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Abstract. In this paper, we use the exponential function method to find
some complex travelling wave solutions in the nonlinear dynamics model
which describes the dimer‘s dynamics within microtubules. We obtain
some entirely complex and kink-type soliton solutions to this nonlinear
model. By choosing some suitable values of parameters, we plot the vari-
ous dimensional simulations of all the obtained solutions in this study. We
observe that our result may be useful in detecting some complex waves
behaviors of kink solitons moving along the microtubule
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1 Introduction

In recent several decades, many nonlinear evolution equations (NLEEs) for explain-
ing more properties of Micro-Tubules (MTs) in solitons have been largely studied.
Soliton theory plays an important role in the analysis of many nonlinear models that
describe various phenomena in the field of nonlinear media. Dynamics of solitons has
been largely studied in literature (see e.g. [1-3]). Moreover, powerful tools such as the
exponential function method, the modified simple equation method,the Kudryashov
method, Sumudu transform method, (G′/G)-expansion method and many more tech-
niques have been used (see e.g. [4-12]). In this paper, we propose a soliton nonlinear
model for the analysis of proteins. Proteins are indispensable part of living creatures.
Major cytoskeletal proteins create Microtubules (MTs) [13]. These MTs are sketched
as hollow cylinders usually formed by 13 parallel protofilaments (PFs) covering the
cylindrical walls of MTs [13]. Each PFs symbolize a series of proteins called tubulin
dimers [13-16]. S.Pospich et al have investigated an optimal tool to study cytoskeletal
proteins [17]. P. Drabik et al and E. Nogales et al have studied on Microtube stability
and high-resolution model of the Microtubule, and observed that the bonds between
dimers within the same PFs are remarkable stronger than the soft bonds between
neighbouring PFs [18,19]. This fact has been represented by the nonlinear dynamical
equation (NDE) defined as [13,20].
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(1.1) mΥtt(x, t)− kl2Υxx(x, t)− αΥ(x, t) + βΥ3(x, t) + γΥt(x, t)− qe = 0,

where Υ(x, t) symbolizes the real displacement of the dimer along x axis. This model
is used to explain that the longitudinal displacements of pertaining dimers in a single
PF should cause the longitudinal wave propagating along PF [13].

In this study, the exp (−φ(ζ))-exponential function method (EFM) will be used
to find soliton solutions such as complex, dark and kink-type from the Eq.(1.1). Dark
soliton describes the solitary waves with lower intensity than the background [21].
The kink-type soliton describes the physical properties of quasi-one-dimensional fer-
romagnets [22] and the singular soliton solutions is a solitary wave with discontinuous
derivatives; examples of such solitary waves include compactions [23,24]. In this sense,
many powerful models along with engineering applications have been presented in lit-
erature (see e.g. [29-33]).

2 The expansion function method (EFM)

Here, we shortly give the main steps of the EFM. Let us consider the nonlinear partial
differential equation (NPDE):

(2.1) P (Ψ,Ψx,ΨxΨ
2,Ψxx,Ψxxt, . . .) = 0,

where Ψ = Ψ(x, t) is the unknown function, and P is a polynomial in Ψ(x, t).

Step 1: By using the wave transformation:

(2.2) Ψ(x, t) = U(ζ), ζ = κx− ωt,

from Eq.(2.1), we obtain the nonlinear ordinary differential equation (NODE):

(2.3) NODE(U,U
′
U2, U

′
, U

′′
, . . .) = 0,

where NODE is a polynomial of U and its derivatives.

Step 2: Let us now assume the solutions of Eq. (2.3) to have the form:

(2.4) U(ζ) =
n∑

i=0

Ai

[
e−φ(ζ)

]i
= A0 +A1e

−φ + . . .+Ane
−nφ,

where Ai, (0 ≤ i ≤ n) are constants to be obtained later, such that An ̸= 0, and
φ = φ(ζ) solves the following ODE:

(2.5) φ
′
(ζ) = e−φ(ζ) + µeφ(ζ) + λ.
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Eq.(2.5) admits the following set of solutions [25, 26, 28, 29]:

Set 1: When µ ̸= 0, λ2 − 4µ > 0,

(2.6) φ(ζ) = ln

(
−
√

λ2 − 4µ

2µ
× tanh

(√λ2 − 4µ

2
(ζ + E)

)
− λ

2µ

)
.

