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Abstract. There are certain situations in which a definite integral where
the integrand is a product of real polynomials, exponentials and trigono-
metric functions (sine or cosine) must be calculated. In this work we are
going to consider a class of integrals of these types, and show that they
can be computed by using integration by parts and complex variable ma-
nipulations. This leads to formulas given by finite summations expressed
in terms of exponentials, trigonometric functions and the derivatives of
the polynomial involved. Some examples have been presented to asses the
efficiency of the proposed formulas.
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1 Introduction

In our investigations on adapted procedures for solving initial-value problems of sec-
ond order ordinary differential equations (see [5]) there appeared certain coefficients
expressed by definite integrals, namely
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where ξj ∈ [0, 1] and g, h, w, α ∈ R.
The efficiency of the resulting algorithm depends greatly on an adequate procedure

to compute those coefficients. This was the main motivation for obtaining integral
formulas for the evaluation of the following indefinite integrals∫

eax sin(bx)Pn(x) dx and

∫
eax cos(bx)Pn(x) dx ,
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where x is a real variable, a, b are two real constants, and Pn(x) is a polynomial of
degree n ∈ N.

These formulas are not obtained readily. The common procedure used in textbooks
for its calculation is based on recurrence relations considered for integrals of these
types involving only monomials (see [6], p. 326), namely∫

eax sin(bx)xn dx and

∫
eax cos(bx)xn dx ,

which results in lengthy and cumbersome calculations.
Another possible approach that could be used to obtain the above integrals would

make use of the Laplace transform theory. But the involved calculations would be
also lengthy and cumbersome, even for the most simple cases. We will illustrate this
procedure by calculating the integral∫

eax sin(bx)x dx .

Considering an interval [0, xN ], we have by the Fundamental Theorem of Calculus
that the function

y(x) =

∫ x

0

eat sin(bt) t dt

is an integral of the given function on this interval. Thus, after taking derivatives
with respect to x in the above equation, what we are looking for is the solution of the
initial-value problem

y′(x) = eax sin(bx)x , y(0) = 0 .

Let Y (s) = L(y(x)) be the Laplace transform of y(x). After applying the Laplace
transform to the differential problem gives us

sL(y(x))− y(0) = L(eax sin(bx)x) .

By using the properties of the Laplace transform (see [1, 4]) this equation becomes

sY (s) = F (s− a)

where

F (s) = L(sin(bx)x) = − d
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Applying the inverse Laplace transform, after some calculus we get that
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We can change the constant related with the initial value in the above formula by a
general one, say k, and thus, we may write the integral in the more general form
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In the next section we are going to present compact formulas expressed by means
of some finite summations for the above indefinite integrals.
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2 Derivation of the integral formulas

By using integration by parts it is straightforward to deduce the following formula
(see [2], p. 106)
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where P
(m)
n (x) is the mth derivative of Pn(x) with respect to x.

This formula remains valid if k is complex. Thus, taking k = a+ ib ∈ C the above
formula results in
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By using the Euler’s identity, we get readily that

∫
eax cos(bx)Pn(x) dx+ i
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In order to get the real and imaginary parts of the right hand side of the above
formula, it is preferable to consider the complex number a+ ib in polar form, that is,
we put a+ib = reiθ, where r =

√
a2 + b2 is the modulus and θ ∈ [0, 2π) the argument.

Substituting a+ ib by reiθ, the above formula results in
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∫
eax cos(bx)Pn(x) dx+ i
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Now, after equating the real and imaginary parts in the above equation we get
the following two integral formulas∫
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=
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(
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3 Computational experiments

In order to asses the performance of the above formulas we have considered the
evaluation of different integrals, where the computations have been done using the
system Mathematica 8.0.
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3.1 Example 1.

We consider the integral

I(x) =

∫
e12x cos(

√
5x)(3x5 − 2x3 + 5x− 1) dx

The evaluation of this integral using the command Integrate in Mathematica 8.0
results in

I(x) =
−e12x

10942526586601
Q(x)

where

Q(x) =
(
−2643831926964x5 + 1027663976085x4 + 1455312314856x3

−345364395054x2 − 4353731396796x+ 1219986365231
)

sin
(√

5x
)

+
√

5
(
220319327247x5 − 177438384360x4 − 62129898118x3

+44312840784x2 + 355425476269x− 131284320125
)

cos
(√

5x
)

taking a CPU time of 0.391 seconds.
The calculation of the same integral using the formula in (2.5) and the command

Simplify gives the same value for I(x) as before, and takes a CPU time of 0.000
seconds (Mathematica is unable to evaluate it).

