchet structure)
introduced in this paper is a new framework for such equations.

The paper is organized as follows. Section 2 introduces the basic notions and
results on projective limits of Banach spaces and an adapted notion of differentiability
on such spaces. Section 3 introduces shift operators on direct limits of Banach spaces
whose set is endowed with a Fréchet structure (Theorem 3.5). Section 4 is devoted to
the notion of local shift morphism and is concerned with the smoothness of projective
limits of such operators (Theorem 4.1). In section 5, we consider the particular case
of Hilbert towers that appears as an adapted framework to describe some PDEs.
Section 6 is devoted to the notion of shift Hilbert Poisson tensors P , corresponding to
a projective limit of antisymmetric local shift morphisms defined on a Hilbert tower
whose Schouten brackets [P, P ] vanishes. As a fundamental example, we consider
the KdV equation on the circle S1 (cf. [KapMak]) for which there exists a pair of
compatible shift Hilbert Poisson tensors on the projective limit of the Sobolev spaces
Hn

(
S1

)
.
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2 Projective limits of Banach spaces and differen-
tiability

In a lot of situations in global analysis and Mathematical Physics, the framework of
Banach or Hilbert spaces is not adapted any more. In some cases, the projective limits
of such spaces must be adopted. For such Fréchet spaces, the differentiation method
proposed by J.A. Leslie fits well to the requirements of this geometrical situation.
We can remark that the convenient setting, defined by A. Frölicher and A. Kriegl (see
[FroKri] and [KriMic]), could have been used. This framework is adapted to various
structures (e.g. for convenient partial Poisson structures as defined in [Pel]).

2.1 Projective limits of topological spaces

Definition 2.1.
{(

Xi, δ
j
i

)}
(i,j)∈N2, j≥i

is a projective sequence of topological spaces

if we have the following properties:

(PSTS 1) For all i ∈ N, Xi is a topological space;

(PSTS 2) For all i, j ∈ N, such that j ≥ i, δji : Xj → Xi is a continuous mapping;

(PSTS 3) For all i ∈ N, δii = IdXi ;

(PSTS 4) For all integers i ≤ j ≤ k, δji ◦ δkj = δki .

Definition 2.2. An element (xi)i∈N of the product
∏
i∈N

Xi is called a thread if for all

j ≥ i, δji (xj) = xi.
The set X = lim←−Xi of such elements, endowed with the finest topology for which all
the projections δi : X → Xi are continuous, is called projective limit of the sequence{(

Xi, δ
j
i

)}
(i,j)∈N2, j≥i

.

A basis of the topology of X is constituted by the subsets (δi)
−1

(Ui) where Ui is
an open subset of Xi (and so δji is open).

Definition 2.3. Let
{(

Xi, δ
j
i

)}
(i,j)∈N2, j≥i

and
{(

Yi, γ
j
i

)}
(i,j)∈N2, j≥i

be two pro-

jective systems whose respective projective limits are X and Y .
A sequence (fi)i∈N of continuous mappings fi : Xi → Yi, satisfying for all i, j ∈ N,
j ≥ i, the condition

γj
i ◦ fj = fi ◦ δji

is called a projective system of mappings.

The projective limit of this sequence is the mapping

f : X → Y
(xi)i∈N 7→ (fi (xi))i∈N

The mapping f is continuous and is a homeomorphism if all the fi are homeomor-
phisms (cf. [AbbMan]).
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2.2 Differentiability

We first introduce the notion of differentiability à la Leslie between Hausdorff locally
convex vector spaces E and F which corresponds to a particular case of the Gâteaux
derivative. For full details, the reader is referred to [Les] and [DoGaVa]. Unlike the
classical framework of Banach spaces, the derivative does not involve the space of
continuous linear maps L (E,F ) which has no reasonable structure.

Definition 2.4. Let E and F be two Hausdorff locally convex vector spaces and let
U be an open subset of E. A continuous map f : U −→ F is said to be differentiable
at x ∈ U if there exits a continuous linear map Dfx : E −→ F such that

R (t, v) =

∣∣∣∣∣ f (x+ tv)− f (x)−Dfx (tv)

t
, t ̸= 0

0, t = 0

is continuous at every (0, v) ∈ R × F . The map Dfx is called the derivative (or
differential) of f at x.

