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Abstract. In this paper we study the linear stability of the displacement
of two incompressible Stokes fluids in a 3D Hele-Shaw cell. The corre-
sponding growth constant contains two new terms, compared with the
Saffman-Taylor formula. For large enough surface tension on the inter-
face, we get an almost stable displacement, even if the displacing fluid is
less viscous. Moreover, if the surface tension on the interface is zero, then
our growth rate is bounded in terms of the wavenumbers of the perturba-
tions. These results are in contradiction with the Saffman-Taylor stability
criterion.
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1 Introduction

Consider the flow of an incompressible Stokes fluid with viscosity µ in the small
gap between two parallel plates. This technical device was introduced in [9]. The
velocity orthogonal on the plates is neglected. The depth average procedure (across
the plates) turns the 3D Stokes flow in a 2D particular flow. The averaged velocities
verify a Darcy type equation for the flow in a porous medium with permeability
b2/(12µ), where b is the small distance between the plates.

An important application of the Hele-Shaw model is related with the displacement
of two immisicble Stokes fluids with different viscosities. In fact, a very thin “mixed”
region exists at the contact between the fluids, where we have a strong (continuous)
variation of the viscosity. In the Hele-Shaw model, this mixed region is replaced by a
sharp interface, where a surface tension can be considered. Therefore, in every point
of the equivalent porous medium we have only one fluid. The Laplace law is assumed
on this interface: the pressure jump is given by the surface tension multiplied with the
interface curvature and the normal velocity is continuous. Moreover, this interface is
a material one. On this way, we can visualize the displacement of oil by water in an
(equivalent) porous medium, when the upper plate is transparent - see [1].
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Another model for displacement in porous media is the “saturation” model, where
in every point of the medium we have both fluids and the capillary pressure appears.

Saffman and Taylor [13] obtained the well-known stability criterion: the displace-
ment in a 2D Hele-Shaw cell is unstable if the displacing fluid is less viscous.

In this paper we study the linear stability of the displacement of two immiscible
Stokes fluids in a 3D Hele-Shaw cell. We give a justification for neglecting the velocity
component orthogonal on the plates, but we not use the average procedure in the flow
equations. On the contrary, we consider a 3D interface between the fluids and we not
neglect the meniscus curvature between the plates. On this 3D interface (which has
two curvature radii) we assume the Laplace law. The average procedure is used
only in the Laplace law, as a last step of the linear stability analysis procedure. We
get a more general growth constant given by a ratio which contains two new terms,
compared with the Saffman-Taylor formula.

Our main result is following: the displacement is almost stable even if the dis-
placing fluid is less viscous but the surface tension γ on the air-fluid interface is large
enough. Therefore the displacement stability is not decided only by the viscosities
ratio of the displacing fluids (as in the Saffman-Taylor criterion) but also by the value
of the surface tension on the fluid-fluid interface.

2 The growth constant formula

We consider a horizontal Hele-Shaw cell, with plates z = 0 and z = b which are
parallel with the fixed x1Oy plane. The gravity is neglected. A Stokes fluid with
viscosity µ1 is displacing an immiscible Stokes fluid with viscosity µ2. Both fluids are
incompressible. A sharp interface x1 = I(y, z, t) exists between the two fluids. On
I we suppose the Laplace’s law: the pressure jump is given by the surface tension
multiplied with the curvature and the normal velocity is continuous.

The velocity components are denoted by (u, v, w) and p is the pressure. The extra-
stress tensor is denoted by τ . L is the 3× 3 matrix containing the derivatives of the
velocity components in terms of (x, y, z). The strain-rate tensor is D = (L + LT).
The flow equations and the constitutive relations are:

px1
= τ11,x1

+ τ12,y + τ13,z; py = τ21,x1
+ τ22,y + τ23,z; pz = τ31,x1

+ τ32,y + τ33,z;

τ = µD; µ = µ1, x1 < I; µ = µ2, x1 > I.

Here τij,x1
, τij,y, τij,z are the partial derivatives of the component ij of the extra

stress tensor τ and px1
, py, pz are the partial derivatives of the pressure. We consider

incompressible fluids, therefore

ux1
+ vy + wz = 0.

Two very thin layers of thickness c of the displaced fluid are left behind the
interface, on the interior part of both Hele-Shaw plates. We consider that both fluids
are moving with a small horizontal velocity e on the surface of the above thin layers.

Consider the basic flow given by the constant pressure gradient in the x direction;
only the velocity component in the x1 direction is not zero, depending only on z.
The elements of this basic flow are denoted by the super-index 0. The basic pressure,



Stokes displacements in 3D Hele-Shaw cells 95

extra-stress tensor, strain-rate tensor and horizontal velocity in the fluid i are denoted
by p0i, τ0i, u0i, D0i, i = 1, 2. The pressure gradients and the viscosities of both
fluids verify the important equation (2.3) below.

