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Abstract. A general view on mathematical models of language competi-
tion and bilingualism, in which ordinary and fractional differential equa-
tions were used, is given. Equilibria and stability are investigated for
models of fractional differential systems with two components and three
components. Also applications of the fractional case is given in the sense
of numerical simulation.
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1 Introduction

Many of living languages in the world encounter risk of extinction. It is easy enough
to see that this extinction deeply affect cultural diversity. To deal with the language
extinction and preserve the diversity are a significant issue to be focused on, both
practically and theoretically. In this respect, we zoom in on examining language
competition and bilingualism in a mathematical point of view. We firstly present a
general view on existing mathematical models on language competition and bilingual-
ism. Then, we investigate the dynamics of fractional models in this context.

2 Abrams-Strogatz model

A pioneering study in modelling language competition is Abrams-Strogatz model [1],
which is constructed as a first order differential rate equation

(2.1)
dx

dt
= yPY X(x, sx)− xPXY (y, sy),

where x is the fraction of the population speaking language X, and y is of language
Y (provided that x+ y = 1), with the following assumptions.

1. The population consists of two monolingual groups competing with each other
for speakers.
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2. Conversion from one language to the other is based on the attractiveness of the
competing language.

3. Attractiveness of a language increases with both its number of speakers and its
perceived status.

4. No one will adopt a language that has no speakers or no status.

5. Bilingual population is not considered.

sx and sy represent the measures of the relative status of X and Y , respectively,
and both are in the interval [0, 1]. The conversion from Y to X per unit time is
represented by PY X(x, sx) and the conversion from X to Y is given by PXY (y, sy)
likewise. As a result of an assumption that PY X(x, sx) = csxx

a and PXY (y, sy) =
c(1−sx)(1−x)a, where the parameter a was unexpectedly found with a = 1.31±0.25
(mean ± standard deviation) and gives the relation between the attractiveness of a
language and the number of its speakers, the equation (2.1) takes the following form.

(2.2)
dx

dt
= c(1− x)sxx

a − cx(1− sx)(1− x)a.

The parameter c represents some social factors concerning the languages, such as rate
of interactions effecting the competition between the languages, cultural or political
motives affecting or inducing learning the second language, etc.

Since bilingual population is ignored in the Abrams-Strogatz model, in [2] it was
modified by introducing a parameter b to represent bilingual population B, provided
that x+ y + b = 1 . The modified version of the model is

dx

dt
= c [(1− x)(1− k)sx(1− y)a − x(1− sx)(1− x)a]

dy

dt
= c [(1− y)(1− k)(1− sx)(1− x)a − ysx(1− y)a] ,

where the parameter k (0 ≤ k ≤ 1) reflects the similarity of two languages.

3 Baggs-Freedman model

Another leading mathematical model within this scope is Baggs-Freedman model
[3], which consists of a system of two autonomous ordinary differential equations as
follows.

(3.1)

{
x′(t) = (B1 −D1)x(t)− L1x

2(t)− αx(t)y(t)
1+x(t) + P1B2y(t)

y′(t) = (P2B2 −D2)y(t)− L2y
2(t) + αx(t)y(t)

1+x(t) ,

where Bi > Di (i = 1, 2), 0 < P1 < 1 and P2 = 1 − P1. While P1 represents the
rate of the children of y, which enter the population as unilinguals, B1 and D1 +L1x
respectively are the specific birth rate and death rate of x, and similarly B1 and
D1 + L1x are of y. Carrying capacities of the environment of x and y is denoted
by K1 and K2, respectively, where K1 = B1−D1

L1
, K2 = B2−D2

L2
. The parameter α

denotes the conversion rate from unilingual to bilingual.
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In [4], Baggs and Freedman developed a general model for the interaction of two
unilingual components and one bilingual component of a population and they inves-
tigated conditions under which all three components persist and conditions under
which one dominated unilingual component will become extinct.

4 Fractional models

In recent years, however, it has turned out that many phenomena in different fields
can be described very successfully by the models using fractional order differential
equations [5]. The fractional calculus was reasonably developed by 19th century. It
was realized, only in the past few decades that these derivatives are better models
to study physical phenomenon in transient state [6]. Also, fractional operators are a
very natural tool to model memory-dependent phenomena [7].

Despite a few other definitions of fractional derivative, we use Caputo’s defini-
tion. Because the initial conditions for fractional differential equations with Caputo
derivatives are in the same form as for integer-order differential equations [6].

The definition of fractional derivative of Caputo-type is as follows.