The map is said to be differentiable if it is differentiable at every x ∈ U .

Note that, in this case, Dfx is uniquely determined.

Definition 2.5. A continuous map f : U −→ F from an open subset U of a Hausdorff
locally convex vector space E to a space of the same type F is called C1-differentiable
if it is differentiable at every x ∈ U , and if the derivative

Df : U × E −→ F
(x, v) 7→ Dfx (v)

is continuous.

The notion of Cn-differentiability (n ≥ 2) can be defined by induction (cf. [DoGaVa],
Definition 2.2.3) and allows to define the C∞-differentiability à la Leslie which corre-
sponds to the C∞-differentiability in the ordinary case.

We then have the following properties:

(PDL 1) Every continuous linear map f : E −→ F is Leslie C∞ and Df = F ;

(PDL 2) The differential at x satisfies the relation

Dfx (h) = lim
t−→0

f (x+ th)− f (x)

t

(PDL 3) The chain rules holds.

2.3 Differentiability on projective limits

The connection between projective limits of maps and differentiation is given by the
following result ([DoGaVa], Propositions 2.3.11 and 2.3.12).
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Proposition 2.1. Let F1 = lim←−E
i
1 and F2 = lim←−E

i
2 projective limits of Banach spaces.

Let also f i : U i −→ Ei
2 be where, for all i ∈ N, U i is an open set of Ei

1. We assume
that U = lim←−U

i exists and is a non empty open subset of F1; we also assume that

f = lim←−f
i : U −→ F2 exists. Then we have:

If each f i is differentiable (resp. smooth), then so is f and

∀x =
(
xi
)
∈ U, Dfx = lim←−Dfxi .

3 Shift operators

In Analysis and Mathematical Physics, Banach representations break down. By weak-
ening the topological requirement, replacing the norm by a sequence of semi-norms,
one gets the notion of Fréchet space. For the subsections 3.1 (resp. 3.2), the reader
is referred to [Bour], [RobRob] and [Tre] (resp. [DoGaVa]).

3.1 Fréchet spaces

Definition 3.1. A Fréchet space is a Hausdorff, locally convex topological vector
space that is metrizable and complete.

The topology of a Fréchet space F can be induced by a sequence of semi-norms
(νn)n∈N that is complete with respect to such a sequence.

Recall that F is complete with respect to this topology if and only if every sequence
(xi)i∈N in F is such that

∀n ∈ N, ∀ε > 0,∃iε ∈ N : ∀ (j, k) ∈ N2, k ≥ j ≥ iε, νn (xk − xj) < ε

converges in F where the convergence in this Fréchet space is controlled by all the
semi-norms νn:

lim
i−→+∞

xi = x ⇐⇒ ∀n ∈ N, lim
i−→+∞

νn (xi − x) = 0

Example 3.2. The space of real sequences RN =
∏
n∈N

Rn endowed with the usual

topology is a Fréchet space where the corresponding sequence of semi-norms is given
by

νn
(
(xi)i∈N

)
=

n∑
k=0

|xk|

Metrizability is defined from d as follows

d (x, y) =

+∞∑
k=0

|yk − xk|
2k (1 + |yk − xk|)

and the completeness is inherited from that of each R of the infinite product.
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The notion of Fréchet space is closely related with the projective limit of Banach
spaces.

If {(Bn, ∥ ∥n)}n∈N is a projective sequence of Banach spaces, then lim←−Bn is a

Fréchet space (cf. [DoGaVa], Theorem 2.3.7) where the sequence (νn)n∈N of semi-
norms is given by

∀x = (xn)n∈N ∈ lim←−Bn, νn (x) =
n∑

i=0

∥xn∥n

Conversely, if F is a Fréchet space with associated semi-norms νn, the completion
Fn of the normed space F/ ker νn is a Banach space called the local Banach space
associated to the semi-norm νn. It will be denoted by (Fn, ∥ ∥n) where ∥ ∥n is the

norm associated to νn. We then get a projective system
{(

Fi, π
j
i

)}
(i,j)∈N2, j≥i

of

Banach spaces whose bonding maps are

πj
i : Fj −→ Fi

[x+ ker νj ]j 7−→ [x+ ker νi]i

where the bracket [ ]n corresponds to the associated equivalence class. F will be
identified with the projective limit lim←−Fi (cf. [DoGaVa], Theorem 2.3.8).

