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Abstract. In this work, the analysis of the Riemann’s zeta function in the
critical strip, Σ, has been performed, formulating a new equation of the
zeros of the ξ̃(s) auxiliary function, by means of the Schwarz’s reflection
principle and an extension Caccioppoli’s theorem on the unit elements of
the functional transformations. We demonstrate that, in the strip Σ, the
Riemann’s ξ(t) function has only real zeros whose map in the complex
plane s correspond to the zeros of the Riemann zeta function.
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Notations used throughout the article:

• j =
√
−1;

• R set of real numbers;

• C set of complex numbers ;

• Z set of relative numbers;

• log(x) is the natural logarithm of x;

• <(·) is the real part;

• =(·) is the imaginary part;

• σ = <(s) and ρ = =(s) : s = σ + jρ ∈ Σ = (0, 1)× (−j∞, 0) ∪ (0,+j∞);

• τ = <(t) and µ = =(t) : t = τ + jµ ∈ Σ′ = (−∞, 0) ∪ (0,+∞)×
(
− j

2
,+ j

2

)
;

• ψ(x) =
∞∑
n=1

e−πn
2x is the Poisson’s elliptic function;

• ξ̃(s) is the auxiliary zeta function;

• ξ(t) is the Riemann’s auxiliary zeta function;

• ζ(s) is the Riemann’s zeta function;

• Ω0 = {∀s ∈ Σ : ξ̃(s) = 0};

• Ω
′
0 = {∀t ∈ Σ

′
: ξ̃
(

1
2

+ jt
)

= 0};

• (·)∗ is the conjugate of a number or function.
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1 Introduction

In the XIX-th century, Riemann (1859, [16]) obtained the functional equation:

(1.1) 2(2π)s−1Γ(1− s) sin(sπ/2)ζ(1− s) = ζ(s)

by means of the connection between the gamma function Γ(s) and the prime numbers,
it found by Euler. The (1.1) characterizes a function ζ(s), known as zeta function
of Riemann, defined in the complex plane ([5], [8], [12], [18]). Using a new analytic
approach, Riemann stated that the zeros of the function ζ(s) are all on the straight
line of the equation <(s) = 1/2, known as critical straight line of the complex plane.
This statement represents the Riemann Hypothesis (RH) [3]. The proof of RH was
suspended by the Riemann who determined the best approximation of the prime
counting function in a given interval. In order to proof the Riemann hypothesis,
many mathematicians and theoretic physicians used different methods that can be
summarized as follows:

a) Trying to demonstrate, through proof by contradiction, that in the strip Σ of
the complex plane it is not possible to find a zero outside of the straight line of
equation <(s) = 1/2;

b) Formulating the Riemann hypothesis in a larger work of the generalized Dirichlet
series;

c) Using non commutative algebra techniques, used for the study of some phenom-
ena in quantistic physics.

In the note [11], by evidencing a contradiction present in the article of M. H. Bohr
and E. Landau [2], G.H. Hardy confirmed the presence of an infinite number zeros on
the critical straight line, in his proof which was published previously in Proc. London
Math. Soc. Ser. march 1914, but he hadn’t proved the total absence of zeros outside
of it. I prove it by means of the associated functional equation obtained from an
integral transformation of the auxiliary zeta function. The purpose of this work is to
extend the analysis of the Riemann’s zeta function in the critical strip, Σ, formulating
a new equation of the zeros of the ξ̃(s) auxiliary function, by means of the Schwarz’s
reflection principle and an extension Caccioppoli’s theorem on the unit elements of
the functional transformations, it recalled in appendix C. We demonstrate that, in
the strip Σ, the Riemann’s ξ(t) function has only real zeros whose map in the complex
plane s correspond to the zeros of the Riemann zeta function.

2 The equation of the zeros of ξ̃(s)

Riemann (1859, [16]) showed that the zeta function of Riemann ζ(s) is linked to
Poisson’s elliptic function ψ(x) and Euler’s gamma function Γ(s), by means of the
following formula:

(2.1) Γ(s/2)(π)−s/2ζ(s) =
1

s(s− 1)
+

+∞∫
1

ψ(x)[x(s/2−1) + x−(s+1)/2]dx
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using the functional equation of Jacobi:

(2.2) 2ψ(x) + 1 = x−1/2[2ψ(1/x) + 1],

where: s= σ+j ρ, with s ∈ C and x ∈ [1,∞). By multiplying both the members of
(2.1) for s(s - 1)/2 , we defined the function ξ̃(s). Consider the auxiliary function:

(2.3) ξ̃(s) =
1

2
s(s− 1)Γ(s/2)(π)−s/2ζ(s).

