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Abstract. Chromatic polynomials are widely used in graph theoretical or
chemical applications in many areas. Birkhoff-Lewis theorem is the most
important tool to find the chromatic polynomial of any given graph. Here
we obtain several shortcut moves to calculate this polynomial covering all
graphs.
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1 Introduction

One of the well-known applications of graph theory is the 4-colour problem. There
are many notions related to colourings of graphs. A colouring of a graph G(V,E) is
a mapping f : V → C, where C is the set of colours, with f(u) 6= f(v) for uv ∈ E.

If there is a colouring of G with n colours, then G is said to be n-colourable. The
smallest number n for which G is n-colourable is called the chromatic number and
denoted by χ(G). Clearly a graph with at least one loop cannot have any colourings.
As we shall be considering simple graphs, this case will be out of question. Similarly,
edge colourings are defined.

Here we shall study another aspect related to colourings, the chromatic polynomial
of a graph. The chromatic polynomial of G is defined to be a function CG(k) which
expresses the number of distinct k-colourings possible for the graph G for each integer
k > 0. This number was first used by Birkhoff in 1912. Chromatic polynomials are
widely used in determining several properties of graphs. Although there is no known
formula for the chromatic polynomial of any given graph, there are algorithms to do
that. The most well-known algorithm is the Birkhoff-Lewis theorem stated as below:

Theorem 1.1 (Birkhoff-Lewis, 1946). The chromatic polynomial of a graph G can
be found by the formula

CG(k) = CG−e(k)− CG/e(k),
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where G− e is the graph obtained by deleting the edge e from G, and G/e is the graph
obtained from G by removing e and identifying the end vertices of e and leaving only
one copy of any resulting multiple edges (see Fig. 1.1 and 1.2).

Figure 1.1 A graph G

Figure 1.2 The graphs G− e and G/e

As usual, we denote path, cycle, star, complete, complete bipartite and tadpole graphs
by Pn, Cn, Sn, Kn, Kr,s and Tr,s, respectively.

A bridge of a connected graph is an edge whose removal disconnects the graph. In
another words, a bridge is an edge of a graph G whose removal increases the number
of components of G, [5], p. 26. Also it is well known that an edge of a connected
graph is a bridge iff it does not lie on any cycle. For the details of these and related
notions, see [1], [7], [3], [4] and [6].

2 Calculating the chromatic polynomial by splitting
the given graph

In this section, we want to obtain a new and alternative method to find the chromatic
polynomial of any given graph. The idea behind this will be splitting the given
graph to smaller subgraphs. We shall state results for the chromatic polynomial of
a given graph G in terms of two smaller graphs G1 and G2. If necessary, these can
be generalized to a finite number of subgraphs. We shall consider four different cases
where a graph is splitted into two parts at one vertex or through an edge which is
called a bridge.
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In this paper we use G1 ∪G2 to denote the union of two graphs G1 and G2 which
have one joint vertex.

One can think of starting by any graph and applying Theorem 1.1 to get to a
point eventually. But these two theorems cannot be always enough for all graphs.
Some more complex graphs need other splitting methods.

We first have the following useful result:

Theorem 2.1. Let G1 and G2 be two graphs with no common vertex. Let also
G1

∐
G2 be the disjoint union of G1 and G2. Then

CG(k) = CG1
(k) · CG2

(k).

Proof. As G1 and G2 are disjoint graphs, the colouring of G1 is independent from the
colouring of G2. By the principal of counting, the result follows. �

This result can be generalized to the product of a finite number of graphs by
mathmematical induction:

Corollary 2.2. Let G1, G2, ..., Gn be pairwise disjoint graphs and also let G =
n∐

i=1

be

their disjoint union. Then

CG(k) =

n∏
i=1

CGi(k).

We now give a result which will be needed later:

Corollary 2.3. Let G be a graph with two components, one being a unique vertex,
see Figure 1.3.

Figure 1.3 A graph G = G1

∐
{v}

Then
CG(k) = k · CG1

(k).

Proof. As the colouring of G2 = {v} is independent from the colouring of G1, the
result follows. �
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This easily can be generalized as follows:

Corollary 2.4. Let G have r isolated vertices. That is

G = G1

∐
{v1}

∐
· · ·

∐
{vr},

see Figure 1.4.

Figure 1.4 A graph G = G1

∐
{v1}

∐
...
∐
{vr} with r isolated vertices

Then

CG(k) = kr · CG1
(k).