Definition 4.1. The Caputo-type fractional derivative of order q > 0 for a function
f : (0,∞)→ R is defined by

Dqf(t) =
1

Γ(n− q)

t∫
0

(t− τ)n−q−1f (n)(τ)dτ,

where n = dqe and d.e is the ceiling function.

Here and elsewhere Γ denotes the gamma function and 0 < q < 1. Notice that
q = 1 corresponds the classical first order derivative.

4.1 Unilinguals as one compartment

This model mainly based on the assumption that conversion from unilingual to bilin-
gual does not exist, which differs from system (3.1). The population is considered
as two groups; the first group consists of the unilingual speakers of either dominant
language or minority language in the population, and the second group is bilinguals.
That is, two unilingual groups are considered as one compartment. Imposing frac-
tional q-order instead of the first order classical derivative, we have the following
system.

(4.1)

{
Dqx(t) = (B1 −D1)x(t)− L1x

2(t) + P1B2y(t)
Dqy(t) = (P2B2 −D2)y(t)− L2y

2(t).

Before stability analysis, we should note the following important criterion for the
stability of fractional differential equations.

If all the eigenvalues λ of the Jacobian matrix evaluated at equilibrium point satisfy
the inequality |arg(λ)| > qπ

2 , then the equilibrium point is asymptotically stable [8],
[9].
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The equilibrium points of system (4.1) with nonnegative components are E0(0, 0),

E1(K1, 0) and E∗
(

1
2K1 + 1

2

√
K2

1 + 4P1B2(P2B2−D2)
L1L2

, P2B2−D2

L2

)
.

Theorem 4.1. E0(0, 0) is unstable.

Proof. The general Jacobian matrix J(x, y) for system (4.1) is

(4.2) J(x, y) =

[
B1 −D1 − 2L1x P1B2

0 P2B2 −D2 − 2L2y

]
.

The Jacobian matrix at E0 is

J(E0) = J(0, 0) =

[
B1 −D1 P1B2

0 P2B2 −D2

]
.

Solving the characteristic equation det(J(E0) − λI) = 0, we obtain the equation
(B1 − D1 − λ)(P2B2 − D2 − λ) = 0, which has the roots λ1 = B1 − D1 and λ2 =
P2B2 −D2. Since we assume that B1 −D1 > 0, E0 is unstable. �

Theorem 4.2. E1(K1, 0) is asymptotically stable, if P2B2 −D2 < 0.

Proof. Following the same procedure as in the investigation of stability for E0, we get
the Jacobian matrix at E1 as

J(E1) =

[
−(B1 −D1) P1B2

0 P2B2 −D2

]
,

and the eigenvalues of the characteristic equation det(J(E1) − λI) = 0 as λ1 =
−(B1−D1) and λ2 = P2B2−D2. Since λ1 = −(B1−D1) < 0 and λ2 = P2B2−D2 < 0,
the equilibrium point E1 is asymptotically stable. �

Theorem 4.3. Let E∗ exists and is unique. If P2B2 − D2 > 0, then E∗ is asymp-
totically stable.

Proof. The Jacobian matrix at E∗ is

J(E∗) =

[
−L1

√
K2

1 + 4P1B2(P2B2−D2)
L1L2

P1B2

0 −(P2B2 −D2)

]
,

and the roots of the characteristic equation det(J(E∗) − λI) = 0 are λ1 = −L1 ×√
K2

1 + 4P1B2(P2B2−D2)
L1L2

< 0 and λ2 = −(P2B2 − D2) < 0, since P2B2 − D2 > 0.

Thus, E∗ is asymptotically stable. �

4.2 Unilinguals as two compartments

In the previous subsection, we consider the unilinguals of dominant language and of
minority language as one group. Now, we investigate the interaction between three
components, that is, unilinguals of dominant language, bilinguals and one unilinguals
of minority language. The situation is modeled by an autonomous system which con-
sists of three differential equations of fractional order with the following assumptions.
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1. Birth and death process are continuous.

2. Children of unilingual parents enter the population as unilinguals.

3. Children of bilingual parents may enter the population as bilinguals or unilin-
guals.

4. Emigration from the environment and immigration to the environment are not
considered.

5. Conversion from bilingual to unilingual exists.

6. Conversion from dominant unilingual to bilingual doesn’t exist.

(2.1) is a standard assumption for human populations with intermediate to large
numbers of individuals. (2), (3) and (5) are also assumptions of Baggs-Freedman mod-
els. The model with emigration is studied in [4], however the model with immigration
is not appropriate for this kind of models.

The assumption (6) is crucial in our model, because we assume that the need for
the usage of minority languages decreases, particularly in last few decades, due to
some social, political and economical factors.