In (2.3), it is noteworthy that in the strip Σ, all the zeros of the Riemann zeta function
are the zeros of the function ξ̃(s). Therefore, if all the zeros of the function ξ̃(s) have
real part equal to 1/2, then even the real part of the zeta function zeros is 1/2. So,
the RH is proved. By replacing (2.1) in (2.3) and imposing the zero condition, the
equation of function ξ̃(s) is obtained by:

(2.4)
1

2
+
s(s− 1)

2

+∞∫
1

ψ(x)[x(s/2−1) + x−(s+1)/2] dx = 0.

3 Theorem on the auxiliary zeta function associated
to the RH

The (2.4) can be decomposed in two equations (see Appendix A), ([6]), with a real
part and an imaginary part, respectively:

ΦR(σ0, ρ0) =

+∞∫
1

ψ(x)x−3/4cos[ρ0log(
√
x)]cosh[(1/2− σ0)log(

√
x)] dx,(3.1)

ΦI(σ0, ρ0) =

+∞∫
1

ψ(x)x−3/4sin[ρ0log(
√
x)]sinh[(σ0 − 1/2)log(

√
x)] dx.(3.2)

with σ0 ∈ (0, 1) ∩ < and ρ0 ∈ < − {0}, we obtain:

(3.3) ΦR(σ0, ρ0) =
σ0(1− σ0) + ρ2

0

2 {[σ0(1− σ0) + ρ2
0]2 + (2σ0 − 1)2ρ2

0}

(3.4) ΦI(σ0, ρ0) =
(2σ0 − 1)ρ0

2 {[σ0(1− σ0) + ρ2
0]2 + (2σ0 − 1)2ρ2

0}

Recomposing the two equations in a complex shape, and assuming:

∆(σ0, ρ0) = 2
{

[σ0(1− σ0) + ρ2
0]2 + (2σ0 − 1)2ρ2

0

}
,

we obtain:

(3.5)

+∞∫
1

ψ(x)x−3/4cos[α(x; ρ0) + jβ(x;σ0)] dx = ΦR(σ0, ρ0) + jΦI(σ0, ρ0),
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where (see Appendix A, argument of the cos(·) function, at the second member of the
(A.7)):

(3.6) α(x; ρ0) = ρ0 log(
√
x)

(3.7) β(x;σ0) = (σ0 − 1/2)log(
√
x)

By denoting:

(3.8) φ(x; s0) = α(x; ρ0) + jβ(x;σ0),

the relation (3.5) can be written as:

(3.9)

+∞∫
1

ψ(x)x−3/4cos[φ(x; s0)] dx =
σ0(1− σ0) + ρ2

0 + j(2σ0 − 1)ρ0

∆(σ0, ρ0)
.

By detailing the function ψ(x), under the integral at the first member of the (3.9),
we have:

(3.10)

+∞∫
1

∞∑
n=1

e−πn
2xx−3/4cos[φ(x; s0)] dx =

σ0(1− σ0) + ρ2
0 + j(2σ0 − 1)ρ0

∆(σ0, ρ0)
,

and by replacing the integration for the sum, we obtain:

(3.11)

∞∑
n=1

+∞∫
1

e−πn
2xx−3/4cos[φ(x; s0)] dx =

σ0(1− σ0) + ρ2
0 + j(2σ0 − 1)ρ0

∆(σ0, ρ0)
.

By making the change of variable with s0 fixed parameter:

(3.12) ν = πn2x

we obtain (see Appendix B):

(3.13)

∞∑
n=1

{
(1/πn2)s0/2

+∞∫
πn2

νs0/2−1e−ν dν

}
+

+
∞∑
n=1

{
(1/πn2)(1−s0)/2

+∞∫
πn2

ν(1−s0)/2−1e−ν dν

}
= 1

s(1−s) ;

by denoting:

(3.14) Ψ1(s) = S

[
1

s0

]
− 1

s0
=

∞∑
n=1

(1/πn2)s0/2
+∞∫
πn2

νs0/2−1e−ν dν

− 1

s0
,
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(3.15)