Next, we consider the case where G has only one pendant vertex v. Let us term
the edge connecting v to the rest of the graph by e, and let u be the vertex of G
connected to v by e, see Figure 1.5.

Figure 1.5 The graph G with one pendant vertex

Then we have the following relation between the chromatic polynomials of G and G1:

Lemma 2.5. Let G have only one pendant vertex v. Then

CG(k) = (k − 1) · CG1
(k).
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Proof. We shall use the Birkhoff-Lewis Theorem. Recall that

CG(k) = CG−e(k)− CG/e(k),

see Figure 1.6.

Figure 1.6 The graph G, G− e and G/e

By Lemma 2.1, we can write

CG−e(k) = k · CG1
(k).

Further

CG/e(k) = CG1
(k)

implies that

CG(k) = k · CG1(k)− CG1(k)

= (k − 1) · CG1
(k).

�

Let G be a graph having r pendant vertices. See Figure 1.7.
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Figure 1.7 The graph G with r pendant vertices

Many graphs have pendant vertices and it is useful to be able to calculate the
chromatic polynomial of the remaining graph G1 in Fig. 1.7 after omitting all pendant
vertices and edges connecting them to G1. To achieve this, we have the following
generalisation for a graph G with r pendant vertices:

Lemma 2.6. Let G have r pendant vertices. Then

CG(k) = (k − 1)r · CG1
(k).

Proof. It follows from the proof of Lemma 2.5. �

Theorem 2.7. Let G1 be a graph and G be the graph obtained by joining G1 with a
path graph Pr as in Figure 1.8.

Figure 1.8 The graph G = G1 ∪ Pr

Then

CG(k) =
CG1

(k) · CPr
(k)

k
.

Example 2.1. If we choose the graphs P4 and P5 joined at a vertex v,
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Figure 1.9 The graph G = P8 , G∗ = P4

∐
P5

We know that

CG(k) = CP8(k) = k · (k − 1)7.

Also by Theorem 2.1, we have

CG∗(k) = CP4
(k) · CP5

(k).

Therefore

CG∗(k) = k · (k − 1)3 · k · (k − 1)4

= k2 · (k − 1)7.

Then

CG(k)

CG∗(k)
=

k · (k − 1)7

k2 · (k − 1)7
=

1

k

so

CG∗(k) =
CP3
· CP4

k
.

Now we deal with the graphs which are connected at a cut vertex:

Lemma 2.8. Let the graphs G1 and G2 be connected at a vertex v as in Figure 1.10.
Then

CG(k) =
CG1(k) · CG2(k)

k
.



Calculating the chromatic polynomial 117

Figure 1.10 First way of splitting a graph G = G1 ∪G2

Theorem 2.9. Let the graph G be the union of graphs G1 and G2 connected by a
bridge e, as in Figure 1.11. Then

CG(k) =
CG1(k) · CG2(k)

k · (k − 1)
.

Proof. Let the graph G be the union of graphs G1 and G2 connected by a bridge e.
See Figure 1.11.

Figure 1.11 The graphs G1 and G2 connected by a bridge e

By Birkhoff-Lewis theorem we have

CG(k) = CG−e(k)− CG/e(k).

Figure 1.12 The graphs G− e and G/e



118 U. Sanli, I. N. Cangul

By Theorem 2.1,

CG−e(k) = CG1
(k) · CG2

(k)

and by Lemma 2.3, we have

k · CG/e(k) = CG1
(k) · CG2

(k).

Therefore we obtain

CG/e(k) =
CG1

(k) · CG2
(k)

k
.

If we substitute these in

CG(k) = CG−e(k)− CG/e(k),

we obtain

CG(k) = CG1(k) · CG2(k)− CG1
(k) · CG2

(k)

k

= CG1
(k) · CG2

(k) · (1− 1

k
)

=
CG1

(k) · CG2
(k) · (k − 1)

k

which is the required result. �

The following result gives an important case:

Corollary 2.10. Let a graph G be the union of a graph G1 and a path Pr connected
by a bridge e. Then

CG(k) = CG1(k) · (k − 1)r.

Figure 1.13 A graph G1 and a path Pr connected by a bridge e

Proof. By Lemma 2.3, we have

CG(k) =
CG1(k) · CPr (k) · (k − 1)

k
.
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Also as
CPr

(k) = k · (k − 1)r−1,

we obtain
CG(k) = CG1(k) · (k − 1)r.