3.2 Example 2.

As a second example we have considered the evaluation of the integrals

In(x) =

∫
eax cos(bx)Pn(x) dx and Jn(x) =

∫
eax sin(bx)Pn(x) dx ,

taking a = 40, b =
√

13, Pn(x) = 3xn − 2x3 + 5x− 1 for n = 4, 5, . . . , 14.
In Tables 1 and 2 we have included in the second and third columns the CPU

time in seconds used for evaluating the indefinite integrals, the first one refers to the
computation made by Mathematica, and the second one with the above formulas in
(2.4) and (2.5). The two last columns refer to the evaluation of the obtained integrals
in a specific value of the variable. We observe that Mathematica needs much more
time than that needed by the proposed formulas. This was as expected, because
Mathematica has to do the calculations for getting the indefinite integrals while the
proposed formulas are just summations, which require a minimum effort. Once the
formulas have been calculated, the evaluation in a specific value required the same
computational cost in both cases.

We note that the values provided by Mathematica have a residual term which is
an imaginary part, and this is not the case for the provided formulas, because all these
computations are with real numbers, while Mathematica uses complex arithmetic.

In Table 1 we see that as n is increasing the computations of In(x) need more
computational time. The presence of the residual term in the evaluations of In(0.6)
is also present for n ≥ 8. Similar comments are valid for the computations of Jn(x)
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n CPU In(x) CPU Cn(a, b, x) In(0.6) Cn(a, b, 0.6)
4 0.343 0 −5.86634× 108 −5.86634× 108

5 0.297 0 −5.41443× 108 −5.41443× 108

6 0.469 0 −5.15188× 108 −5.15188× 108

7 0.515 0 −4.99919× 108 −4.99919× 108

8 0.609 0 −4.91031× 108 − 1.21945× 10−8i −4.91031× 108

9 0.672 0 −4.85852× 108 + 3.30328× 10−9i −4.85852× 108

10 0.718 0 −4.82833× 108 − 1.06083× 10−8i −4.82833× 108

11 0.781 0 −4.81071× 108 + 5.18048× 10−9i −4.81071× 108

12 0.844 0 −4.80042× 108 − 5.67524× 10−10i −4.80042× 108

13 0.937 0 −4.79440× 108 − 1.41736× 10−8i −4.79440× 108

14 0.969 0 −4.79089× 108 − 2.12458× 10−9i −4.79089× 108

Table 1: Data for In(x) =
∫
eax cos(bx)Pn(x) dx.

n CPU In(x) CPU Cn(a, b, x) In(0.6) Cn(a, b, 0.6)
4 0.297 0 1.05121× 109 1.05121× 109

5 0.312 0 9.70894× 108 9.70894× 108

6 0.485 0 9.24557× 108 9.24557× 108

7 0.546 0 8.97783× 108 8.97783× 108

8 0.625 0 8.82291× 108 + 6.66186× 10−8i 8.82291× 108

9 0.688 0 8.73315× 108 + 1.25146× 10−9i 8.73315× 108

10 0.734 0 8.68108× 108 − 2.27009× 10−9i 8.68108× 108

11 0.813 0 8.65084× 108 − 2.62516× 10−8i 8.65084× 108

12 0.875 0 8.63326× 108 − 2.74449× 10−8i 8.63326× 108

13 0.922 0 8.62303× 108 + 2.13331× 10−8i 8.62303× 108

14 0.954 0 8.61707× 108 − 1.05210× 10−8i 8.61707× 108

Table 2: Data for Jn(x) =
∫
eax sin(bx)Pn(x) dx.

as can be seen in Table 2.

4 Conclusions

Two formulas expressed by summations in terms of exponentials, trigonometric func-
tions and the derivatives of the polynomial Pn(x) have been developed for the exact
integration of

In(x) =

∫
eax cos(bx)Pn(x) dx and Jn(x) =

∫
eax sin(bx)Pn(x) dx .

These formulas are very effective, as has been shown using the Mathematica program
to compute them in some particular examples.

The procedure used here may be extended to other integral formulas, after using
trigonometric and hyperbolic identities. For example, using the above procedure we
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could obtain exact formulas for the following integrals:∫
eax sin(bx) sin(cx)Pn(x) dx,

∫
eax cos(bx) cos(cx)Pn(x) dx,∫

eax sin(bx) cos(cx)Pn(x) dx,

∫
eax sinm(bx)Pn(x) dx,∫

eax cosm(bx)Pn(x) dx,

∫
sinh(ax) sin(bx)Pn(x) dx,∫

sinh(ax) cos(bx)Pn(x) dx,

∫
cosh(ax) sin(bx)Pn(x) dx,

,

∫
cosh(ax) cos(bx)Pn(x) dx
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