Ψ2(s) = S
[

1
1−s0

]
− 1

1−s0 =

=
∞∑
n=1

{
(1/πn2)(1−s0)/2

+∞∫
πn2

ν(1−s0)/2−1e−ν dν

}
− 1

1−s0 ,

and by following the notation in [4], with 1
s at the place of ϕ, in Σ, S: Σ → Σ, the

(3.13) can be written as:

(3.16)

[
Ψ1(s0) + Ψ2(s0) +

1

s(1− s0)

]
=

1

s0(1− s0)
,

and (2.3) as:

(3.17) ξ̃(s0) =
1

2
− 1

2
s0(1− s0)

[
Ψ1(s0) + Ψ2(s0) +

1

s0(1− s0)

]
We notice that:

(3.18) ξ̃(1− s0) =
1

2
− 1

2
(1− s0)s0

[
Ψ1(1− s0) + Ψ2(1− s0) +

1

(1− s0)s0

]
and that

(3.19) Ψ1(1− s0) = Ψ2(s0)

(3.20) Ψ2(1− s0) = Ψ1(s0),

whence we obtain:

(3.21) ξ̃(1− s0) =
1

2
− 1

2
(1− s0)s0

[
Ψ2(s0) + Ψ1(s0) +

1

(1− s0)s0

]
,

i.e.,

(3.22) ξ̃(s0) = ξ̃(1− s0).

Then, in Σ we have

(3.23) ξ̃(s0) = 0,

if:

(3.24) Ψ1(s0) + Ψ2(s0) = 0⇒ Ψ1(s0) + Ψ1(1− s0) = 0,

i.e.,:

(3.25) S

[
1

s0

]
− 1

s0
+ S

[
1

1− s0

]
− 1

1− s0
= 0.

Let s = 1
2 + jt, with t ∈ Σ′ then the (3.24) is: Ψ1

(
1
2 + jt

)
+ Ψ1

(
1
2 − jt

)
= 0.
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Lemma 3.1 (Principle of Reflection on the zeros). ξ̃
(

1
2 + jt

)
is an analytic function

in Σ′ respect to < ⇔ ∀t0 ∈ Ω
′

0 ⊂ Σ′ ⇒ t∗0 ∈ Ω
′

0.

Proof. Let ξ̃
(

1
2 + jt

)
an analytic function and t0 ∈ Ω

′

0. Suppose that t∗0 /∈ Ω
′

0 ⇒
ξ̃
(

1
2 + jt0

)
= 0 and ξ̃

(
1
2 + jt∗0

)∗ 6= 0 ⇒ ξ̃
(

1
2 + jt0

)
6= ξ̃

(
1
2 + jt∗0

)∗
is not analytic

function against the hypothesis. Therefore t∗0 ∈ Ω
′

0. �

Lemma 3.2. Let t ∈ Σ′, ξ̃
(

1
2 + jt

)
= A(t) ×

[
Ψ1

(
1
2 + jt

)
+ Ψ1

(
1
2 − jt

)]
, with:

A(t) 6= 0, Ψ1

(
1
2 + jt

)
and Ψ1

(
1
2 − jt

)
analytic functions in Σ

′
.

∀t0 ∈ Ω
′

0, ξ̃
(

1
2 + jt0

)
= 0⇔ Ψ1

(
1
2 + jt0

)
= 0, Ψ1

(
1
2 − jt0

)
= 0.

Proof. Let t0 ∈ Ω
′

0. Being ξ̃
(

1
2 + jt

)
, in Σ′, an analytic function, for Lemma 1, it is

satisfaction the Schwarz’s reflection principle. ξ̃
(

1
2 + jt0

)
= 0 iff:

Ψ1

(
1
2 + jt0

)
+ Ψ1

(
1
2 − jt0

)
= 0 and Ψ1

(
1
2 + jt∗0

)
+ Ψ1

(
1
2 − jt

∗
0

)
= 0,

i.e.:

Ψ1

(
1

2
+ jt0

)
+ Ψ1

(
1

2
+ jt∗0

)
+ Ψ1

(
1

2
− jt0

)
+ Ψ1

(
1

2
− jt∗0

)
= 0.

This complex equation has two component in the two variables real and immaginary
part of t0. The imaginary component of the complex equation is identically null while
its real component it is indeterminate. Therefore, ξ̃

(
1
2 + jt0

)
= 0 iff:

(3.26) Ψ1

(
1

2
+ jt0

)
= 0,

and

(3.27) Ψ1

(
1

2
− jt0

)
= 0.

�

As seen in Figures 1 and 2 obtained by means of the software Mathematica, the
reflection principle is satisfied.

