
Method for finding and storing optimal

triangulations based on square matrix

M. Saračević, S. Mašović, P. Stanimirović, P. Krtolica

Abstract. The process of finding an optimal triangulation is a procedure
in computational geometry and computer science requiring an amount of
time for execution as well as relatively large requirements for data storage.
Therefore, it is important to provide an efficient way for faster generation
of optimal triangulations and their storage in as little memory space as
possible. Accordingly, the paper presents a new method for finding an
optimal triangulation based on the square matrix (SM) method, which
stores all results of triangulations for given n. The main emphasis of the
method is on the speed of generating optimal triangulation and saving
memory space during calculation of a large number of triangulations. The
method of data storage is constructed on the idea that it is not necessary
to store each weight of triangulation particularly, but performing it all
at once. The implementation in Java environment is described and ex-
perimental results of the SM method are compared to the Hurtado-Noy
method.

M.S.C. 2010: 68U05, 32B25.
Key words: Computational Geometry; optimal triangulations; square matrix; mini-
mum weight triangulation; Java programming.

1 Introduction

Polygon triangulation is the process of decomposition a certain area to triangles with
non-intersecting sides. The points that shape this area in the same time are the
vertices of at least one of the triangles. Polygons can be used in approximations and
graphical representation of curves.

The procedure of triangulation is done in 2D, 3D or multi-dimensional space and
is seen as process of finding systematically modeled triangles. A triangulation in 2D
is realized using the coordinates (x, y) of the polygon vertices. The most important
characteristic of one triangulation algorithm is its uniqueness, its independence from
starting point and from the order of operations in the implementation. The quality
of a triangulation algorithm is measured by the number of performed operations and
by the storage of obtained results in computer memory.

Applied Sciences, Vol.20, 2018, pp. 167-180.
c© Balkan Society of Geometers, Geometry Balkan Press 2018.



168 M. Saračević, S. Mašović, P. Stanimirović, P. Krtolica

Polygonal triangulation as an important procedure applicable in the computer
graphics represent a basic and preprocessing steps for most nontrivial operations
with the polygons [4]. Triangulation of a convex polygon is an important problem
that appears in a 2D computational geometry [11],[13]. The decompositions of 2D
scenes are used in contour filling, clipping, cast shadow removal and convex hull
fitting. Triangulation techniques are the most common methods in computational
geometry. The easiest way of segmentation and smoothing of double curved area is
construct a method from network of triangles who are contained in them.

The advantage of the triangle as a geometric object is that the area between the
three points is always flat. Other advantages of triangulation methods are small
deviations from the original form, good structural properties and the possibility of
overlaying complex free forms. This procedure is crucial for the speed, quality and
resolution of the 3D objects and pre-trial phase of non-trivial operations of simple
polygons [6].

The polygon triangulation is the technique used in modelling of 3D objects. Tools
for rendering either generate 3D models or load them when creating the desired
images. Apart from the geometry of the models lighting, shadows, textures, colors,
transparency and some advanced features of individual software packages are also
today tools for rendering in the output file implanted are also.

The process of finding the triangulation is based on the Minimum-Weight Triangu-
lation (MWT ) algorithm. Due to difficulty of finding the exact solutions of MWT ,
many authors have studied heuristics, which in some cases may find the solutions
although they cannot be proven they work in all cases. Most of the research are fo-
cused on the problem of finding sets of edges that are guaranteed the minimum-weight
triangulation.

2 Related works

There are many researches that treat optimal triangulations. In the paper of the
Mulzer and Rote [15] the MWT problem is observed as the problem of finding a
triangulation from the set of given points that minimizes the sum of the edge lengths.
In [5] Eppstein shows that the length of MWT of a point set can be approximated
within a constant factor. In O(n logn) time they compute a triangulation with O(n)
new points, and no obtuse triangles, that approximate the MWT.