The basic constitutive relations are

τ0i = µiD
0i; i = 1, 2.

Since the basic velocity depends only on z, then the basic extra stress tensor in both
fluids will depend only on z. From the above constitutive relations we get:

τ0i13 = µiu
0
z, τ0i11 = τ0i12 = τ0i22 = τ0i23 = τ0i33 = 0, i = 1, 2.

Therefore the following basic flow equations hold

p0ix1
= τ0i11,x1

+ τ0i12,y + τ0i13,z = τ0i13,z, p0iy = p0iz = 0

and from the two relations from above, we get

p0ix = τ0i13,z = Gi = µiu
0i
zz, i = 1, 2,

where Gi are two negative constants. As we mentioned above, we suppose

u0i = e for z = c, z = b− c,

and then we obtain

(2.1) u0i = e+ (Gi/2µi)(z − c)(z − b+ c), i = 1, 2.

We use the average operator

< h >= [1/(b− 2c)]

∫ b−c

c

h(z)dz,

we neglect c2 and bc, then from the above relation we obtain

(2.2) < u0i >= − b2

12µi
Gi + e.

We introduce the moving reference frame xOy:

x = x1 − et− (Gi/2µi) < (z − c)(z − b+ c) >,

and consider the basic (material) steady interface x = 0. The basic velocity must be
continuous across the basic interface, then from (2.1) we get the important relation

(2.3)
G1

µ1
=
G2

µ2
.

The perturbations of the basic velocity and pressure are denoted by u, v, w, p, τ . No
confusion can exists, because from now on only the perturbations will be considered.

The perturbation of the basic interface is denoted by ψ(y, z, t) and we have

(2.4) ψt = u|x=ψ.
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We assume

(2.5) u = v = w = 0 for z = c, z = b− c,

and introduce the scalings

x′ = x/l, y′ = y/l, z′ = z/b, ε = b/l.

From the free-divergence condition we obtain

(ux′ + vy′)/l + wz′/b = 0, ε(ux′ + vy′) + wz′ = 0,

and in the frame of asymptotic expansions we get

wz′ = 0, ux′ + vy′ = 0⇒ wz = 0 and ux + vy = 0.

The boundary conditions are giving us w = 0.

We insert the perturbations in the constitutive and flow equations, then

τ0 + τ = µ(D0 + D), −∇(p0 + p) +∇ · (τ0 + τ) = 0.

In the frame of linear stability, we get τ = µD, ∇p = ∇ · τ , where

(2.6) µ = µ1, for x < ψ; µ = µ2, for x > ψ.

The perturbed flow equations and the perturbed constitutive relations are

px = τ11,x + τ12,y + τ13,z, py = τ21,x + τ22,y + τ23,z, pz = τ31,x + τ32,y + τ33,z

(2.7) τ11 = 2µux, τ12 = µ(uy + vx), τ13 = µuz, τ22 = 2µvy, τ23 = µvz, τ33 = 0,

where µ verify the relation (2.6).

We consider the Fourier mode decomposition

u = f(z) exp(−kx+ σt) cos(ky), v = f(z) exp(−kx+ σt) sin(ky), for x ≥ ψ;

u = f(z) exp(kx+ σt) cos(ky), v = −f(z) exp(kx+ σt) sin(ky), for x ≤ ψ,

where k ≥ 0 and the dimension of f(z) is (length/time).

The perturbations decay to zero far from the interface x = ψ and ux + vy = 0.
Moreover, we have

ux = (−k)u, vx = (−k)v, x > ψ; ux = (−k)u, vx = (−k)v, x < ψ,

(uy + vx)x = 2k2f exp(−kx+ σt) sin(ky), vyy = −k2f exp(−kx+ σt) sin(ky), x ≥ ψ;

(uy + vx)x = −2k2f exp(kx+ σt) sin(ky), vyy = k2f exp(−kx+ σt) sin(ky), x ≤ ψ.

Consider a jump of viscosity in the point x0 = 0. The (material) perturbed interface
was denoted by ψ(x, y, z, t) and we have ψt = u, then

ψ(x) =
f(z)

σ
exp(σt) cos(ky), ψ(x)+x (x0) = −kf(z)

σ
exp(σt) cos(ky), x > x0;
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ψ(x) =
f(z)

σ
exp(σt) cos(ky), ψ(x)−x (x0) = k

f(z)

σ
exp(σt) cos(ky), x < x0;

where upper indices +,− denotes the lateral limit values.
We need the form of the amplitude f(z). For this, we use (2.7) and get

(2.8) pz = τ31,x + τ32,y + τ33,z = µ(uz)x + µ(vz)y = µ(ux + vy)z ⇒ pz = 0,

then we have also (py)z = 0. The partial z derivative of py is giving

(2.9) 0 = (py)z = µ(uy + vx)xz + 2µ(vy)yz + µ(vz)zz.