The representation of Fréchet spaces as projective limits of Banach spaces is very
interesting: Issues arising in the Fréchet framework can be solved by considering their
components in the Banach factors of the associated projective sequence. So different
pathological entities in the Fréchet framework can be replaced by approximations
compatible with the inverse limits, e.g. ILB-Lie groups ([Omo]) or projective limits
of Banach Lie groups ([Gal1]), manifolds ([AbbMan]), bundles ([Gal2], [AghSur]),
algebroids ([Cab]), connections and differential equations ([ADGS]).

3.2 The Fréchet space H (F1,F2)

Let F1 (resp. F2) be a Fréchet space and let (νn1 )n∈N (resp. (νn2 )n∈N) be the sequence
of semi-norms of F1 (resp. F2).

Recall ([Vog], 2.) that a linear map L : F1 −→ F2 is continuous if

∀n ∈ N, ∃kn ∈ N, ∃Cn > 0 : ∀x ∈ F1, ν
n
2 (L.x) ≤ Cnν

kn
1 (x)

The space L (F1,F2) of continuous linear maps between both these Fréchet spaces
generally drops out of the Fréchet category. Indeed, L (F1,F2) is a Hausdorff locally
convex topological vector space whose topology is defined by the family of semi-norms
{pn,B}:

pn,B (L) = sup {νn2 (L.x) , x ∈ B}
where n ∈ N and B is any bounded subset of F1 containing 0F1. This topology is

not metrizable since the family {pn,B} is not countable.
So L (F1,F2) will be replaced, under certain assumptions, by a projective limit of
appropriate functional spaces as introduced in [Gal2].

If we denote by L (Bn
1 ,Bn

2 ) the space of linear continuous maps (or equivalently
bounded linear maps because Bn

1 and Bn
2 are normed spaces), we then have the fol-

lowing result ([DoGaVa], Theorem 2.3.10).
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Theorem 3.1. The space of all continuous linear maps between F1 and F2 which can
be represented as projective limits

H (F1,F2) =

{
(Ln) ∈

∏
n∈N

L (Bn
1 ,Bn

2 ) : lim←−Ln exists

}

is a Fréchet space.

For this sequence (Ln) of linear maps, for any integer 0 ≤ i ≤ j, the following
diagram is commutative

Bi
1

1δ
j
i←− Bj

1

Li ↓ ↓ Lj

Bi
2

2δ
j
i←− Bj

2

3.3 Shift operators

We assume that F1 = lim←−B
n
1 (resp. F2 = lim←−B

n
2 ) is a Fréchet space where{(

Bi
1,1 δ

j
i

)
, ∥ ∥i1

}
(i,j)∈N2, j≥i

(resp.
{(

Bi
2,2 δ

j
i

)
, ∥ ∥i2

}
(i,j)∈N2, j≥i

) is a projective se-

quence of Banach spaces.

Definition 3.3. A linear map L : Bn+r
1 −→ Bn−s

2 is called a shift operator of base n
and type (r, s) ∈ N× N where n ≥ s, if there exists Cn > 0 such that:

∀x ∈ Bn+r
1 , ∥L.x∥n−s

2 ≤ Cn ∥x∥n+r
1

Lr,s
n (F1,F2) denotes the set of shift operators of base n and type (r, s).

Lemma 3.2. Lr,s
n (F1,F2) endowed with the norm ∥ ∥Lr,s

n
defined by

∥L∥Lr,s
n

= sup
∥x∥n+r

1

∥L.x∥n−s
2

is a Banach space.

A linear operator of base n and type (r, s) is continuous.

Example 3.4. ([Ham], 1.1.2, Examples (4) and 1.2.3 Examples (3)). Let X be
a compact manifold. Then C∞ (X) is a Fréchet space and for any linear partial
differential operator L of degree r, we have ∥L.f∥n ≤ ∥f∥n+r; So L is a shift operator
of base n and type (r, 0) (tame operator in Hamilton’s terminology).

