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Abstract. A novel partial differential equation (PDE) - based structural
image interpolation technique is proposed in this work. It is based on a
nonlinear hyperbolic PDE model that successfully inpaints the image by
directing the diffusion mostly to the missing regions, using a second-order
anisotropic diffusion component and an inpainting mask. It also contains
a component that combines the evolving image to a 2D filter kernel. The
proposed hybrid PDE model is well-posed and numerically solved using an
explicit iterative finite difference-based numerical approximation scheme
that is stable, consistent to the hyperbolic model and converges to its
weak solution. Some experiments and method comparison illustrating the
effectiveness of the inpainting method are also described.
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1 Introduction

Digital inpainting, also known as image interpolation or completion, represents the
computer-based process that reconstructs automatically the missing parts of the image
using the known information around them. Inpainting represents an ancient term ha-
ving its origin in the art restoration [1]. The main application areas of image interpola-
tion are the following: deteriorated painting reconstruction, photo and movie restora-
tion, image and video object removal or replacing, zooming and super-resolution,
solving the disocclusion task, estimating the scene behind an obscuring foreground,
and the image compression and decompression tasks [1].

We distinguish here three categories of interpolation techniques: texture-based,
structure-based and combined inpainting algorithms. Some textural reconstruction
methods are based on the texture synthesis [2], while many other represent exemplar-
based interpolation algorithms [3].
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Structural inpainting employs information around the missing region to estimate
the isophotes (level lines) from coarse to fine, and diffuses information by the diffusion
mechanism. It is performed by using the partial differential equation (PDE)-based
and the energy-based (variational) models [4].

The state of the art variational inpainting techniques include those based on
Mumford-Shah model [5], the Harmonic Inpainting model [6], Total Variation In-
painting [7] and its improved versions [8], [9], [10], [11], and Euler Elastica Inpainting
Model [12]. Also, many nonlinear PDE-based inpainting models of various orders
have been developed in the last decades. Some of them follow the variational princi-
ple, while other PDE interpolation models are not derived from variational schemes,
being directly given as evolutionary equations. Let us mention here the third-order
PDE-based models, such as Curvature-driven Diffusion (CDD) Inpainting [13], and
the fourth-order PDE inpainting schemes, like Cahn-Hillard Inpainting [14], TVH-1
Inpainting [15] and LCIS Inpainting [16].

We also proposed numerous variational and PDE-based inpainting techniques in
our past papers [17], [18], [19]. Here we consider a nonlinear second-order hyper-
bolic PDE-based inpainting technique combining an anisotropic diffusion term to a
two-dimension conventional filter kernel. The proposed hybrid interpolation solu-
tion provides effective reconstruction results, enhance the image details and works
successfully in noisy conditions also.

The considered differential model is described in the next section. Then, it is
solved numerically, by applying the finite-difference method, in the third section.
Some experiments and method comparison ar discussed in the fourth section, while
the conclusions of this work are drawn in the fifth section.

2 A combined hyperbolic PDE-based inpainting
model

A novel second-order nonlinear hyperbolic PDE-based image interpolation framework
is considered here. The image that is evolving in the structural inpainting process is
represented as the next partial 2D function: u : Ω → R, u|Ω\Γ = u0, where Ω ⊆ R2 is
the image domain and the inpainting region Γ ⊂ Ω.

Thus, we construct the next second-order hyperbolic partial differential equation
with several boundary conditions:

(2.1)



α
∂2u

∂t2
+ β2 ∂u

∂t
− γ(∥∇u ∗Gσ∥)∇ · (ψ(|∇u|)∇u) + λ(1− 1Γ)(u− u0) = 0

u(0, x, y) = u0(x, y)

∂u

∂t
(0, x, y) = u1(x, y)

u(t, x, y) = 0, ∀(x, y) ∈ ∂Ω \ Γ

where α, β, λ ∈ (0, 1].
The anisotropic diffusion component of this model, ∇ · (ψ(|∇u|)∇u), is based on

the following diffusivity function:

(2.2) ψ : [0,∞) → [0,∞), ψ(s) = δ

(
ξ(u)

η ln(s+ ξ(u))k + ε

)1/3

,
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where the conductance parameter is

(2.3) ξ(u) = ∥rµ(|∇u∥)− tν∥

with δ, η, ν ∈ (0, 1), k ∈ {1, 2, 3, 4}, ε, r ∈ (1, 5] and µ returns the average of the argu-
ment. This diffusivity function has the properties required by an effective restoration
process: positive, monotonically decreasing and convergent to 0 [4].