The viscosity µ appearing in the equations (2.8) - (2.9) verifies the relation (2.6). The
above Fourier expansion and the free-divergence condition give us

µ(uy + vx)xz + 2µ(vy)yz = 0

then from the last two above relations we obtain vzzz = 0, fzzz = 0. The no-slip
conditions (2.5) give us

(2.10) f = (z − c)(z − b+ c).

The normal stress to the interface is given by T11 = p0+p−(τ011+τ11) = p0+p−τ11.
We search for the limit values of T11 near the point x0 = 0. As the basic pressure is
not depending on z, we consider the Taylor first order expansion of the basic pressures
p0i near the averaged (across the plates) interface, then for i = 1, 2 we get:

(2.11) p0i(x0 + ψ) = p0i(x0+ < ψ >) ≈ p0i(x0) + p0ix (x0) < ψ >=

p0i(x0) +Gi < ψ > .

We introduce the notations pi, τ i, i = 1, 2 for the pertrubations of the pressure
and extra - stress tensor in both fluids, then we get (recall τ0i11 = 0 and ψ is continuous
across the interface x = x0)

(2.12) T−11 = p01(x0) +G1 < ψ > +p1 − τ111, T+
11 = p02(x0) +G2 < ψ > +p2 − τ211.

The dynamic Laplace law gives us

p02(x0)− p01(x0) + (G2 −G1) < ψ > +(p2 − τ211)− (p1 − τ111) =

γ(x0)(x0yy + x0zz + ψyy + ψzz),

where γ(x0) is the surface tension acting on x = x0 and the curvature of the perturbed
interface is approximated by (ψyy + ψzz). The basic pressures verify the Laplace law
on the basic interface x = x0 and it follows

p02(x0)− p01(x0) = γ(x0)(x0yy + x0zz).

Therefore we obtain

(2.13) (G2 −G1) < ψ > +(p2 − τ211)− (p1 − τ111) = γ(x0)(ψyy + ψzz).
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As a particular case, we consider the displacing fluid is air, then µ1 = 0. We use
(2.3) and get G1 = 3, p1 = 3 and τ111 = 3. Therefore the formula (2.13) becomes

G2 < ψ > +(p2 − τ211) = γ(x0)(ψyy + ψzz),

which is used in [14], but without the term γ(x0)ψzz in the right hand side.
The viscous stress term τ11 is neglected in some papers - see [13], [6]. However

this term is appearing in general dynamic Laplace law described in [2] and [12]. The
viscous stress is also considered in [14], related with an Oldroyd-B fluid displaced by
air in a Hele-Shaw cell. The derivatives (ux, uy, vx, vy) can be very large for small x
and large k - see the Fourier decomposition - and (ux, uy, vx, vy) can not be neglected
in front of uzz, vzz.

The terms (pix− τ i11,x), i = 1, 2 are computed by using the perturbed flow equa-
tions:

pix − τ i11,x = τ i12,y + τ i13,z = µi(uy + vx)y + µ(uz)z,

(2.14) p2 − τ211 = (−1/k)µ2{−2k2f + fzz} exp(−kx+ σt) cos(ky), x > x0;

(2.15) p1 − τ111 = (1/k)µ2{−2k2f + fzz} exp(kx+ σt) cos(ky), x < x0.

From ψt = u and (2.10) it follows, with (+) for x < x0 and (−) for x > x0:

ψ =
f

σ
exp(+−kx+ σt) cos(ky); ψyy =

f

σ
(−k2) exp(+−kx+ σt) cos(ky),

ψzz =
2

σ
exp(+−kx+ σt) cos(ky).

The relations (2.13) - (2.15) give us

(2.16) k(G2 −G1) < f(z) > /σ − (µ2 + µ1)[−2k2f(z) + 2] = (γ/σ)[−k3f(z) + 2k].

We neglect c2, bc and from (2.10) we have

< f >=

∫ b−c

c

[(z − c)(z − b+ c)/(b− 2c)]dz = −b2/6.

We perform the average in the formula (2.16), we use the relation (2.2) and get

(2.17) σ =
(µ2 − µ1)(< u0 > −e)k − γk − γk3b2/12

(µ2 + µ1)(1 + k2b2/6)
.

Consider the capillary number Ca = (µ2 − µ1) < u0 > /γ, then the above relation
becomes

(2.18) σ =
< u0 > [(µ2 − µ1)− Ca−1]k − (µ2 − µ1)e− γ(k3b2/12)

(µ2 + µ1)(1 + k2b2/6)
.