In [10], the authors presented algorithms that construct MaxMin and MinMax
area triangulations of a convex polygons in O(n2 logn) time and O(n2) space. The
algorithms in [16, 9] use dynamic programming and a number of geometric properties.
Mirzoev and Vassilev [14] consider the problems of finding two optimal triangulations
of convex polygon: MaxMin area and MinMax area. These are the triangulations that
maximize the area of the smallest area triangle in the triangulation, and respectively
minimize the area of the largest area triangle in the triangulation, over all possible
triangulations. In [1, 19] are given linear program for minimum-weight triangulation
and method for minimum weight pseudo-triangulations. In comparison to the previous
researches in this field, we propose a new method for efficient storing and finding an
optimal triangulation.



Method for finding and storing optimal triangulations 169

3 The method for optimal triangulation

The initial idea behind the implementation of the constructed method for storing
weights resulted from advanced Java capabilities that are related to application of
packages for working with table cells. The DefaultTableCellRendererJava package
is taken the main role in storing weight triangulations. This package enables storage
of multiple values within a single table cell (which provide efficient cell division into
multiple columns and rows). The calculation of MWT is based on dynamic program-
ming techniques. Apart from fast calculation of optimal triangulations, one of the
goals in the implementation is to save memory space during calculation of a large
number of triangulations.

The method is constructed on base of different ways of parenthesizing matrix
multiplications (optimal scheduling of matrix multiplication) and the associative law
A · (B · C) = (A ·B) · C for multiplication of matrices.

Let assume that we have a sequence A1, A2, . . . , An of n matrices to be multi-
plied and let P (n) is the number of different parenthesizing of this product. This
product of n matrices we can split between kth and (k + 1)th matrices for any
k = 1, 2, . . . , n − 1 and parenthesize the two resulting sequences independently as
((A1A2, . . . , Ak)(Ak+1Ak+2, . . . , An)). the recurrence (3.1) is obtained in this way:

(3.1) P (n) =

{

1, n = 1
∑n−1

k P (k)P (n− k) , n ≥ 2.

This recurrence generate the sequence of Catalan numbers and satisfies P (n) =
Cn−1. The optimal triangulation of convex polygon is constructed as dynamic pro-
gramming problem and consist the following steps:

1. labeling of edges with matrix Ai, i = 1, 2, . . . , n (An×1) odd edges and A1×n

even edges;

2. splitting the problem into subproblems using optimal split;

3. parenthesize the subproblems optimally;

4. combination of optimal subproblem solutions.

Let us denote the weight of a minimal triangulation convex polygon as m[1, n].
The weight of each triangle in triangulation is the length of its perimeter and let
denote w(i, j, k) the length of perimeter of ∆vivjvk.

The convex polygon contains sub-polygons with i vertices through k (2 ≤ k ≤ i),
and we denote the weight of a minimal triangulation of such a sub-polygon as m[i, j]
(is the minimum number of scalar multiplications needed to compute Ai...j = Ai ·
Ai+1 · · ·Aj . Possible values of m[i, k] fall into two cases.

• Case 1: if i = j then m[i, j] = m[i, i] = 0, Ai = i and multiplication of matrices
is not need.

• Case 2: if i < j , then we assume optimal split at k, i ≥ k < j. In this case Ai,k

and Ak+1,j have a dimension vi−1 × vk, vk × vj respectively. For each choice of
j we calculate



170 M. Saračević, S. Mašović, P. Stanimirović, P. Krtolica

(3.2) m[i, j] = m[i, k] +m[k + 1, j] + w(i, j, k) for k = i, i+ 1, i+ 2, . . . , j − 1.

These two cases give the following recursive formula (3.3):

(3.3) m [i, j] =

{

0 if i = j

mini≤k<j m [i, k] + m [k + 1, j] + w(i, j, k) if i < j

The convex polygon v0v1 . . . vn−1 with (n − 3) non-intersect diagonals is divided
into (n − 2)-triangles. In most cases, it is possible to find a criterion for calculating
weight of triangulation, i.e., a values of the perimeter, sum of heights or length of
the longest median by the number of triangles [14]. The optimal triangulation can be
calculated with the recurrent formula (3.3). In sequel we describe the algorithm for
computing the weight (w) of the triangle w(i, j, k).