Another component is controlling the speed of the diffusion process and enhances
the boundaries. It is based on the following function:

(2.4) γ : [0,∞) → [0,∞), γ(s) = ζ m+1
√
ρsm + ξ

where ζ, ρ, ξ ∈ (0, 6) and m ∈ (0, 3). The term combines by convolution the evolving
image u to a 2D conventional filter kernel. We may choose the next two-dimension
Gaussian filter [20]:

(2.5) Gσ(x, y) =
1

2πσ
e−

x2+y2

2σ2

The PDE model (2.1) inpaints the image successfully by directing the diffusion
mostly to the missing, or highly damaged, parts (inpainting region), using the in-
painting mask given by the characteristic function of Γ. Also, since it is based on the
second-time derivative, given its hyperbolic character, this PDE removes successfully
the diffusion effect in the vicinity of the edges, thus producing sharper boundaries
and better details.

This combined nonlinear hyperbolic diffusion-based model is well-posed, admit-
ting a unique weak solution, representing the reconstructed image. That solution
is computed by applying a numerical approximation scheme that is proposed in the
following section.

3 An iterative numerical approximation algorithm

The proposed nonlinear hyperbolic PDE model is solved numerically by applying
the finite difference method [21]. So, we propose an effective finite difference-based
numerical approximation scheme for it.

We construct a grid, quantizing the time and space coordinates as following:
x = ih, y = jh, t = n∆t, i ∈ {1, ..., I}, j ∈ {1, ..., J}, n ∈ {0, ..., N}. The hyper-
bolic PDE in (2.1) leads to:

(3.1)
α
∂2u

∂t2
+ β2 ∂u

∂t
− λ(1− 1Γ)(u− u0)

= γ(∥∇u ∗Gσ∥)
(
∂

∂x
(ψ(|∇u|)ux) +

∂

∂y
(ψ(|∇u|)uy)

)
The left term of (3.1) is discretized using finite differences [21], as follows:

(3.2)

α
un+∆t
i,j + 2uni,j − un−∆t

i,j

(∆t)2
+ β2

un+∆t
i,j − uni,j

∆t
+ λ(1− 1Γ)(u

n
i,j − u0i,j)

= un+∆t
i,j

(α+ β2∆t)

(∆t)2
+ uni,j

2α− β2∆t+ λ(1− 1Γ)(∆t)
2

(∆t)2

−un−∆t
i,j

α

(∆t)2
− u0i,jλ(1− 1Γ)
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Then, the right term is approximated numerically, by using central differences [21].
Thus, one first computes γi,j = γ(∥u ∗Gσ)i,j∥) and ψi,j = ψ(∥ui,j∥), where ∥ui,j∥ ≈√(

ui+h,j−ui−h,j

2h

)2

+
(
ui,j+h−ui,j−h

2h

)2

. Next, ∂
∂x (ψ(∥∇u∥)ux) is discretized spatially

as ψi+h
2 ,j

(ui+h,j − ui,j) − ψi−h
2 ,j

(ui,j − ui−h,j), while
∂
∂y (ψ(∥∇u∥)uy) is discretized

spatially as ψi,j+h
2
(ui,j+h − ui,j)− ψi,j−h

2
(ui,j − ui,j−h), where ψi±h

2 ,j
=

ψi±h,j+ψi,j

2 ,

ψi,j±h
2
=

ψi,j±h+ψi,j

2 ·

We may consider the values h = ∆t = 1 and obtain the following implicit appro-
ximation:

(3.3)

un+1
i,j (α+ β2) + uni,j(2α− β2 + λ(1− 1Γ))− un−1

i,j α− u0i,jλ(1− 1Γ)