The Saffman-Taylor formula is

(2.19) σST =
< u0 > k(µ2 − µ1)− γ(k3b2/12)

(µ2 + µ1)
.
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When Ca >> 1 and e = 0, the numerator of (2.18) is quite similar to the numerator
of the Saffman-Taylor growth constant (2.19); only the denominator of (2.18) contains
the new factor (1 + k2b2/6).

Recall the formula (2.11), where

< ψ >= (1/σ) < f(z) > exp(+−kx+ σt) cos(ky), x ≈ x0.

Then, near the averaged basic interface, p0i given by (2.11) is depending on y. But
our basic pressure must depend only on x. We prove that p0iy is very small if we avoid
a small interval near the interface x0 = 0. We have

< ψ >y=
1

σ
(−k)f(z) exp(−kx+ σt) sin(ky), x > 0,

< ψ >y=
1

σ
(k)f(z) exp(kx+ σt) sin(ky), x < 0.

In Figure 1 we plot the function F (k) = −k exp(−kx), x = 0.001, k > 0 and
see that for large (k, x) this function is almost zero. Only in the range k < 7000 we
have max|F | ≈ 400. We can multiply f(z) with a very small coefficient, then we
obtain a small value of max| < ψ >y | also in the range k < 7000, for small enough
values of the time t.

In Figure 2, 3 we plot the functions F (k) = −k exp(−kx), x = 0.01, k > 0 and
F (k) = −k exp(−kx), x = 0.1, k > 0. We see that the maximum value of |F | is
decreasing when x is increasing.

Therefore, with the above estimations, we can consider that our basic pressures
p0i are almost independent on y. As b = O(10−2), our stability analysis holds if we
avoid an interval of order O(10b) near the moving interface x = 0. This phenomenon
is also mentioned in [14].

Figure 1. F (k) = −k exp(−kx), x = 0.001, k > 0

F (k) on the vertical axis, k on the horizontal axis
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.

Figure 2. F (k) = −k exp(−kx), x = 0.01, k > 0

F (k) on the vertical axis, k on the horizontal axis

Figure 3. F (k) = −k exp(−kx), x = 0.1, k > 0

F (k) on the vertical axis, k on the horizontal axis
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3 Conclusions

Two new important terms appear in the formula (2.17), compared with the Saffman
- Taylor formula (2.19): i) k2b2/6 in the denominator; ii) − < u0 > Ca−1k in the
numerator. This terms appear from two reasons: a) we not neglected ux, vx, uy, vy
in front of uz, vz in the first flow equation; b) we used the total curvature of the
perturbed interface in the Laplace law (2.13).

We obtain the following results:

1) Even if the surface tension γ on the interface is zero, the growth constant is
bounded in terms of the wave number k. In this case form (2.17) it follows the estimate

σ = M
(< u0 > −e)k
(1 + k2b2/6)

< M(1 + δ){< u0 > −e
b

}
√

3/2, ∀δ > 0,

where

M =
(µ2 − µ1)

(µ2 + µ1)
.

Indeed, we have B > 1/(2
√
A) ⇒ k/(1 + Ak2) < B. In our case, A = b2/6, then we

can consider B = (
√

3/2)(1 + δ)/b and obtain the result.

2) If the surface tension γ on the interface is zero, then the growth constant tends
to zero for very large wave numbers k.

Both above results 1) and 2) are in contradiction with the Saffman-Taylor formula
(2.19), where γ = 0 is giving an unbounded growth constant in terms of k, as we
mentioned before - see also Gorell and Homsy [6].

3) From the expression (2.17), we get

σ <
k{(µ2 − µ1)(< u0 > −e)− γ}

(µ2 + µ1)(1 + k2b2/6)
.

Therefore if the surface tension γ is large enough, our growth constant is negative
or zero, even if the air viscosity is zero, less than the viscosity µ of the displaced
Stokes fluid. This is also in contradiction with the Saffman-Talor criterion. The
relation (2.19) is always giving us a maximum strictly positive value of σ, in terms of
< u0 >, γ, µ1, µ2. We consider that this is the most important conclusion of our paper:
the displacement stability is decided not only by the viscosities ratio of the displacing
fluids, but also by the surface tension on the interface.The sufficient condition for the
almost stability of the displacement is

γ > (µ2 − µ1) · (< u0 > −e), µ2 > µ1

A different contradiction of the Saffman and Taylor stability criterion was observed
in [3] [4], [5], [7], [8], [10]. All these papers are related with the displacement
of air by a fluid with surfactant properties in a Hele - Shaw cell with preexisting
surfactant layers on the plates; it is pointed out that a more viscous displacing fluid
can give us an unstable air-fluid interface. The experiments and the numerical results
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are in good agreement - but also in a 3D frame. We can consider that our result is
a complementary one, compared with the above experiments with surfactants fluids
and Hele-Shaw cells. We proved that for a large enough surface tension, even if the
displacing fluid (air) is less viscous, the interface air-fluid is almost stable.
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