3.4 Projective limit of shift operators

Lemma 3.3. For any integer n ≥ s, the following set

Lr,s
s,n (F1,F2) =

{
(Ls, . . . , Ln) ∈ Lr,s

s (F1,F2)× · · · × Lr,s
n (F1,F2) :

∀ (i, j) ∈ N2 : n ≥ j ≥ i ≥ s, 2δ
j−s
i−s ◦ Lj = Li ◦ 1δ

j+r
i+r

}



Projective limits of local shift morphisms 75

can be endowed with a structure of Banach space relatively to the norm ∥ ∥r,ss,n defined
by

∥(Ls, . . . , Ln)∥r,ss,n =

n∑
i=s

∥Li∥Lr,s
i

Proof. Since Lr,s
s,n (F1,F2) is a closed subspace of the Banach space Lr,s

s (F1,F2)×· · ·×
Lr,s
n (F1,F2), it is also a Banach space. �

Lemma 3.4. For j ≥ i ≥ s, the canonical projections

πj
i : Lr,s

s,j (F1,F2) −→ Lr,s
s,i (F1,F2)

(Ls, . . . , Lj) 7−→ (Ls, . . . , Li)

are linear and continuous.

Proof. For j ≥ i ≥ s, the linearity of πj
i is obvious.

The continuity of πj
i is a consequence of∥∥∥πj

i (Ls, . . . , Lj)
∥∥∥r,s
s,i

= ∥(Ls, . . . , Li)∥r,ss,i

=
i∑

k=s

∥Lk∥Lr,s
k

≤
j∑

k=s

∥Lk∥Lr,s
k

= ∥(Ls, . . . , Lj)∥r,ss,j

�

We then have the following result.

Theorem 3.5.
{(
Lr,s
s,i (F1,F2) , π

j
i

)}
(i,j)∈N2, j≥i≥s

is a projective sequence of Banach

spaces whose projective limit Lr,s (F1,F2) can be endowed with a Fréchet structure.

Proof. For k ≥ j ≥ i ≥ s, it is obvious that πk
i = πj

i ◦ πk
j . Thus, according to Lemma

3.3 and Lemma 3.4,
{(
Lr,s
s,i (F1,F2) , π

j
i

)}
(i,j)∈N2, j≥i≥s

is a projective sequence of

Banach spaces. So its projective limit can be endowed with a structure of Fréchet
space (cf. 3.1). �

3.5 Inductive dual

Because the dual of a Fréchet space generally drops out of the Fréchet category, it
will be replaced by the inductive dual which is defined as a projective limit of Banach
spaces.

Let F be a graded Fréchet space and let (Fn)n∈N be the sequence of associated
Banach spaces. We then consider, for n ∈ N, the following space

F0
n =

{
ω̂n = (ω0, . . . ωn) ∈

n∏
i=0

F
′

i

}
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where F′

i is the topological dual of the Banach space Fi. Then F0
n is a Banach

space for the norm ∥ ∥n defined by

∥ω̂n∥n =

n∑
i=0

max
∥xi∥i=1

|ωi (xi)|

Definition 3.5. The projectif limit of the sequence
{(

F0
n,Π

n+1
n

)}
n∈N∗ , where Π

n+1
n :

F0
n+1 −→ F0

n is the natural projection, is called the inductive dual of F et denoted by
F0.

The inductive dual F0 is a graded Fréchet space.
The inductive cotangent bundle T 0F is defined as the trivial bundle of base F and

fiber F0 and appears as as the projective limit of
(
Fn × F0

n, ∥ ∥n + ∥ ∥n
)
. An inductive

differential form is a smooth section of this bundle.

4 Projective sequence of local shift morphisms

4.1 Local shift morphisms

Let F1 (resp. F2,F3) be a graded Fréchet space.

Let
(
Fn
1 , ∥ ∥

1
n

)
n∈N

(resp.
(
Fn
2 , ∥ ∥

2
n

)
n∈N

,
(
Fn
3 , ∥ ∥

3
n

)
n∈N

) be the sequence of associ-

ated local Banach spaces.

Definition 4.1. Let n ∈ N such that n− s ≥ 0. A smooth map

φ : Un −→ L
(
Fn+r
2 ,Fn−s

3

)
where Un is an open set of Fn

1 , is called a local shift morphism of base n and type
(r, s) ∈ N× N above Un.