Theorem 3.3 (The new equation). Let s0 be a zero of the ξ̃(s) in the strip
Σ= (0, 1) × ((−j∞, 0) ∪ (0,+j∞)) of the complex plane. T then the real part of s0,
denoted with σ0, is equal to 1/2, whereas the imaginary part, denoted with ρ0, satisfies
the new equation:

∞∑
n=1

ΓR(1/4 + jρ0/2, πn
2)cos[αn(ρ0)] + ΓI(1/4 + jρ0/2, πn

2)sin[αn(ρ0)]

(πn2)1/4
=

2

1 + 4ρ2
0

with:
αn(ρ0) = ρ0log(

√
πn2)

and:

ΓR(1/4 + jρ0/2, πn
2) = <

{
Γ(1/4 + jρ0/2, πn

2)
}

= <


+∞∫
πn2

ν−3/4+jρ0/2e−ν dν
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Figure 1: (Level curves) Ψ1

(
1
2 + jt

)
= 0 and Ψ1

(
1
2 − jt

)
= 0, it is observed the

straight line intercepts at the first positive and negative zero of the zeta function:
µ = ±14.1347 and τ = 0

Figure 2: (Level curves) Ψ1

(
1
2 + jt∗

)
= 0 and Ψ1

(
1
2 − jt

∗) = 0, it is observed the
straight line intercepts at the first positive and negative zero of the zeta function:
µ = ±14.1347 and τ = 0
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ΓI(1/4 + jρ0/2, πn
2) = =

{
Γ(1/4 + jρ0/2, πn

2)
}

= =


+∞∫
πn2

ν−3/4+jρ0/2e−ν dν

 .

Proof. From Lemma 2, the analytic expression of a generic zero, s0, of the auxiliary
function, ξ̃(s), is obtained by searching among the united elements of the functional
transformation S, where S is a contraction mapping (see Appendix C), i.e. zeros of
the functional equation:

(3.28) Ψ1(s0) = T

[
1

s0

]
= 0,

where:

(3.29) T

[
1

s0

]
= S

[
1

s0

]
− 1

s0
.

For simmetry we obtain the zeros of the Ψ1(1 − s0) = 0. If s0 is a zero, also (1-s0),
s∗0 and (1-s∗0) are zeros of ξ̃(s), then:

i) S
[

1
s∗0

]
= 1

s0
, is true iff ρ0 = 0

ii) S
[

1
1−s∗0

]
= 1

s0
, is true iff σ0 = 1

2

iii) S
[

1
1−s0

]
= 1

s0
, is true iff (σ0 = 1

2 ) ∩ (ρ0 = 0)

Since ∀σ ∈ (0, 1) ⇒ s = σ /∈ Σ ⇒ ρ0 6= 0, by extending the Caccioppoli’s theorem
on the unit elements of the functional transformations [4], S admits a unique solution
s0, therefore result:

(3.30) S

[
1

s0

]
= S

[
1

1− s∗0

]
=

1

s0

as seen in Figures 3, 4, 5 and 6, and (3.25) can be written as:

(3.31)
∞∑
n=1

(1/πn2)s1
+∞∫
πn2

νs1−1e−ν dν + (1/πn2)s
∗
1

+∞∫
πn2

νs
∗
1−1e−ν dν

 =
1

s0
+

1

1− s0
,

where:

(3.32) s1 =
1− s∗0

2
=

1

2
(1− σ0) +

1

2
jρ0,

(3.33) s∗1 =
1− s0

2
=

1

2
(1− σ0)− 1

2
jρ0.
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Figure 3: <{S[1/s0]} = <[1/s0]

It is noteworthy that in the (3.31) the integrals are upper incomplete Gamma functions
([10], [19]). For:

(3.34) Γ(s1, πn
2) =

+∞∫
πn2

νs1−1e−ν dν = ΓR(s1, πn
2) + jΓI(s1, πn

2)

and

(3.35) u(n, s1) =

(
1

πn2

)s1
,

the relation (3.31) can be written as follows:

(3.36)
1

2

∞∑
n=1

[Γ(s1, πn
2)u(n, s1) + Γ∗(s1, πn

2)u∗(n, s1)] = ΦR(σ0, ρ0) + jΦI(σ0, ρ0),

with: ΓR(s1, πn
2), ΓI(s1, πn

2) ∈ <; by observing that:

Γ(s1
∗, πn2) = Γ∗(s1, πn

2),

the relation (3.36) can be written as:
(3.37)
∞∑
n=1

{
<[Γ(s1, πn

2)u(n, s1)]−=[Γ(s1, πn
2)u(n, s1)]

}
= ΦR(σ0, ρ0) + jΦI(σ0, ρ0).