For the illustration purpose, observe two triangulations of convex heptagon, as
shown in Figure 1.

Figure 1: Two triangulation of convex heptagon with associated weights

3.1 Storing weights based on a square matrix (SM model)

The method for storing triangulation weights is based on a square matrix (i = j = n)
with dimensions (n × n), where i stands for number of rows, j represents columns,
and n is the number of polygon vertices. The matrix Aij is used for organization of
k-vertices of the triangle (i, j, k) and presentation of their weights (w).

In our particular case, the matrix A can be permanently transferred as a table by
using Java JDBC API. The matrix is diagonally divided into two parts. The diagonal
divides i = j the matrix into left and the right part. Positions (1, 1), (2, 2), (3, 3), . . . , (n, n)
are filled with zero (see Figure 2).

The k-vertices of the triangles are recorded on the left side of the matrix while
their calculated weights (3.3) are on the right side:

k[i, j] = w[j, i]



Method for finding and storing optimal triangulations 171

Figure 2: The general scheme of filling the matrix

Example 3.1. This example shows how many k values there are in the set vk for
pentagon (Figure 3).

Figure 3: An example of increasing the number of k-vertex in the field of square
matrix

There is no vertex k between vertices 1 and 2, because they are adjacent (labeled
with adj) so that there is no weight on the other side of the diagonal (labeled with
nw, Figure 2).

More precisely, there is no (i, j, k) triangle that has defined weight. The number
of vertices between (i, j) increases as the number of i-rows increases. For example,
there is one vertex k = 2 between vertices 1 and 3, there are two vertices k = 2, 3
between vertices 1 and 4, there are three vertices k = 2, 3, 4 between vertices 1 and
5, and etc.

As the distance between vertices (i, j) increases, so does the number of possible
k-vertices within the set v and the number of weights (w) on the other side of the
diagonal (j, i).

Based on P (n) = Cn−1 for n = 5 (pentagon) we obtain five different triangulations.
There is only one universal matrix (5 × 5) for all five triangulations containing all



172 M. Saračević, S. Mašović, P. Stanimirović, P. Krtolica

triangle weights necessary to acquire minimal weight for each triangulation separately.

Figure 4: Pentagon triangulations

In the following we presents a 5 × 5 matrix for pentagon according to the filling
general scheme.

opt5 =













0 {nw} {25} {25, 30} {16, 80, 35, 60}
{adj} 0 {nw} {10, 30} {35, 11, 15}
{2} {adj} 0 {nw} {30}
{2, 3} {3} {adj} 0 {nw}
{2, 3, 4} {3, 4} {4} {adj} 0













The method of storing weights is combined with our method for generating trian-
gulations [18].

We present Algorithm 3.1 for storing triangulation weights and finding optimal
triangulation. At the beginning, the algorithm expects number of polygon vertices
n, where each vertex gets its own coordinates. The table gets expanded with a new
column that store triangulation weights of the current process.

Algorithm 3.1 contains three main steps:

1. Form a square matrix i×j and we fill the fields along the diagonal with 0 (where
i = j). Then we fill with adj on the position on the position (i, j) and by nw

on position (j, i) with respect the first diagonal line (see Figure 2). These are
adjacent vertices and there are no k-values for them, which can be used to form
(i, j, k) triangle. Those fields have value 0 and after that we add all possible
values for k between (i, j).

2. Calculate all triangulation weights (w) for rows and columns of the matrix where
(j− i) > 1 according to the formula (3.1) and proceed to the next step. We add
corresponding weights to assigned k values on the position (j, i).

3. The obtained weights are assigned to the corresponding polygon triangulation.



Method for finding and storing optimal triangulations 173

Algorithm 3.1 Algorithm for storing weights and finding optimal triangulation.

