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Abstract. In this paper, By the fixed point method, we investigate the
generalized Hyers-Ulam-Rassias stability of a non-linear integral equation
in a Banach space X, which determines the solution of a singular initial
value problem. In the case where X is the Euclidean space, this problem
was solved by B. Fajmon and Z. Šmarda in a paper published in [Journal
of Applied Mathematics, Volume III (2010), number II, p. 53-59].
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1 Introduction

In 1940, Ulam (see [46] and [47]) asked the following question:

Let G1 be a group and let G2 be a metric group with the metric d(., .).
Given ϵ > 0, does there exist a δ > 0 such that if a function f : G1 → G2

satisfies d(f(xy), f(x)f(y)) < δ for all x, y ∈ G1, then there exists a homomorphism
h : G1 → G2 such that d(f(x), h(x)) < ϵ for all x ∈ G1 ?

If the answer is yes, then we say that the equation of group homomorphisms is
stable in the sense of Ulam.

In 1941, Hyers [19] solved the case of approximately additive mappings, when G1

and G2 are Banach spaces.
More precisely, Hyers [19] proved that for all Banach spaces E1 and E2, if a

function f : E1 → E2 satisfies the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ, ∀x, y,

for some given ϵ > 0, then there exists a unique additive function h : E1 → E2 such
that ∥f(x)− h(x)∥ ≤ ϵ, for all x ∈ E1.

Hyers proved that h is given by the limit

h(x) = lim
n→∞

2−nf(2nx),
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which exists for all x ∈ E1.

Another important result was published in 1950 by T. Aoki (see [5]) concerning
equations involving unbounded Cauchy differences.

In 1978, Th. M. Rassias [39] investigated approximately additive mappings involv-
ing unbounded Cauchy differences and established the following important stability
result:

Theorem 1.1. Let E1 and E2 be two Banach spaces and let f : E1 → E2 be a
mapping satisfying the follwing properties:

(i) The map t 7→ f(tx) is continuous in t for each fixed x in E1.
(ii) There exists a positive number θ and 0 ≤ p < 1 such that

∥f(x+ y)− f(x)− f(y)∥ ≤ θ(∥x∥p + ∥y∥p), ∀x, y ∈ E1.

Then there exists an unique linear mapping T : E1 → E2 such that

∥f(x)− T (x)∥ ≤ 2θ

2− 2p
∥x∥p, ∀x, y ∈ E1.

For p = 0, we recapture Hyers’ Theorem.

The contributions of Ulam, Hyers and Rassias are recognized nowadays as the
basis of a theory of stability called stability in the sense of Ulam-Hyers-Rassias. For
more informations on this theory, the reader is invited to consult the books [33], [22],
[26], [11], [43] and the references.

Stability in the sense of Ulam-Hyers-Rassias are investigated and studied not only
for the classical functional equations, but for various kinds of equations like differen-
tial, integral or algebraic equations. Now, the stability of equations in the sense of
Ulam-Hyers-Rassias makes use of various methods of different kinds.

The fixed point method is a powerful tool to obtain stability results. In 1991, J. A.
Baker (see [6]) has inaugurated this method and studied the Hyers-Ulam stability for
a nonlinear functional equation by using the Banach fixed point theorem. In several
papers, V. Radu [38] (see also [8] and [9]) applied the fixed point alternative theorem
(due to J. B. Diaz and B. Margolis [12]) in order to investigate the Hyers-Ulam-Rassias
stability. D. Miheţ [34] used the Luxemburg-Jung fixed point theorem in generalized
metric spaces to study the Hyers-Ulam stability for two functional equations in a
single variable. L. Gǎvruţa [17] obtained a general result concerning the Hyers-Ulam
stability of a functional equation in a single variable by using a fixed point theorem
of Matkowski.

In 2007, S.-M. Jung [30] used the alternative fixed point theorem to establish the
stability of a Volterra integral equation. The results of [30] were generalized in [10].

In 2010, M. Gachpazan and O. Baghani [14] (see also [15]) studied the stabil-
ity of certain Volterra integral equations on finite intervals by using the successive
approximation method.

By using the fixed point alternative theorem, the stability of a class of nonlinear
Volterra integral equations Hyers-Ulam-Rassias was studied by M. Akkouchi in [2].
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In [4], the stability of the mild solutions of a general abstract Cauchy problem was
investigated by using the Banach fixed point theorem. A stability result in the sense of
Ulam-Hyers was established in [3] for a general class of nonlinear functional equations
by using a fixed point theorem of L.J. Ćirić.