The concentration of dominant unilinguals at time t ≥ 0 is represented by x1(t);
while the concentration of bilinguals and unilinguals of minority language are repre-
sented by x2(t) and x3(t), respectively. Thus, with all these assumptions and consid-
erations, our model is

Dqx1 = (B1 −D1)x1 − L1x
2
1 +

(
P1 −

P3x3
x1 + x2 + x3

)
B2x2

Dqx2 = (P2B2 −D2)x2 − L2x
2
2 +

x2x3
1 + x2 + x3

(
α+

βx1
1 + x1

)
(4.3)

Dqx3 = (B3 −D3)x3 − L3x
2
3 −

x2x3
1 + x2 + x3

(
α+

βx1
1 + x1

)
+

P3x3
x1 + x2 + x3

B2x2.

In this system, Bi and Di + Lixi are the specific birth rate and death rate of xi
(i = 1, 2, 3) with the assumption Bi > Di. P2, P1 − P3x3

x1+x2+x3
and P3x3

x1+x2+x3
is the

probability that a child born to bilingual parents will enter the population as a member
of population x1, x2, and x3, respectively, where P1+P2 = 1, P3 ≤ P1. The conversion
rate of monolingual component x3 to the bilingual component x2, per unit time, is

1
1+x2+x3

(α+ βx1

1+x1
).

The equilibrium points of system (6) are E0(0, 0, 0), E1(K1, 0, 0), E3(0, 0,K3),
Ẽ(K1, 0,K3), Ê(x̂1, x̂2, 0) and possibly Ē(x̄1, x̄2, x̄3), where Ki = Bi−Di

Li
is the car-

rying capacity of xi (i = 1, 2, 3). Nonzero components of Ê are found as x̂1 =
1
2K1 + 1

2

√
K2

1 + 4P1B2(P2B2−D2)
L1L2

and x̂2 = P2B2−D2

L2
.

The Jacobian matrix J(Ẽ) is evaluated as

J(Ẽ) =

 ã11 ã12 0
0 ã22 0
0 ã32 ã33

 ,
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where

ã11 = D1 −B1

ã12 = P1B2 −
P3B2K3

(K1 +K3)

ã22 = P2B2 −D2 +
K3

1 +K1

(
α+

βK1

1 +K1

)
ã32 = − K3

1 +K1

(
α+

βK1

1 +K1

)
+

P3B2K3

(K1 +K3)

ã33 = D3 −B3

and the eigenvalues of J(Ẽ) are λ̃1 = D1 −B1, λ̃2 = P2B2 −D2 + K3

1+K1

(
α+ βK1

1+K1

)
and λ̃3 = D3 −B3. The Jacobian matrix of Ê is

J(Ê) =

 â11 â12 â13
0 â22 â23
0 0 â33

 ,
where

â11 = −L1

√
K2

1 +
4P1B2(P2B2 −D2)

L1L2

â12 = P1B2

â13 =
−P3B2

(
P2B2−D2

L2

)
x̂1 + x̂2

â22 = −(P2B2 −D2)

â23 =

(
α+

βx̂1
1 + x̂1

)
x̂2

1 + x̂2

â33 = B3 −D3 −
(
α+

βx̂1
1 + x̂1

)
x̂2

1 + x̂2
+
P3B2x̂2
x̂1 + x̂2

,

and the eigenvalues of J(Ê) are λ̂1 = −L1

√
K2

1 + 4P1B2(P2B2−D2)
L1L2

, λ̂2 = −(P2B2−D2)

and λ̂3 = B3 −D3 −
(
α+ βx̂1

1+x̂1

)
x̂2

1+x̂2
+ P3B2x̂2

x̂1+x̂2
.

The existence of the positive equilibrium point Ē(x̄1, x̄2, x̄3) with condition x̄i > 0
(i = 1, 2, 3) is stated in the following corollary [3], [11].

Corollary 4.4. If λ̃2 > 0 and λ̂3 > 0, then the positive equilibrium Ē exists.