Require: n, table Tn

1: Create a new matrix (i× j)
for (i = 1; i ≤ n; i++)

v[i, j] = 0, where is i = j

v[i, j] = adj, where is j − i = 1

2: Filling the other fields
for(i = 1; i ≤ n; i++)
for(j = 2; j ≤ n; j ++)

j = i+ 1
for(k = i+ 1; i ≤ j − 1; k ++)

m[i, j] = min{m[i, k] +m[k + 1, j] + w(i, j, k)}
W [Ti] = sumAll[m[i, j]]

if W [Ti] < m[i, j] then
W [Ti] = m[i, j]
return m[i, j]

3: Selection (n− 2) of triangles (i, j, k) from the matrix and identification in Tn

Evaluate Opt[w] = minW [Ti]

Example 3.2. Obtaining optimal triangulation for the irregular convex pentagon is
explained in four steps.

Step 1:Form a 5× 5 matrix, and diagonally fill out fields with zeroes and values
for adjacent vertices. Afterwards, we fill out values for all (i, j, k) triangles. After
these steps, the matrix has the following form:

opt5 =













0 {nw} {35} {35} {16}
{adj} 0 {nw} {10} {11}
{2} {adj} 0 {nw} {30}

{〈2〉, 3} {〈3〉} {adj} 0 {nw}
{2, 3, 〈4〉} {3, 4} {4} {adj} 0













Step 2: Find the sums of weights (w) for Cn−2 rows given on the table T5. The
table was created by using algorithm for generating triangulations, which is described
in detail in [17].

The table for storing triangulations gets expanded by a new column W (Table 1).

Table 1: Extended table T5

i D1 D2 W

1 δ1,3 δ1,4 76
2 δ1,3 δ3,5 71
3 δ2,4 δ1,4 61
4 δ2,4 δ2,5 37
5 δ2,5 δ3,5 51



174 M. Saračević, S. Mašović, P. Stanimirović, P. Krtolica

The sums of all triangle weights are saved in the new column W for [Ti], where i
is the current row.

The diagonals in the rows form (n − 2)- triangles and for each triangle, we take
the weights from the matrix A:

W [T1] = 25 + 35 + 16 = 76
W [T2] = 16 + 25 + 30 = 71
W [T3] = 10 + 35 + 16 = 61

· · ·

Step 3: In this step we calculate the lowest sum in a row (optimal triangulation):

(3.4) OptTw = min{W [T1], . . . ,W [Ti]}

where is 1 ≤ i ≤ Tn.

Based on (3.4) we get optimal triangulation OptTw = 37. After finding the optimal
triangulation from previous table, it follows drawing the same one on the basis of
internal diagonals δi,j that correspond to the row and column in the matrix, i.e. pair
(i, j): optT = {δ2,4, δ2,5} (Figure 5).

Figure 5: The corresponding values in the matrix and optimal triangulation

3.2 Comparative analysis

Now let us look on savings, in terms the calculations for finding the weight of each
triangulation separately when it comes with the Hurtado-Noy method.

In the worst case, the total number of weights calculations (with repetition) is
the product of the total number of triangulations of the n-gon and the number of its
diagonals:

(3.5) TMw = Tn × (n− 2)

If we want to calculate triangulation weights of the pentagon, based on (3.5), we
have 15 calculations in total (5 different triangulations with 3 triangles each).



Method for finding and storing optimal triangulations 175

Now we have to find savings in terms of calculating triangle weights (i, j, k). At the
beginning we determine how many k-values there are in the matrix. According to the
general scheme of filling the matrix (Figure 2), the number of k-vertices increases as
we go further from the diagonal. The first row does not contain elements (since they
represent the so-called adjacent diagonals), the second has one element, the third has
two and so on. The last diagonal row contains (n− 2) k- vertices since the difference
between the first and the last n-vertex is always two, because the first and the last
vertex are always subtracted from the total (Figure 6).

Figure 6: Example of calculating the total number of k-vertex

If we label the total number of stored k-vertices for a polygon with n-vertices with
Vn then the number of (i, j, k) triangles or k-vertices that have been inserted into the
table, are obtained from the following equation:

Vn =
n−2
∑

i=1

i((n− 2)− (i− 1))

Vn =

n−2
∑

i=1

i(n− i− 1)

(3.6)

By decomposing formula 3.6 we can present the value of Vn as the sum of number
of fields in rows and number of sequenced elements of that field.