Other methods exist to deal with the stability of equations in the sense of Hyers-
Ulam-Rassias. For instance, P. Gǎvruţa and L. Gǎvruţa (see [18]) have recently
provided a new method called the weighted space method to deal with the generalized
Hyers-Ulam-Rassias stability.

The aim of this paper is to study the generalized HyersUlam-Rassias stability of
a non-linear integral equation (see Equation (2.3)) which describes the solutions of
a class of singular initial value problem introduced by B. Fajmon and Z. Šmarda in
their paper [13].

To study the generalized HyersUlam-Rassias stability of Equation (2.3), we adopt
the fixed point method using the classical Banach contraction principle. The main
result of this paper (see Theorem 3.1) is established in the third section. In the
second section, we make some preliminaries where we set some definitions, notations
and state the problem with the associated assumptions.

Our work will provide a natural continuation to the work initiated in [13] by B.
Fajmon and Z. Šmarda.

2 Preliminaries and statement of the problem

2.1 Statement of the problem

Let (X, ∥.∥) be a real or complex Banach space endowed with a norm ∥.∥. Let T > 0
be a given positive number.

We consider the following singular initial value problem which extends the problem
solved in [13] by B. Fajmon and Z. Šmarda in the case where X = Rn.

y′(t) = F (t, y(t),

∫ t

0+
K(t, s, y(t), y(s))) ds, y(0+) = 0, y(t) ∈ X, ∀t ∈ (0, T ]. (2.1)

We make three sets of assumptions similar to those used in [13].

(I) F : Ω → X is continuous on the set Ω given by :
Ω := {(t, u1, u2) ∈ J × X × X : ∥u1∥ ≤ ϕ(t), ∥u2∥ ≤ ψ(t)}, where J := (0, T ],

ϕ, ψ : J → (0,+∞) are continuous with ϕ(0+) = 0 and there exist two non-negative
numbers M1 and M2 such that

∥F (t, u1, u2)− F (t, v1, v2)∥ ≤M1∥u1 − v1∥+M2∥u2 − v2∥, ∀(t, u1, u2), (t, v1, v2) ∈ Ω.

(II) K : Ω1 → X is a continuous function defined on the set Ω1 given by :
Ω1 := {(t, s, w1, w2) ∈ J × J × X × X : ∥w1∥ ≤ ϕ(t), ∥w2∥ ≤ ϕ(t)} which is

satisfying the following conditions:

(a) there exist two non-negative numbers N1 and N2 such that

∥K(t, s, w1, w2)−K(t, s, z1, z2)∥ ≤ N1∥w1 − z1∥+N2∥w2 − z2∥,
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for all (t, s, w1, w2), (t, s, z1, z2) ∈ Ω1, and

(b)
∫ t

0+
∥K(t, s, h(t), h(s)∥ ds ≤ ψ(t), for all t ∈ J and h ∈ Eϕ, where Eϕ is given

by

Eϕ := {h : [0, T ] → X : h is continuous and ∥h(t)∥ ≤ ϕ(t), ∀t ∈ [0, T ]}. (2.2)

(III) There exist two continuous functions g1, g2 : J → (0,+∞) and two non-
negative numbers α, β with α+ β ≤ 1 such that the following conditions hold true:

(a) ∥F (t, u1, u2)∥ ≤ g1(t)∥u1∥+ g2(t)∥u2∥, for all (t, u1, u2) ∈ Ω,

(b)
∫ t

0+
g1(s)ϕ(s) ds ≤ αϕ(t) and

∫ t

0+
g2(s)ψ(s) ds ≤ βϕ(t), for all t ∈ (0, T ].

The initial value problem (2.1) is equivalent to find the solutions (in the set Eϕ)
of the following integral equation:

y(t) =

∫ t

0+
F

(
s, y(s),

∫ s

0+
K(s, w, y(s), y(w)) dw

)
ds, ∀t ∈ J. (2.3)

We notice that the solutions of (2.1) are given by the solutions of the integral equation
(2.3). As in [13], the integral equation (2.3) can be solved by using the iteration
method and the Banach fixed point theorem.

In this paper, we intend to establish the generalized stability of the integral equa-
tion (2.3) in the sense of Ulam-Hyers-Rassias. This concept will be precised in the
next subsection.