4.2 Projective sequence of local shift morphisms

Definition 4.2. A sequence (φn)n∈N, n≥s of local shift morphisms φn of type (r, s) ∈
N× N above Un is said to be a projective sequence of local shift morphisms if

(PSLSM 1) Us ⊃ Us+1 ⊃ · · · ⊃ Un ⊃ Un+1 ⊃ · · · and U =
+∞∩
n=s

Un is a non empty

open set of F1;

(PSLSM 2) For any q = (qn)n∈N ∈ U , we have the following commutative diagram:

Un × Fn+r
2

(IdUn , φn(qn))

uujjjj
jjjj

jjjj
jjj

����
��
��
��
��
��
��
��
�

Un+1 × Fn+r+1
2

1δ
n+1
n ×2δ

n+r+1
n+roo

(IdUn+1
, φn+1(qn+1))

sshhhhh
hhhh

hhhh
hhhh

h

2π
n+1+r
n+1

����
��
��
��
��
��
��
��
��

Un × Fn−s
3

3π
n−s
n $$II

III
III

II
Un+1 × Fn−s+1

3

1δ
n+1
n ×3δ

n−s+1
n−soo

&&NN
NNN

NNN
NNN

Un Un+1
1δ

n+1
noo
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Theorem 4.1. The projective limit lim←−φn of a projective sequence of local shift mor-

phisms φn of type (r, s) ∈ N × N above Un is a smooth map from the open set

U =
+∞∩
n=s

Un of the Fréchet space F1 to the Fréchet space Lr,s (F2,F3).

Proof. Since Lr,s (F2,F3) is the projective limit of the Banach spaces Lr,s
n (F2,F3) (cf.

Theorem 3.5) the smoothness of lim←−φn results from the smoothness of the maps φn

and the Proposition 2.1. �

5 Hilbert towers

In this section, we consider the particular case where the Fréchet spaces F1, F2 and
F3 are all equal to a same projective limit of Hilbert spaces.

5.1 Definition. Example

In this subsection and the following one, the reader is referred to [KapMak].

Definition 5.1. The sequence (Hn)n∈N is a Hilbert tower if

(HT 1) (Hn)n∈N is a decreasing sequence of Hilbert spaces: H0 ⊃ H1 ⊃ · · · ;

(HT 2) ∀n ∈ N, Hn+1 = Hn;

(HT 3) There exists a basis of H∞ =
∩

n∈N
Hn, i.e. an orthonormal basis (em)m∈N of

H0, where em ∈ H∞, such that (em)m∈N is a basis of any HN (with N ∈ N).

A Hilbert tower can be seen as an IHL space as defined in [Omo].

Example 5.2. The sequence of Sobolev spaces
(
Hn

(
S1

))
n∈N where

Hn
(
S1

)
=

{
q ∈ L2

(
S1

)
: ∀k ∈ {0, . . . , n} , q(k) ∈ L2

(
S1

)}
is a Hilbert tower where the orthonormal basis is (e0, e1, e−1, . . . , ek, e−k, . . . ), (k ∈ N)
where ek : x 7→ ei2kπx.

Let (Hn)n∈N be a Hilbert tower where ιn+1
n : Hn+1 −→ Hn is the natural injection

and let us denote ⟨., .⟩n the inner product of Hn and ∥ ∥Hn
the associated norm.

The projective limit H∞ of the Hilbert tower (Hn)n∈N is perfectly defined and can
be endowed with a structure of Fréchet space.

5.2 Local shift Hilbert morphisms

In the sequel, we reformulate some of the precedent results in the particular case of
a Hilbert tower (Hn)n∈N, that is for all n ∈ N,Fn

1 = Fn
2 = Fn

2 = Hn, where the norm

∥ ∥n1 = ∥ ∥n2 = ∥ ∥n3 =
√
⟨., .⟩n are associated to the inner product of Hn.
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Definition 5.3. A local shift Hilbert morphism of base n and type (r, s) is a smooth
map

φn : Un −→ L (Hn+r,Hn−s)

where Un is an open set of Hn.

Example 5.4. On the Sobolev tower
(
Hn = Hn

(
S1

))
n∈N (cf. Example 5.2), we

consider the operator

∂x : U ∩Hn −→ L (Hn+1,Hn)
q 7−→ (∂x)q

which corresponds to the first Poisson structure for the KdV equation (cf. Example
6.2.) where U = H0 = H0

(
S1

)
and

(∂x)q : Hn+1 −→ Hn

u 7−→ ∂xu
.