Example 3.3. In this example we calculate the number of k-vertex for n = {5, 6, 7},
which are marked with V5, V6 i V7:

V5 = (1× 3) + (2× 2) + (3× 1) = 10 (filled out a total of 10 k-values)

V6 = (1× 4) + (2× 3) + (3× 2) + (4× 1) = 20

V7 = (1× 5) + (2× 4) + (3× 3) + (4× 2) + (5× 1) = 35

For triangulations of a pentagon (Figure 4), there are 10 diagonals including rep-
etition (5 different triangulations containing 2 diagonals each), shown in the form as
follows: δ2,5δ3,5, δ2,4δ1,4, δ1,3δ1,4, δ1,3δ3,5 and δ2,4, δ2,5. Based on (3.6) it follows that
the number of calculated weights is equal to the number of triangles:

(3.7) SMw =

n−2
∑

i=1

i(n− i− 1)



176 M. Saračević, S. Mašović, P. Stanimirović, P. Krtolica

Therefore, we have 10 different triangles in the triangulation for a pentagon pre-
sented in Example 3.3. Using the traditional calculation for all triangulations of a
pentagon separately i.e. by using Tn × (n − 2) we get 15 triangles (including repeti-
tion) for all triangulations of a pentagon. According to TMw − SMw we have saved
5 calculations.

For the second comparison, with our SM method, we will take a well-known algo-
rithm given in the paper [8]. Hurtardo and Noy proposed an algorithm for generating
the triangulations of Pn based on the triangulations of Pn−1. Moreover, they defined
the tree of triangulations where all triangulations of Pn, i.e., the triangulations from
Tn, are arranged at the level n of this tree (based on this tree, can be calculated
number of the weights in the storage).

Every triangulation at the level n has a “father” in Tn−1 and two or more “sons”
in Tn+1. The sons of the same father are “brothers”. There is an ordering among the
children of a triangulation, and consequently among all triangulations. In the case of
Hurtado-Noy hierarchy (or algorithm), we have the following. For every triangulation
at level n− 1 we need to perform 2n− 5 checks to find the diagonals incident to the
vertex n− 1. Total number of these checks is (2n− 5)Cn−3.

Further, we must go through diagonals and copy some without transforming, while
some of them should be transformed and two new diagonals should be inserted, for
every incident diagonal which has been found. In such a way we make 2n − 3 pairs
describing one new triangulation. The total number of incident diagonals is equal to
Cn−2. All together, in the case of Hurtado-Noy algorithm we need

HNw = (2n− 5)Cn−3 + (2n− 3)Cn−2

number of weights calculations.
As the number of vertices increases, the number of repetitions of calculations

drastically increases as well (also, speedup and savings are drastically increased, see
Table 2).

Table 2: Comparative analysis

n TMw HNw SMw D R

7 210 45 35 10 1.29

8 792 161 56 105 2.88

9 3003 588 84 504 7.00

10 11440 2178 120 2058 18.15

11 43758 8151 165 7986 49.40

12 167960 30745 220 30525 139.75

13 646646 116688 286 116402 408.00

14 2496144 445094 364 444730 1222.79

TMw − Total number of weights calculations (with repetition) (Tn × (n− 2))

HNw − Number of calculations based on Hurtado-Noy hierarchy

SMw − Number of calculations based on Square matrix method (based on (3.7))

D − Difference of HNw and SMw (savings, SM-HN)

R − Ratio of HNw and SMw (speedup, SM/HN)



Method for finding and storing optimal triangulations 177

The method developed in this research is avoiding the same calculations and give
rule for the calculation of the identical (i, j, k) triangles. We get the significant increase
of the same calculation using the traditional method is noticed when it comes to n > 7
versus SM method.

4 Implementation and experimental results

Java NetBeans environment [7] has the package OptimalTriangulation that works
as a supplement to the application that generates triangulations of a convex polygon.
The main class operates through compute(), and the method calculate all weights
within the table Tn.