2.2 Concepts of Ulam-Hyers-Rassias stability

We keep in mind the assumption (I), (II) and (III). We set I = [0, T ]. The set of all
continuous functions from I to X will be denoted by E := C(I,X). We recall that

Eϕ := {h : I → X : h is continuous and ∥h(t)∥ ≤ ϕ(t), ∀t ∈ I}.

For any h ∈ Eϕ, we set

Λ(h)(t) :=

∫ t

0+
F

(
s, h(s),

∫ s

0+
K(s, w, h(s), h(w)) dw

)
ds, ∀t ∈ I. (2.4)

With the assumptions (I), (II) and (III) made above, it is easy to see that the map
h 7→ Λ(h) is a self-mapping of the set Eϕ. Indeed, for any h ∈ Eϕ, the function Λ(h)
is continuous on I. Moreover, we have

∥Λ(h)(t)∥ ≤
∫ t

0+

∥∥∥∥F (
s, h(s),

∫ s

0+
K(s, w, h(s), h(w)) dw

)∥∥∥∥ ds
≤
∫ t

0+

[
g1(s)∥h(s)∥+ g2(s)

∫ s

0+
∥K(s, w, h(s), h(w))∥ dw

]
ds

≤
∫ t

0+
g1(s)ϕ(s) ds+

∫ t

0+
g2(s)ψ(s) ds

≤αϕ(t) + βϕ(t) = (α+ β)ϕ(t) ≤ ϕ(t), ∀t ∈ I. (2.5)
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(2.5) proves that Λ transforms the set Eϕ into itself.

Let ϵ > 0 and let G ∈ C(I, (0,+∞)) be given. We consider the following equation

g(t) = Λ(g)(t), t ∈ I, (2.6)

where the unknown function g is in the set Eϕ. Beside this integral equation, we
consider the following inequalities:

∥f(t)− Λ(f)(t)∥ ≤ ϵ, t ∈ I, (2.7)

∥f(t)− Λ(f)(t)∥ ≤ G(t), t ∈ I, (2.8)

where the unknown function f is in the set Eϕ.

As in [45], we introduce the following definitions.

Definition 2.1. The integral equation (2.6) is Ulam-Hyers stable if there exists a
real number c > 0 such that for each ϵ > 0 and for each solution f ∈ Eϕ of (2.7) there
exists a solution g ∈ Eϕ of (2.6) such that

∥f(t)− g(t)∥ ≤ cϵ, ∀t ∈ I.

Definition 2.2. The integral equation (2.6) is generalized Ulam-Hyers stable if there
exists θ ∈ C([0,+∞), [0,+∞)), θ(0) = 0, such that for each ϵ > 0 and for each solution
f ∈ Eϕ of (2.7) there exists a solution g ∈ Eϕ of (2.6) such that

∥f(t)− g(t)∥ ≤ θ(ϵ), ∀t ∈ I.

Definition 2.3. The integral equation (2.6) is generalized Ulam-Hyers-Rassias stable,
with respect to G ∈ C([0,+∞), (0,+∞)), if there exists cG > 0 such that for each
solution f ∈ Eϕ of (2.8) there exists a solution g ∈ Eϕ of (2.6) such that

∥f(t)− g(t)∥ ≤ cGG(t), ∀t ∈ I.

In the sequel, we are interested by the stability of the equation (2.6) in the sense
of Definition 2.3.

3 Main result

The main result of this paper reads as follows.

Theorem 3.1. Let (X, ∥ · ∥) be a (real or complex) Banach space. Let T > 0 be a
given positive number. Let F and K satisfying the conditions (I), (II) and (III). Let
Eϕ defined by (2.2). Let G : [0, T ] → (0,∞) be a continuous function.

Then there exists a constant cG > 0 such that for every f ∈ Eϕ satisfying the
following inequality:∥∥∥∥f(t)− ∫ t

0+
F

(
s, f(s),

∫ s

0+
K(s, w, f(s), f(w)) dw

)
ds

∥∥∥∥ ≤ G(t), ∀t ∈ [0, T ], (3.1)
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there exists a (unique) function g ∈ Eϕ such that

g(t) =

∫ t

0+
F

(
s, g(s),

∫ s

0+
K(s, w, g(s), g(w)) dw

)
ds, ∀t ∈ [0, T ], (3.2)

and

∥f(t)− g(t)∥ ≤ cG G(t), ∀t ∈ [0, T ]. (3.3)

Proof. We recall that Eϕ is the set of all continuous functions h : [0, T ] → X such
that ∥h(t)∥ ≤ ϕ(t), for all t ∈ [0, T ].