By substituting (3.34) and (3.35) into (3.36), we infer:
(3.38)
∞∑
n=1

ΓR(s1, πn
2)cos[αn(ρ0)] + ΓI(s1, πn

2)sin[αn(ρ0)]

(πn2)<(s1)
= ΦR(σ0, ρ0) + jΦI(σ0, ρ0),
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Figure 4: <{S[1/(1− s∗0)]} = <[1/s0]

where:

(3.39) αn(ρ0) = α(πn2; ρ0) = ρ0 log(
√
πn2).

Then (3.38) represents the equation of the zeros of the ξ̃(s) function whose first
member is a real function. Moreover, we have:

ΓR(s1
∗, πn2) = ΓR(s1, πn

2),

ΓI(s1
∗, πn2) = −ΓI(s1, πn

2),

cos[αn(−ρ0)] = cos[αn(ρ0)],

sin[αn(−ρ0)] = − sin[αn(ρ0)],

ΦR(σ0,−ρ0) = ΦR(σ0, ρ0),

ΦI(σ0,−ρ0) = −ΦI(σ0, ρ0).

Therefore, from (3.38), the zeros of the function ξ̃(s) in the strip Σ can be obtained
by resolving the system of the following two real equations in σ0 and ρ0:

(3.40)

∞∑
n=1

ΓR(s1, πn
2)cos[αn(ρ0)] + ΓI(s1, πn

2)sin[αn(ρ0)]

(πn2)<(s1)
= ΦR(σ0, ρ0)

(3.41) 0 = ΦI(σ0, ρ0),

For (3.4), we notice that (3.41) becomes:

(3.42) 0 =
(2σ0 − 1)ρ0

2 {[σ0(1− σ0) + ρ2
0]2 + (2σ0 − 1)2ρ2

0}
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Figure 5: ={S[1/s0]} = =[1/s0]

Figure 6: ={S[1/(1− s∗0)]} = =[1/s0]
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and (3.42) is satisfied ∀ρ0 ∈ R− {0} ⇔ σ0 = 1/2. Therefore, the system admits real
solutions if and only if: σ0 = 1/2 and for all ρ0 values that satisfy:
(3.43)
∞∑
n=1

ΓR(1/4 + jρ0/2, πn
2)cos[αn(ρ0)] + ΓI(1/4 + jρ0/2, πn

2)sin[αn(ρ0)]

(πn2)1/4
=

2

1 + 4ρ2
0

.

Consequently, the Theorem is proved. �

Corollary 3.4. All the zeros of the function ζ(s) in the strip Σ have real part equal
to 1/2.

Proof. Let s0 be a generic zero of the Riemann zeta function:

ζ(s0) = 0.

For (2.3), we have:
ξ̃(s0) = 0

For Theorem 1 we have that the real part s0 is equal to 1/2: σ0 = 1/2. Therefore,
RH is proved. �

It can be noticed that the equation (3.24) is equivalent to:

(3.44) |Ψ1 (σ0 + jρ0) | = |Ψ1 (1− σ0 − jρ0) |

(3.45) ∠Ψ1 (σ0 + jρ0)− ∠Ψ1 (1− σ0 − jρ0) = (2k + 1)π

with k ∈ Z and where ∠Ψ1 is argument of Ψ1, i.e., the difference of arguments is a
multiple odd of π .
In Σ , |Ψ1(σ0 + jρ0)| is a monodroma function, therefore, for reflection’s principle
|Ψ1(σ0 + jρ0)| = |Ψ1(σ0 − jρ0)|, the (3.44) is satisfied iff 1− σ0 = 1/2:

(3.46) |Ψ1 (σ0 + jρ0) | = |Ψ1 (1− σ0 − jρ0) | ⇔ σ0 =
1

2
,

i.e.,

(3.47) |Ψ1 (1/2 + jρ0) | = |Ψ1 (1/2)− jρ0) |

is always satisfied, ∀ρ0 ∈ R− {0}. Therefore the equation of zeros is:

(3.48) ∠Ψ1 (1/2 + jρ0)− ∠Ψ1 (1/2− jρ0) = (2k + 1)π,

i.e., it is equivalent at the new equation although it is formally different.