In order to work with table cells, we have used DefaultTableCellRendererclass

of the Swing package. This class inherits the class Table and allows manipulation of
table cells (in this case, it allows us to assign a number of independent values to a
single table cell).

Application of Geometry package and GeometryInfo class [2],[3] in the process
of combining methods for finding the optimal triangulation and generating triangula-
tions is shown in in Figure 2. The GeometryInfo class with its method TRIANGLE ARRAY

encompasses a set of three vertices that form triangle (i, j, k) and by using GL TRIANGLES

method it forms triangles.

Figure 7: The procedure for storage of triangulation

For the purpose of comparing experimental results with the SM method we present



178 M. Saračević, S. Mašović, P. Stanimirović, P. Krtolica

application implemented in Java environment. A table of stored weights correspond-
ing to all possible triangulations of a certain polygon is obtained as a result of the
application.

The application give a option of the graphic representation of optimal triangula-
tion, and is performs as is described in Algorithm 3.1:

1. The weights are calculated by pressing the button CALCULATE WEIGHTS.

2. Upon successful calculation, checking of JDBC connection follows.

3. When the message for successful connection is displayed, corresponding table
Tn that has been formed using method for generating all triangulations is called
upon. Finding table Tn is simple (number n gets the same value as the number
of vertices drawn in JPanelapplication).

4. Upon detecting adequate table Tn (if it exists), new columns for weight (w) will
be filled out one by one for each triangulation (i.e. row by row). Filling out
a new column means detecting (i, j, k) matrix values based on diagonals (δi,j)
that are already in the table Tn.

5. After all weights for triangulations are calculated, a user will get the output
message status-OK for each triangulation.

6. By clicking Show Optimal Triangulation the JPanel displays the optimal trian-
gulation.

The importance of storing in the proposed way reflects in the fact that the results
of using this method can in an efficient way display optimal triangulation under the
condition that there is a method of generating all triangulations.

Table 3 presents the results for n = 5,6,. . . ,14. Table shows time needed to calcu-
late weights (step 1 and 2, without graphically generating optimal triangulation) and
the total time for finding optimal triangulation (step 3 and 4, with display).

Table 3: Experimental results in Java software solution (Time expressed in seconds)

n Number of triangulation Time to fill the matrix Total execution time

5 5 0.01 1.7
6 14 0.03 2.4
7 42 0.09 2.8
8 132 0.12 3.7
9 429 0.19 5.2
10 1430 0.27 14.8
11 4,862 0.41 27.4
12 16,796 0.62 48.7
13 58,786 1.04 64.6
14 208,012 1.59 85.5

The testing was done on a computer with following technical specification: CPU

Intel Core2 Duo, 2.40GHz,Cache 4MB, RAM: 2Gb, Graphic: NVIDIA GeForce 8600M

GS.



Method for finding and storing optimal triangulations 179

5 Conclusion

The method for storing is based on the idea that during the process of calculation all
data are presented in the form of a square matrix which is valid for all triangulations
of a given value n.

The final goal of this method is to avoid recomputation of weights of already
generated triangulations,and compute the weight of arbitrary triangulation only once.
Also, all computed weights are stored into a single matrix which is exploited to prevent
recomputations of weights. The triangulation corresponding to the minimal weight is
generated using data stored in that matrix.

The method for storing and finding optimal triangulations represents an expanded
version of a method for generating triangulations that has been implemented in
JavaNetBeans environment. Thus, this method for storing weight triangulations is
initiated by Java services for working with databases.

The significance of the constructed method is reflected in the fact that using the
recorded values can be a very effective way to find the optimal triangulation. The
obtained values from these techniques give a good direction for drawing of optimal
triangulation in highly effective way.

The advantages of this type of storing temporary results are multiple, here are
some of them: (1) As a consequence of this approach is achieved significant acceler-
ation; (2) Except speed of searching and drawing optimal triangulation, this method
save the memory in the current buffer (in the operational memory), and in the size
of the output file.

Acknowledgements. Predrag Stanimirović gratefully acknowledge the support
from Research Project 174013 of the Serbian Ministry of Science.