Now, we discuss the stability of Ē. The characteristic equation det(J(Ē)−λI) = 0
leads to the equation

P (λ) = λ3 +A1λ
2 +A2λ+A3 = 0,
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where

A1 = −(a11 + a22 + a33),

A2 = −a12a21 + a11a22 − a12a31 − a23a32 + a11a33 + a22a33,

A3 = a13a31a22 − a12a23a31 − a13a21a32 + a11a23a32 + a12a21a33 − a11a22a33,
a11 = B1 −D1 − 2L1x̄1,

a12 = P1B2 −
P3B2x̄3(x̄1 + x̄3)

(x̄1 + x̄2 + x̄3)2
,

a13 = −P3B2x̄2(x̄1 + x̄2)

(x̄1 + x̄2 + x̄3)2
,

a21 =
P3x̄2x̄3

(1 + x̄2 + x̄3)(1 + x̄1)2
,

a22 = P2B2 −D2 − 2L2x̄2 +
x̄3(1 + x̄3)

(x̄1 + x̄2 + x̄3)2

(
α+

βx̄1
1 + x̄1

)
,

a23 =
x̄2(1 + x̄2)

(x̄1 + x̄2 + x̄3)2

(
α+

βx̄1
1 + x̄1

)
,

a31 =
−βx̄2x̄3

(1 + x̄2 + x̄3)(1 + x̄1)2
− P3B2x̄2x̄3

(x̄1 + x̄2 + x̄3)2
,

a32 = −
(
α+

βx̄1
1 + x̄1

)
x̄3(1 + x̄3)

(1 + x̄2 + x̄3)2
+
P3B2x̄3(x̄1 + x̄3)

(x̄1 + x̄2 + x̄3)2
,

a33 = B3 −D3 − 2L3x̄3 −
x̄2(1 + x̄2)

(1 + x̄2 + x̄3)2

(
α+

βx̄1
1 + x̄1

)
+
P3B2x̄2(x̄1 + x̄2)

(x̄1 + x̄2 + x̄3)2
.

Corollary 4.5. Let D(P ) denote the discriminant of the polynomial P (λ) = λ3 +
A1λ

2+A2λ+A3. If one of the following conditions holds, then the positive equilibrium
Ē is asymptotically stable [8], [9], [11].

i) D(P ) > 0, A1 > 0, A3 > 0 and A1A2 > A3.

ii) D(P ) < 0, A1 ≥ 0, A2 ≥ 0, A3 > 0 and q < 2
3 .

iii) D(P ) < 0, A1 < 0, A2 < 0 and q > 2
3 .

5 Numerical simulations

Substituting B1 = 0.14, B2 = 0.2, D1 = D2 = 0.02, P1 = 0.6, P2 = 0.4, L1 = L2 =
0.002, and q = 0.9 in system (4.1), we obtain

D0.9x = 0.12x− 0.002x2 + 0.12y(5.1)

D0.9y = 0.06y − 0.002y2,

and the positive equilibrium point is E∗(81.9615, 30). Letting the initial conditions

(5.2) x(0) = 60, y(0) = 15,

and using predictor-corrector method given in [12], which is a numerical method to
solve fractional initial value problems, we have the solution of the system (5.1)-(5.2)
as shown in Figure-1.
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Figure 1: Solutions of the system (5.1)-(5.2). q = 0.9 (solid); q = 1 (dashed).

By substituting the following values,

B1 = 0.017, D1 = 0.006, L1 = 0.0001, P1 = 0.3,

B2 = 0.020, D2 = 0.007, L2 = 0.0004, P2 = 0.7,

B3 = 0.022, D3 = 0.007, L3 = 0.0001, P3 = 0.2,

α = β = 0.005,

and q = 0.9 in system (4.3), we obtain

D0.9x1 = 0.011x1 − 0.0001x21 +

(
0.3− 0.2x3

x1 + x2 + x3

)
0.02x2

D0.9x2 = 0.007x2 − 0.0004x22 +
x2x3

1 + x2 + x3

(
0.005 +

0.005x1
1 + x1

)
(5.3)

D0.9x3 = 0.015x3 − 0.0001x23 −
x2x3

1 + x2 + x3

(
0.005 +

0.005x1
1 + x1

)
+

0.004x2x3
x1 + x2 + x3

.

and the positive equilibrium point Ē(121.35, 23.85, 8.50), where xi = xi(t). Let the
initial conditions be

(5.4) x1(0) = 60, x2(0) = 15, x3(0) = 0.5.

Similarly using predictor-corrector method, we have the solutions of the system (5.3)-
(5.4) in Figure-2.

6 Conclusions

In this paper, we have analyzed some kinds of mathematical models on bilingualism
and language competition models. We have particularly focused on the fractional
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Figure 2: Solutions of the system (5.3)-(5.4). q = 0.9 (solid); q = 1 (dashed).

models by means of stability analyzes of equilibrium points of two fractional systems
and supported our analyzes by numerical simulations. We have observed that frac-
tional models of this type may be as stable as their classical counterparts, and even
their approach to the equilibrium point may be faster than the classical case.

Acknowledgements. The authors are thankful to the reviewers for their useful
suggestions.
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