4 Calculating the first zeros of the Riemann zeta
function through the equation of the zeros of the
auxiliary function.

The equation of the zeros of the ξ̃(s) function can be solved by truncating the series
at the first member by means of a finite number of terms M, since it quickly converges
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to 0 for all the values of ρ greater than 0. This can be checked by setting M = 10 and
varying ρ. The zeros are obtained at each phase inversion of π ([6], [7]), by means of
the following formula:

(4.1) d̃ = log[d(ρ)] = log |d(ρ)|+ log {sgn[d(ρ)]} = log |d(ρ)|+ jπ

2
{1− sgn[d(ρ)]} ,

where d(ρ) is:
(4.2)

M∑
n=1

ΓR(1/4 + jρ/2, πn2)cos[αn(ρ)] + ΓI(1/4 + jρ/2, πn2)sin[αn(ρ)]

(πn2)1/4
− 2

1 + 4ρ2
.

Figure 7: −Log10[d(ρ)]

As Figure 7 shows, the first nine zeros of the auxiliary function are the same
of the first nine zeros of the Riemann zeta function. The trend of the graph was
obtained by means of the software Mathematica and the values with approximation
to the fourth decimal place were compared with the tables reported in ([15], [20]).
The first zeros of the Riemann zeta function were calculated only with the attempt
to verify the correctness of the equation. The trend of the curve in Figure 7 is similar
to the trend of the function given by Sierra and Rodriguez-Laguna ([17]) based on
the physical theory of Berry ([1]) and Galindo ([9]). In Figure 8, ρ ranges between 40
and 45. It is noteworthy the occurrence of two cuts of the real axis s corresponding
to the zeros ρ7 = 40.9187 e ρ8 = 43.3270, respectively. For ρ > 49, since the zeros
of the auxiliary function are much more and denser than the zeros of the Riemann
zeta function (because d(ρ) quickly converges to zero), it is not possible to distinguish
them (Figs. 9, 10, 11). In fact, according to the equation, as can be seen from the
Figure 12 and 13, for ρ0 greater than 49, the function ξ̃(s) is next to zero on all points
of the straight line of equation σ = 1/2. If ρ0 is 49 then:

ξ̃(0.5 + j49) = −1.36914× 10−14 − j4.97901× 10−29

and
ζ(0.5 + j49) = 0.666418− j × 0.203663.
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Figure 8: Two zeros of the Riemann zeta function

Figure 9: Trend for ρ ranging between 47 and 53 and M=10

The zeros of the Riemann zeta function can be calculated with high precision by
using different techniques such as the Odlyzko - A. M. Schonhage algorithm ([13]) or
R.B. Paris [14], for very high values of ρ.

Figure 10: Trend for ρ ranging between 47 and 53 and M=50
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Figure 11: Trend for ρ ranging between 47 and 53 and M=100

Figure 12: Trend of |ξ̃(0.5 + jρ)| for ρ ranging between 0 and 300

Figure 13: Trend of |ξ̃(0.5 + jρ)| for ρ ranging between 48 and 60
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5 Link between ξ̃(s) and ξ(t)

The function ξ̃(s) in (2.3) was defined by using the following integral equation ([16]):

(5.1) Π(s/2− 1)(π)−s/2ζ(s) =
1

s(s− 1)
+

+∞∫
1

ψ(x)[x(s/2−1) + x−(s+1)/2] dx,

where Π(s/2− 1) is the gamma function in Euler’s notation corresponding to Legen-
dre’s notation:

(5.2) Γ(s/2) = Π(s/2− 1).

In his paper, Riemann ([16]) introduces the function ξ(t) of the complex variable t.
By means of the gamma function expressed in Legendre’s notation, we have:

(5.3) ξ(t) = Γ(s/2 + 1)(s− 1)(π)−s/2ζ(s).

By comparing the (2.3) and (5.3), we can state that the function ξ̃(s) is linked to the
Riemann function ξ(t) by means of the following equation:

(5.4) ξ(t) =

[
2Γ(s/2 + 1)

s Γ(s/2)

]
ξ̃(s).

By using the functional equation of the gamma function,

(5.5) Γ(s/2 + 1) =
(s

2

)
Γ(s/2),

we obtain:

(5.6) ξ(t) = ξ̃(s)

with:

(5.7) s = 1/2 + jt,

as stated by Bombieri ([3]). From (5.7), we have:

(5.8) t = ρ+ j(1/2− σ)

since
s = σ + jρ.