So ∂x is a local shift Hilbert morphism of type (1, 0) above any Hn = Hn
(
S1

)
.

Example 5.5. On the Sobolev tower
(
Hn

(
S1

))
n∈N, the operator

Ln : U ∩Hn −→ L (Hn+2,Hn−1)
q 7−→ (Ln)q

corresponds to the second Poisson structure for the KdV equation where U = H0 =
H0

(
S1

)
and

(Ln)q : Hn+2 −→ Hn−1

u 7−→ −1

2
∂3
xu+ q.∂xu+ ∂xq.u

.

Ln is then a local shift morphism of type (2, 1) above any Hn = Hn
(
S1

)
.

In particular, we have, for q ∈ Hn
(
S1

)
,

(Ln)q ∈ L
(
Hn+2

(
S1

)
,Hn−1

(
S1

))
because

∀u ∈ Hn+2
(
S1

)
,
∥∥∥(Ln)q (u)

∥∥∥
n−1
≤ cn ∥u∥n+2

where the norm ∥ ∥n is given by

∥v∥n =

√√√√ n∑
k=0

∫
S1
[(∂k

xv) (x)]
2
dx.

5.3 Projective limits of local shift Hilbert morphisms

Definition 5.6. Let (Hn)n∈N be a Hilbert tower. A sequence (φn)n∈N, n≥s of local
shift morphisms φn of type (r, s) ∈ N×N above Hn is said to be a projective sequence
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of local shift Hilbert morphisms if, for any q = (qn) ∈
∏

n∈N

Hn, we have the following

commutative diagram:

Hn ×Hn+r

(IdHn , φn(qn))

ttiiii
iiii

iiii
iiii

����
��
��
��
��
��
��
��
�

Hn+1 ×Hn+r+1

ιn+1
n ×ιn+r+1

n+roo
(IdHn+1

, φn(qn+1))

ssggggg
ggggg

ggggg
ggggg

πn+1+r
n+1

����
��
��
��
��
��
��
��
��

Hn ×Hn−s

πn−s
n %%KK

KKK
KKK

KK
Hn+1 ×Hn−s+1

ιn+1
n ×ιn−s+1

n−soo

''OO
OOO

OOO
OOO

Hn Hn+1

ιn+1
noo

Let (Hn)n∈N be a Hilbert tower and consider H∞ =
∩

n∈N
Hn = lim←−Hn. For n ≥ s,

the space

Hr,s
s,n (H∞) =

 (Ls, . . . , Ln) ∈
n∏

i=s

L (Hi+r,Hi−s) :

∀ (i, j) ∈ N2 : n ≥ j ≥ i ≥ s, ιj−s
i−s ◦ Lj = Li ◦ ιj+r

i+r


is a Banach space. We then get a projective sequence

{(
Hr,s

s,i (H∞) , πj
i

)}
(i,j)∈N2, j≥i≥s

where
πj
i : (Ls, . . . , Lj) 7→ (Ls, . . . , Li) .

Its projective limit Hr,s (H∞) can be endowed with a structure of Fréchet space
For a projective sequence of local shift Hilbert morphisms (φn)n∈N, n≥s of type

(r, s), we have the following commutative diagram:

Hr,s
s,i (H∞)

πj
i←− Hr,s

s,j (H∞)

(φs, . . . , φi) ↑ ↑ (φs, · · · , φj)

U ∩Hs × · · · × U ∩Hi
pj
i←− U ∩Hs × · · · × U ∩Hj

where the maps (φs, . . . , φn) : U ∩Hs × · · · × U ∩Hn −→ Hr,−s
s,n (H∞) are smooth.

We can define the projective limit

φ = lim←− (φs, . . . , φn) : U ∩H∞ −→ Hr,s (H∞)

and this limit is smooth.

Example 5.7. The sequence (Ln)n∈N of Example 5.5 is a projective sequence of local
shift morphisms of type (2, 1).