References

[1] O. Aichholzer, F. Aurenhammer, T. Hackl, B. Speckmann, On minimum weight

pseudo-triangulations, Computational Geometry-Theory and Applications, 42
(2009), 627-631.

[2] M. Berg, O. Cheong, M. Kreveld, H. Overmars, Computational Geometry: Algo-

rithms and Applications, 3rd edition, New York, USA, Springer Verlag, 2008.

[3] B. Chen, H. Cheng, Interpretive OpenGL for computer graphics, Computers and
Graphics, 29 (2005), 331–339.

[4] J.X. Chen, C. Chen, Foundations of 3D Graphics Programming: Using JOGL

and Java3D, New York, USA, Springer, 2008.

[5] D. Eppstein, Approximation of the minimum weight triangulation, Discrete and
Computational Geometry, 11 (1994), 163–191.

[6] M.R. Garey, D.S. Johnson, F.P. Preparata, R.E. Tarjan, Triangulating a simple

polygon, Information Processing Letters, 7 (1978), 175–180.

[7] D.R. Heffelfinger, Java EE 6 Development with NetBeans 7, Birmingham, UK:
Pack publishing, 2011.



180 M. Saračević, S. Mašović, P. Stanimirović, P. Krtolica

[8] F. Hurtado, M. Noy, Graph of triangulations of a convex polygon and tree of

triangulations, Computational Geometry, 13 (1999), 179–188.

[9] Y. Ito, K. Nakano, A GPU implementation of dynamic programming for the opti-

mal polygon triangulation, IEICE Transactions on Information and Systems: Spe-
cial Section on Parallel and Distributed Computing and Networking, 96 (2013),
2596-2603.

[10] J.M. Keil, T.S. Vassilev, Algorithms for optimal area triangulations of a convex

polygon, Computational Geometry, 35 (2006), 173-187.

[11] F. Klawonn, Introduction to Computer Graphics: Using Java 2D and 3D. 2nd

ed., New York, USA, Springer, 2012.

[12] T. Koshy, Catalan Numbers with Applications, London, UK: Oxord University
Press, 2009.

[13] J.R. Loera, F. Santo, Triangulations: Structures for Algorithms and Applications,
New York, USA, Springer Verlag, 2003.

[14] T. Mirzoev, S. Vassilev, New Results on Optimal Area Triangulations of Convex

Polygons, In: Proceedings of the XII Encuentros de Geometria Computacional,
Valladolid, Spain, 2007.

[15] W. Mulzer, G. Rote, Minimum weight triangulation is NP-hard, Journal ACM,
55 (2008), 1–29.

[16] M. Pistellato, F. Bergamasco, A. Albarelli, A. Torsello, Dynamic optimal path

selection for 3d triangulation with multiple cameras, In: Conference 18th In-
ternational Conference on Image Analysis and Processing, Genoa, Italy, 2015,
468-479.

[17] M. Saračević, P. Stanimirović, S. Mašović, E. Bǐsevac, Implementation of the

convex polygon triangulation algorithm, Facta Universitatis, series: Mathematics
and Informatics, 27 (2012), 213–228.

[18] P. Stanimirović, P. Krtolica, M. Saračević, S. Mašović, Decomposition of Catalan

numbers and convex polygon triangulations, International Journal of Computer
Mathematics, 91 (2014), 1315–1328.

[19] A. Yousefi, N. Young, On a linear program for minimum-weight triangulation,

SIAM journal on computing, 43 (2014), 25–51.

Authors’ addresses:

Muzafer Saračević
University of Novi Pazar, Department of Computer Sciences,
Dimitrija Tucovica bb, 36300 Novi Pazar, Serbia.
E-mail: muzafers@uninp.edu.rs

Sead Mašović, Predrag Stanimirović and Predrag Krtolica
University of Nǐs, Faculty of Sciences and Mathematics,
Vǐsegradska 33, 18000 Nǐs, Serbia.
E-mail: sead.masovic@gmail.com

pecko@pmf.ni.ac.rs
krca@pmf.ni.ac.rs