6 Comparison with Riemann-Siegel Z formula

By using the method described in section 3 to prove the RH, the auxiliary function
ξ̃(s) along the critical strip can be expressed through a series of upper incomplete
gamma functions of the variable ρ:

(6.1) ξ̃

(
1

2
+ jρ

)
=

1

2
− 1

4
(1 + 4ρ2)Ω(ρ),
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where:

(6.2) Ω(ρ) =

∞∑
n=1

ΓR(1/4 + jρ/2, πn2)cos[αn(ρ)] + ΓI(1/4 + jρ/2, πn2)sin[αn(ρ)]

(πn2)1/4
.

By replacing equation (6.1) in (2.3), we obtain the equivalent representation of the
Riemann-Siegel Z function:

(6.3) ζ

(
1

2
+ jρ

)
= Z̃(ρ)e−jΘ̃(ρ),

where:

(6.4) Z̃(ρ) = 2π1/4

[
Ω(ρ)− 2

(1+4ρ2)

| Γ(1/4 + jρ/2) |

]

and:

(6.5) Θ̃(ρ) = arg[Γ(1/4 + jρ/2)]− ρ

2
log(π).

The Figure 14, obtained by means of the software Mathematica, shows that for 0 ≤
ρ ≤ 48 the graph of the representation Z̃(ρ) is the same of the graph of the Riemann-
Siegel Z(ρ) formula. In Figure 15, the trend of Z̃(ρ) differ from the trend of Z(ρ)

Figure 14: Comparison with Riemann-Siegel formula Z(ρ) and 0 ≤ ρ ≤ 48

for ρ > 49 because such representation tends to a 0/0 indeterminate form.
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Figure 15: Comparison with Riemann-Siegel formula Z(ρ) and 0 ≤ ρ ≤ 51

7 Conclusions

In this work, we demonstrated that the real part of the zeros of the auxiliary function
ξ̃(s), for ρ0 ≤ 49, is equal to 1/2: s0 = 1/2 + jρ0 as well as the zeros of the Riemann
zeta function. For ρ0 greater than 49, the function ξ̃(s) is close to zero at all points
of the straight line of equation: σ = 1/2. Therefore RH was proved as Corollary 1 of
Theorem 1. Moreover, it was demonstrated that the zeros of the Riemann function
ξ(t) are real and they are the same of the imaginary part of the zeros of the Riemann
zeta function. In fact, if 1/2 + jρ0 is a generic zero of ζ(s), for (5.8), then t0 =ρ0.
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Appendices A-C

A

By (2.4) we have:

(A.1)

+∞∫
1

ψ(x)[x(s0/2−1) + x−(s0+1)/2] dx =
1

s0(1− s0)
.

Then:

(A.2)
1

s0(1− s0)
=

1

[(1− σ0)σ0 + ρ2
0 + jρ(1− 2σ0)]

,
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i.e.,
(A.3)

1

s0(1− s0)
=

(1− σ0)σ0 + ρ2
0

[(1− σ0)σ0 + ρ2
0]2 + ρ2

0(1− 2σ0)2]
+ j

ρ0(2σ0 − 1)

[(1− σ0)σ0 + ρ2
0]2 + ρ2

0(1− 2σ0)2]

Let:

(A.4) x(s0/2−1) + x−(s0+1)/2 = x−b(xa + x−a);

by resolving respect to a and b, we obtain:

(A.5) a =
s0

2
− 1

4
; b =

3

4
.

Then

(A.6)

+∞∫
1

ψ(x)[x(s0/2−1) + x−(s0+1)/2] dx =

+∞∫
1

ψ(x)x−3/4[x(s0/2−1/4) + x−(s0/2−1/4)] dx

By observing that xa = ealog(x), we obtain:

(A.7)

+∞∫
1

ψ(x)[x(s0/2−1) + x−(s0+1)/2] dx =

= 2
+∞∫
1

ψ(x)x−3/4cos[j/2(s0 − 1/2)log(x)] dx

where:

(A.8)
cos[j/2(s0 − 1/2)log(x)] = cosh [(σ0 − 1/2)log(

√
x)] cos [ρ0log(

√
x)] +

+jsinh [(σ0 − 1/2)log(
√
x)] sin [ρ0log(

√
x)]

For (A.3), (A.7) and (A.8), we obtain (3.1) and (3.2).