6 Shift Hilbert Poisson tensors

The notion of Poisson tensor is relevant in Mechanics and Mathematical Physics.
It corresponds to a tensor field P twice contravariant whose Schouten bracket with
itself [P, P ] vanishes. Bihamiltonian structures corresponding to a pair of compatible
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Poisson tensors is a fundamental tool in the resolution of some dynamical systems
because the recursion operator linking both structures gives rise to a hierarchy of
conservation laws.

In the framework of Hilbert towers, thanks to the identification of a Hilbert space
with its dual (Riesz Theorem), the morphism P from the cotangent bundle to the
tangent bundle can be seen as a projective limit of local shift Hilbert morphisms.
Such objects are adapted to the description of different evolution equations such as
the KdV equation on the circle S1.

We adapt the notion of Poisson tensor of type (r, s) given in [KapMak], Definition
1.2 using a countable basis in a more intrinsic way.

Definition 6.1. Let (Pn)n∈N be a sequence of local shift morphisms of type (r, s) on
the Hilbert tower (Hn)n∈N whose projective limit is P = lim←−Pn.

P is said to be a shift Hilbert Poisson tensor of type (r, s) on H∞ = lim←−Hn if, for any
q = lim←−qn, f = lim←−fn, g = lim←−gn and h = lim←−hn, it fulfils the following conditions:

(SHPT 1) P is antisymmetric,
i.e. for all n ∈ N such that n− s ≥ 0,⟨

(Pn)qn (fn+r) , gn−s

⟩
Hn−s

= −
⟨
(Pn)qn (gn+r) , fn−s

⟩
Hn−s

(SHPT 2) The Schouten bracket vanishes: [P, P ] = 0,
where for all n ∈ N such that n+ r − 2s ≥ 0,

[Pn, Pn]qn (fn+r, gn+r, hn+r) = σ
⟨
fn+r−2s, P

′
qn−s

(
gn+r−s, (Pn)qn hn+r

)⟩
In this definition, the differentiabity of P at q is given by:

P ′
q (f, g) =

d

dt
Pq+tgf |t=0

Example 6.2. The Korteweg-de Vries (KdV) equation ([KorVri]) is an evolution
equation in one space dimension which was proposed as a model to describe waves on
shallow water surfaces. This nonlinear and dispersive PDE was first introduced by J.
Boussinesq ([Bous]) and rediscovered by D. Korteweg and G. de Vries ([KorVri]) in
order to modelize natural phenomena discovered by Russel ([Rus]).

In [Arn], V.Arnold suggested a general framework for the Euler equations on an
arbitrary group that describe a geodesic flow with respect to a suitable one-sided in-
variant Riemannian metric on the group. This approach works for the Virasoro group
and provides a natural geometric setting for the KdV equation (cf.[KheMis]).

It is well known (e.g. [FMPZ], [MagMor], [Olv], [Sch], [ZubMag], ...) that this
equation can be written in Hamiltonian form in two distinct ways. Moreover, there
exists an infinite hierarchy of commuting conservation laws and Hamiltonian flows
generated by a recursion operator linking both Poisson brackets. Such an equation
can be viewed as a complete integrable system and has a lot of remarkable properties,
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including soliton solutions.

In [KisLeu], the framework of variational Lie algebroids is used to describe such
an evolutionary equation.

Here we consider the KdV equation on the circle S1 of unit length

∂tu = −∂3
xu+ 6u∂xu

where t ∈ R and x ∈ S1.

This equation can be seen as an infinite dimensional system on the Hilbert tower(
Hn

(
S1

))
n∈N (cf. [KapMak] and [KapPos]). This system can be written in a bi-

hamiltonian way relatively to the compatible shift Hilbert Poisson tensors ∂x, of type
(1, 0), and Lq of type (2, 1).

7 Conclusion

Different frameworks are used to describe evolution equations. The notion of shift
Hilbert Poisson tensor of type (r, s) presented in this paper fits well with to different

evolution equations of the form ut = φ(u
[k]
x ), where u

[k]
x stands for the k-jet at x of a

function u on the circle S1. The famous KdV equation ∂tu = −∂3
xu+6u∂xu examined

in this paper is of this type and can be written in a (bi)Hamiltonian form, i.e. with
a pair of such compatible tensors. This is also the case for other evolution equations,
e.g. the inviscid Burgers equation ∂tu = −3u∂x.

Acknowledgements. The author is grateful to Professor Fernand Pelletier for
helpful comments.
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