�

Now we deal with another case where we split a graph into two subgraphs through
a common edge as in Figure 1.14.

Lemma 2.11. Let G be a graph which can be splitted into two subgraphs G1 and G2

through a common edge e = v1v2. Then

CG(k) =
CG1

(k) · CG2
(k)

k · (k − 1)
.

Figure 1.14 A graph G splitted through an edge

Proof. It follows by Birkhoff Lewis theorem. �

Now we deal with another common case where a graph G can be splitted into two
cycle graphs Cm and Cn through a common edge e:

Theorem 2.12. Let G be a graph which can be splitted into two cycle graphs Cm and
Cn through a common edge e as in Figure 1.15. Then we have

CG(k) =
CCm(k) · CCn(k)

k · (k − 1)
.

Proof. The given graph G is as in the following figure:

Figure 1.15 Splitting G into two cycle graphs Cm and Cn through a common edge e
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By Birkhoff-Lewis theorem,

Figure 1.16 The graphs G− e and G/e

G− e = Cm+n−2

and by Lemma 2.3, we have

CG/e(k) =
CCm−1

(k) · CCn−1
(k)

k

CG(k) = (k − 1)m+n−2 + (−1)m+n−2 · (k − 1)

− [(k − 1)m−1 + (−1)m−1 · (k − 1)] · [(k − 1)n−1 + (−1)n−1 · (k − 1))]

k

=
k · (k − 1)m+n−2 + k · (−1)m+n−2 · (k − 1)− (k − 1)m+n−2

k

− (−1)n−1 · (k − 1)m + (−1)m−1 · (k − 1)n + (−1)m+n−2 · (k − 1)2

k

=
(k − 1)m+n−2 · (k − 1) + (−1)m+n−2 · (k − 1) + (−1)n−1 · (k − 1)m

k

− (−1)m−1 · (k − 1)n

k

=
(k − 1)m+n−1 + (−1)m+n−2 · (k − 1) + (−1)n−1 · (k − 1)m

k

− (−1)m−1 · (k − 1)n

k

and as a consequence, we get the required result:

CG(k) =
CCm(k) · CCn

(k)

k · (k − 1)
. �

Theorem 2.13. Let 1 < r < s. For a graph G which is obtained by overlapping one
edge of two path graphs Pr ve Ps−r+2, we have

CG(k) =
CPr

(k) · CPs−r+2
(k)

k · (k − 1)
.

Proof. Let G be the graph in the first line of Figure 1.17. Let us separate G into two
paths Pr ve Ps−r+2 at the edge vr−1vr as in the second line of Figure 1.17.
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Figure 1.17 The graphs G,Pr, Ps−r+2

From the formula of chromatic polynomial of the path graph, we have

CG(k) = CPs
(k) = k · (k − 1)s−1, CPr

(k) = k · (k − 1)r−1,

CPs−r+2(k) = k · (k − 1)s−r+1,

and hence we conclude that

CPr
(k) · CPs−r+2

(k) = k · (k − 1)r−1 · k · (k − 1)s−r+1 = k2 · (k − 1)s.

This gives us the required result:

CG(k) =
CPr (k) · CPs−r+2(k)

k · (k − 1)
. �

Acknowledgements. The second author is supported by the Research Fund of
Uludag University, Project No: 2015-17.

References

[1] J. M. Aldous, R. J. Wilson, Graphs and Applications, The Open University, U.K.
2004.

[2] G. D. Birkhoff, A determinant formula for coloring a map, Ann. Math. 14, (1912),
42-46.

[3] M. C. Golumbic, I. B. Hartman, Graph Theory, Combinatorics and Algorithms,
Springer, New York 2005.

[4] J. L. Gross, T. W. Tucker, Topological Graph Theory, Wiley, 1987.

[5] F. Harary, Graph Theory, Addison-Wesley, 1994.

[6] J. M. Harris, J. L. Hirst, M. J. Mossinghoff, Combinatorics and Graph Theory,
Springer, New York 2008.

[7] R. Ranganathan, A Textbook of Graph Theory (Second Edition), Springer, New
York 2012.

Authors’ address:

Utkum Sanli, Ismail Naci Cangul
Uludag University, Faculty of Arts and Science, Department of Mathematics,
Gorukle 16059 Bursa, Turkey.
E-mail: utkumsanli@hotmail.com, cangul@uludag.edu.tr