B

By (A.8), we infer:

(B.1) φ(x; s0) = j/2(σ0 + jρ0 − 1/2)log(x) = −ρ0/2log(x) + j/2(σ0 − 1/2)log(x)

(B.2) ejφ(x;s0) = ejρ0/2log(x)−1/2(σ0−1/2)log(x) = x−s0/2x1/4

(B.3) e−jφ(x;s0) = e−jρ0/2log(x)+1/2(σ0−1/2)log(x) = xs0/2x−1/4.

From the first member of the equation (3.11), considering the integral term:

(B.4) 2

∫ +∞

1

e−πn
2xx−3/4cos[φ(x; s0)] dx =

+∞∫
1

e−πn
2xx−3/4[ejφ(x;s0) + e−jφ(x;s0)] dx
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we obtain:

(B.5)

+∞∫
1

e−πn
2xx−3/4ejφ(x;s0) dx =

+∞∫
πn2

e−πn
2xx−1/2x−s0/2 dx

and

(B.6)

+∞∫
1

e−πn
2xx−3/4e−jφ(x;s0) dx =

+∞∫
πn2

e−πn
2xx−1xs0/2 dx.

By using (3.12), we obtain:

(B.7)

+∞∫
1

e−πn
2xx−3/4ejφ(x;s0) dx =

(
1

πn2

)(1−s0)/2
+∞∫
πn2

e−νν(1−s0)/2 dx

and

(B.8)

+∞∫
1

e−πn
2xx−3/4e−jφ(x;s0) dx =

(
1

πn2

)s0/2 +∞∫
πn2

e−ννs0/2−1 dx.

C

Caccioppoli’s theorem:
Let Σ a functional metric space, S a transformation of the Σ → Σ on Σ:

∀ ϕ ∈ Σ, ∃ S[ϕ] ∈ Σ

and T a transformation of the Σ in Σ ′:

∀ (ϕ, S[ϕ]), ∃ T [ϕ] = ϕ− S[ϕ].

If the following conditions are met:

1) S is completely continuous

2) T is locally invertible

3) T trasforms the infinity in the infinity

then the functional equation:

ϕ = S[ϕ]

admits a unique solution.

Let Σ a complex functional metric space. Replacing ϕ with 1/s, we define the distance in Σ:

(C.1) d

(
1

s1
,

1

s2

)
=

∣∣∣∣ 1

s1
− 1

s2

∣∣∣∣
and

(C.2) d

(
S

[
1

s1

]
, S

[
1

s2

])
=

∣∣∣∣S [ 1

s1

]
− S

[
1

s2

]∣∣∣∣ .
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Figure 16: Lipschitz constant - c = 0.126

By applying the Caccioppoli’s theorem extended to the complex field, S is a contraction
mapping if, ∀(s1, s2) ∈ Σ, with s1 6= s2, we have:

(C.3)

∣∣∣∣S [ 1

s1

]
− S

[
1

s2

]∣∣∣∣ ≤ c ∣∣∣∣ 1

s1
− 1

s2

∣∣∣∣
with 0 < c < 1. c is said a Lipschitz constant:

c = sup
∀(s1,s2)∈Σ

d
(
S
[

1
s1

]
, S
[

1
s2

])
d
(

1
s1
, 1
s2

)


Let σ2 = 1− σ1, ρ2 = ρ1 + 1− 2σ1, then c = 0.126, as see in Figure 16. Let:

(C.4) an(s) = π−s/2Γ(s/2, πn2)

and

(C.5) an(1− s) = π−(1−s)/2Γ[(1− s)/2, πn2].

Then

(C.6) S

[
1

s

]
=

+∞∫
1

ψ(x)x(s/2−1) dx =

∞∑
n=1

an(s)

ns

and

(C.7) S

[
1

1− s

]
=

+∞∫
1

ψ(x)x(−s/2−1/2) dx =

∞∑
n=1

an(1− s)
n1−s .

We obtain:

(C.8)

∞∑
n=1

an(s)

ns
+

∞∑
n=1

an(1− s)
n1−s =

1

s
+

1

1− s .
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This is the equation of the auxiliary zeta function in the form generalized and extended
Dirichlet series:

(C.9) L̃[s, a(s)] =

∞∑
n=1

an(s)

ns
.

Therefore (C.8) rewrites:

(C.10) L̃[s, a(s)] + L̃[1− s, a(1− s)] =
1

s
+

1

1− s .
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