Set 2: When µ ̸= 0, λ2 − 4µ < 0,

(2.7) φ(ζ) = ln

(√
−λ2 + 4µ

2µ
× tan

(√−λ2 + 4µ

2
(ζ + E)

)
− λ

2µ

)
.

Set 3: When µ = 0, λ ̸= 0 and λ2 − 4µ > 0,

(2.8) φ(ζ) = −ln

(
λ

eλ(ζ+E) − 1

)
.

Set 4: When µ ̸= 0, λ ̸= 0 and λ2 − 4µ = 0,

(2.9) φ(ζ) = ln

(
− 2λ(ζ + E) + 4

λ2(ζ + E)

)
.

Set 5: When µ = 0, λ = 0 and λ2 − 4µ = 0,

(2.10) φ(ζ) = ln(ζ + E).

Ai, (0 ≤ i ≤ n), E, λ, µ are coefficients to be obtained, and n, m are positive integers
that one can find by the balancing principle.

Step 3: Inserting Eq.(2.4) together with its derivatives along with the Eq.(2.5) and
simplifying, we find a polynomial equation of e−φ(ζ). We extract a set of algebraic
equations from this polynomial equation by summing the terms of the same power
and equating each summation to zero. We solve this set of equations to find the values
of the coefficients involved. By inserting the obtained values of the coefficients along
with one of Eqs.(2.6-2.10) into Eq.(2.4), we can obtain the new solitons to the NPDE
equation (2.1).

3 Application of EFM

In this section, we use the EFM to obtain some new solutions of the nonlinear dy-
namical equation (1.1).
Consider the following travelling wave transformation:

(3.1) Υ(x, t) = Ψ(ζ), ζ = κx− ωt.
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Substituting Eq.(3.1) into Eq.(1.1), yields the following NODE;

(3.2) (mω2 − kl2κ2)Ψ′′ − γωΨ′ − αΨ+ βΨ3 − qe = 0.

Balancing the highest power nonlinear term and the highest derivative in Eq.(3.2).
Doing so, the value of n is obtained as n = 1. Using n = 1 along with Eq.(2.4), yields

(3.3) Ψ(ζ) = A0 +A1e
−φ,

Putting Eq. (3.3) along with its second derivative into Eq.(3.2), gives a polynomial
equation in e−φ. We gather a group of algebraic equations from this polynomials by
equating the sum of the coefficients of e−φ with the same power to zero. We solve
this group of equations and obtain the values of the coefficients involved. To obtain
the solutions of Eq.(1.1), we put the values of the coefficients into Eq. (3.3) along
with Family-1 condition.
Case-1:

A0 =
3kl2κ2λ− ω(γ + 3mλω)

3
√
2
√
β
√
kl2κ2 −mω2

, A1 =

√
2kl2κ2 − 2mω2

√
β

,

α =
γ2ω2 + 3(λ2 − 4µ)(kl2κ2 −mω2)2

6kl2κ2 − 6mω2
, q =

γω(γ2ω2 − 9(λ2 − 4µ)(kl2κ2 −mω2)2)

27
√
2e
√
β(kl2κ2 −mω2)

3
2

,

with these coefficients, the following set of solutions are obtained:

Set-1: When µ ̸= 0, λ2 − 4µ > 0, Eq.(1.1) gives the following kink-type soliton

solution:

(3.4) Υ1(x, t) =
2µ

√
2ϖ − λϱ

√
β − ϱ

√
βϑtanh(1

2
ϑ(e+ κx− ωt)))

−λ
√
β − ϑ

√
βtanh(1

2
ϑ(e+ κx− ωt))

,

where, ϖ = kl2κ2 − mω2, ϑ =
√

λ2 − 4µ, ϱ = 3kl2κ2λ−ω(γ+3mλω)

3
√
2
√
β
√
ϖ

.

Figure 1: The 2D and 1D (t=5 for 1D) surfaces of Eq.(3.4).
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Figure 2: Contour plot of Eq.(3.4).

Set-2: When µ = 0, λ ̸= 0 and λ2 − 4µ < 0, Eq.(1.1) is of the following
periodic soliton solution:

(3.5) Υ2(x, t) =
2µ

√
2ϖ − λϱ

√
β + ϱ

√
βϑtan(1

2
ϑ(e+ κx− ωt)))

−λ
√
β − ϑ

√
βtan(1

2
ϑ(e+ κx− ωt))

,

where, ϖ = kl2κ2 −mω2, ϑ =
√
−λ2 + 4µ, ϱ = 3kl2κ2λ−ω(γ+3mλω)

3
√
2
√
β
√
ϖ

.