Let S > 0 be such that

S[M1 +M2N1T ] + S2M2N2 < 1. (3.4)

We choose a continuous function θ : [0, T ] → (0,∞) such that

∫ t

0

θ(s)ds ≤ S θ(t), ∀t ∈ [0, T ]. (3.5)

Such functions exist. For example, we can take θ(t) := exp( t
λ ) and set S := 1

λ , which
tends to zero when λ tends to +∞, then (3.4) is realized for large values of λ.

To simplify notations, we set qS := S[M1 +M2N1T ] + S2M2N2. By (3.4), we
know that qS ∈ [0, 1).

Let f be satisfying the inequality (3.1). Let αG and βG be two positive numbers
such that

αGθ(t) ≤ G(t) ≤ βGθ(t), ∀t ∈ [0, T ]. (3.6)

For all h, g ∈ Eϕ, we set

dθ(h, g) := inf{C ∈ [0,∞) : ∥h(t)− g(t)∥ ≤ Cθ(t), ∀t ∈ [0, T ]},

It is easy to see that (Eϕ, dθ) is a metric space and that (Eϕ, dϕ) is complete.

Now, consider the operator Λ : Eϕ → Eϕ defined by

(Λh)(t) :=

∫ t

0+
F

(
s, h(s),

∫ s

0+
K(s, w, h(s), h(w)) dw

)
ds, ∀t ∈ [0, T ].

We shall prove that Λ is strictly contractive on the metric space (Eϕ, dθ). Indeed, let
h, g ∈ E and let C(h, g) ∈ [0,∞) be an arbitrary constant such that

∥h(t)− g(t)∥ ≤ C(h, g)θ(t), ∀t ∈ [0, T ].

Then, by using the assumptions (I), (II), (III), (3.5) and (3.6), we have the following
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inequalities:

∥(Λh)(t)− (Λg)(t)∥

≤
∫ t

0+
∥F

(
s, h(s),

∫ s

0+
K(s, w, h(s), h(w)) dw

)
− F

(
s, g(s),

∫ s

0+
K(s, w, g(s), g(w)) dw

)
∥ ds

≤
∫ t

0+

[
M1∥h(s)− g(s)∥+M2

∫ s

0+
∥K(s, w, h(s), h(w))−K(s, w, g(s), g(w))∥dw

]
ds

≤M1

∫ t

0+
C(f, g)θ(s) ds+M2

∫ t

0+

[∫ s

0+
(N1∥h(s)− g(s)∥+N2∥h(w)− g(w)∥) dw

]
ds

≤M1C(f, g)

∫ t

0+
θ(s) ds

+M2N1

∫ t

0+
s∥h(s)− g(s)∥ds+M2N2

∫ t

0+

[∫ s

0+
∥h(w)− g(w)∥dw

]
ds

≤M1C(f, g)Sθ(t) +M2N1C(f, g)

∫ t

0+
sθ(s) ds+M2N2C(f, g)

∫ t

0+

[∫ s

0+
θ(w)dw

]
ds

≤ C(f, g)

(
M1Sθ(t) +M2N1

∫ t

0+
Tθ(s) ds+M2N2S

∫ t

0+
θ(s) ds

)
≤ C(f, g)

(
M1Sθ(t) +M2N1TSθ(t) +M2N2S

2θ(t)
)

= C(f, g)
(
M1S +M2N1TS +M2N2S

2
)
θ(t)

= qSC(f, g)θ(t), for all t ∈ [0, T ].

Therefore, we have dθ(Λ(h),Λ(g)) ≤ qSC(h, g), from which we deduce that

dθ(Λ(h),Λ(g)) ≤ qSdθ(h, g).

Since qS < 1, it follows that Λ is strictly contractive on the complete metric space
(Eϕ, dθ). By the Banach fixed point principle, there exits a unique function (say) g
in Eϕ such that g = Λ(g).

By the triangle inequality, we have

dθ(f, g) ≤ dθ(f,Λ(f)) + dθ(Λ(f),Λ(g))) ≤ βG + qSdθ(f, g),

which implies that

dθ(f, g) ≤
βG

1− qS
,

from which, we deduce the following inequality

∥f(t)− g(t)∥ ≤ βG
(1− qS)

θ(t) ≤ βG
(1− qS)

G(t)

αG
≤ cGG(t), ∀t ∈ [0, T ], (3.7)

where

cG :=
βG

(1− S[M1 +M2N1T + SM2N2])αG

which is the desired inequality (3.4). This ends the proof. �
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