= γi,j(ψi+ 1
2 ,j

(uni+1,j − uni,j)− ψi−h
2 ,j

(uni,j − uni−1,j)

+ψi,j+ 1
2
(uni,j+1 − uni,j)− ψi,j− 1

2
(uni,j − uni,j−1))

It then leads to the next explicit iterative numerical approximation scheme:

(3.4) un+1
i,j =

1

α+β2


uni,j(β

2−2α−λ(1−1Γ)−γi,j(ψi+ 1
2 ,j

+ψi− 1
2 ,j

+ψi,j+ 1
2
+ψi,j− 1

2
))

+uni+1,jψi+ 1
2 ,j
γi,j+u

n
i−1,jψi−h

2 ,j
γi,j+u

n
i,j+1ψi,j+ 1

2
γi,j

+uni,j−1ψi,j− 1
2
γi,j

+un−1
i,j α+ u0i,jλ(1−1Γ)


This explicit numerical approximation algorithm is stable and consistent to the

nonlinear hyperbolic PDE model (2.1). It is converging quite fast, in N iterations, to
its weak solution representing the inpainted image.

4 Interpolation experiments and method
comparison

The combined nonlinear hyperbolic PDE-based inpainting technique described here
has been tested on hundreds of images affected by missing zones, successfully recon-
struction results being achieved. The three volumes of the USC-SIPI database and
other important image collections have been used in our interpolation experiments.

The iterative numerical discretization algorithm (3.4) that is used in the experi-
ments converges quite fast, the number of steps, N , being rather low. However, the
execution time is influenced by the size of the inpainting region. It provides a proper
reconstruction of the damaged image, filling successfully the missing regions, and
works well in noisy conditions too, given the combination to the 2D Gaussian filter
kernel. It reduces the additive noise and the undesired effects, preserving the edges
and image features very well. As already mentioned, given its hyperbolic character,
this interpolation method provides sharper boundaries.

Structural inpainting method comparisons have been also performed by us. The
performance of our interpolation framework has been assessed using the Peak Signal-
to-Noise Ratio (PSNR) metric [22].

The proposed approach outperforms many existing inpainting models, provid-
ing better results for non-textured images affected by missing parts in both clean



Compound second-order hyperbolic PDE-based structural interpolation model 31

and noisy conditions. However, it does not reconstruct properly the textures, being
outperformed by other methods in this case. Averaged PSNR values achieved by
some structure-based inpainting approaches are displayed in Table 1. Our algorithm
achieves higher PSNR values than some state-of-the-art methods.

Table 1. PSNR values of several methods

Inpainting technique Average PSNR
This hyperbolic PDE model 31.07 (dB)
Harmonic Inpainting 27.31 (dB)
TV Inpainting 28.56 (dB)
CDD Inpainting 30.65 (dB)

An image inpainting example is described in Figure 1. The originalMandrill image
is displayed in (a). The image affected by a missing region, representing several black
scratches, and an amount of white additive Gausian noise is depicted in (b).

The image inpainted by the described approach is depicted in (c), the TV Inpaint-
ing output is displayed in (d), the completion using Harmonic Inpainting in (e) and
the CDD Inpainting in (f).

Figure 1: Mandrill image inpainted by several methods
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5 Conclusions

A nonlinear hyperbolic second-order PDE-based structural inpainting technique has
been described in this work. It is based on a combined PDE model composed of a
nonlinear diffusion term using a novel edge-stopping function, which assures a detail-
preserving restoration directed to the inpainting region given by the mask, and a
component combining the evolving image to a filtering kernel, which controls the
speed of the diffusion process.

The explicit iterative numerical approximation scheme constructed for this diffe-
rential model by applying the finite-difference method represents another contribution
of this paper. The developed completion approach sucessfully inpaints the image in
both normal and noisy conditions. So, it reduces the additive noise and alleviate some
undesired effects like blurring and staircasing.

It also provides a better structure-based interpolation than many state of the
art diffusion-based techniques. Unfortunately, the proposed algorithm achieves much
weaker results for texture-based inpainting. Thus, we are going to further improve
this model as part of our future research, by extending this technique in the direction
of the textural image interpolation.
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