Figure 3: The 2D and 1D (t=0.85 for 1D) surfaces of Eq.(3.5).

Case-2:

A0 =
3qe(α + i

√
−9α2 − 16γ2µω2)

4α2
, A1 =

−3eqγω

α2

,

λ = − i
√
−9α2 − 16γ2µω2

2γω
, m =

−2γ2

3α
+

kl2κ2

ω2
, β =

4α3

27e2q2
,

with these coefficients, and, for Family − 1 condition being µ ̸= 0, λ2 −
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Figure 4: Contour plot of Eq.(3.5).

4µ > 0, Eq.(1.1) is also solved by this new complex kink-type soliton

(3.6) Υ3(x, t) =
−6eqγµω + 3qeα+3iqeτ

4
(iϖ − θtanh[ θ

2
(e+ κx− ωt)])

iα2ϖ − α2θtanh[ θ
2
(e+ κx− ωt)]

,

where

ϖ =

√
−9α2 − 16γ2µω2

2γω
,

θ =

√
−4µ− −9α2 − 16γ2µω2

4γ2ω2
,

τ =
√

−9α2 − 16γ2µω2

.

Figure 5: The 2D surfaces imaginary and real part of Eq.(3.6).
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Figure 6: Contour plot of imaginary and real part of Eq.(3.6).

Figure 7: The 1D surfaces of imaginary and real part of Eq.(3.6) (t=0.85).

Case-3:A0 =
3qe(α−i

√
−9α2−16γ2µω2)

4α2 , A1 =
−3eqγω

α2 , λ =
i
√

−9α2−16γ2µω2

2γω
,m =

−2γ2

3α
+ kl2κ2

ω2 , β = 4α3

27e2q2
, with these coefficients, and, for Family− 1 with

µ ̸= 0, λ2 − 4µ > 0, Eq.(1.1) is solved by the new complex kink-type
soliton
(3.7)

Υ4(x, t) =
−6eqγµω + 3

4
(qeα− iqeτ)(−iϖ − θtanh[ θ

2
(e+ κx− ωt)])

α2(−iϖ − θtanh[ θ
2
(e+ κx− ωt)])

,

whereϖ =

√
−9α2−16γ2µω2

2γω
, θ =

√
−4µ− −9α2−16γ2µω2

4γ2ω2 , τ =
√

−9α2 − 16γ2µω2.
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Figure 8: The 2D surfaces imaginary and real part of Eq.(3.7).

Figure 9: Contour plot of imaginary and real part of Eq.(3.7).

Figure 10: The 1D surfaces of imaginary and real part of Eq.(3.7) (t=0.85).
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4 Remark and comparisons

All analytical solutions obtained in this paper via EFM is completely new
with the results of [13], and has been introduced firstly to the literature
along with the figures plotted under the suitable values of parameters in
solutions.

5 Conclusion

In this paper, the exp (−φ(ζ))-exponential function method has been
successfully used in extracting complex, kink-type and periodic singular
soliton solutions to the nonlinear dynamics model (1.1). The constraint
conditions for the existence of valid soliton solutions where necessary are
also given. The physical meaning of the obtained solutions in relations
to the nonlinear dynamics model (1.1) are given as well. Solutions (3.4),
(3,6) and (3.7) belong to complex and kink-type soliton solutions. So-
lution (3.5) belongs to periodic soliton solutions. The solution of Set-2
in Case-2 being λ2 − 4µ < 0 is not valid because it is always positive as
λ2 − 4µ = 9α2

4γ2ω2 > 0.

The soliton solutions obtained in this paper might be physically use-
ful in explaining how the bonds between dimers within the same PFs are
remarkable stronger than the soft bonds between neighbouring PFs. As
a physical aspects of results, it is observed that the hyperbolic tangent
arises in the calculation of magnetic moment and rapidity of special rel-
ativity [27]. The results found in here are entirely new when comparing
the results presented in [13]. To the best of our knowledge, the applica-
tion of EFM to the Eq.(1.1) has not been submitted to the literature in
advance. Finally, one can be inferred from results that the exp(−φ(ζ))-
exponential function method is a powerful and efficient mathematical
tool that can be used to find many soliton solutions such as complex,
kink-type and periodic to various nonlinear partial differential equations
with high nonlinearity.
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