
Global existence and boundedness of solutions for a

type of nonlinear integro-differential equations of

third order

T. Ayhan, O. Acan

Abstract. In this article, we consider a particular nonlinear integro-
differential equation of the third order and discuss the continuability and
boundedness of solutions of this equation. Lyapunov’s second method is
used in the proof of the main theorem by building an appropriate Lya-
punov function. The result obtained in this paper contains and improves
some well known results on the third order nonlinear integro-differential
equations in literature. We also provide an example to illustrate the
method.
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1 Introduction

In this paper we discuss the continuability and boundedness of solutions of the third
order nonlinear integro-differential equation of the form

(1.1)
(
σ(x)x

′
)′′

+u (t) Γ
(
x, x

′
)
x
′′

+v (t) Ψ
(
x
′
)

+w (t) Ω (x) =

∫ t

0

∆ (t, s)x
′
(s) ds,

where t ∈ <+, <+ = [0,∞) ; σ is positive and continuously differentiable functions on
<+; u, v, w ∈ C1(<+, (0,∞)); Γ ∈ C(< × <,<+); Ψ ∈ C(<,<+); Ω ∈ C1(<,<) and
∆ (t, s) is countinuous for 0 ≤ t ≤ s <∞. Also x

′
, x
′′

and x
′′′

denote the first, second
and third derivatives of the function x (t) with respect to t.

It is well known that the studies on the qualitative behaviors of solutions, continu-
ability, stability, boundedness, convergence, instability and so forth, are significant in
the theory and applications of integro-differential equations. Therefore, nonlinear
integro-differential equations have been widely studied in many scientific areas such
as, control theory, chemistry, biology, atomic energy, economy, engineering, physics,
information theory, mechanics, medicine and so on. It should be explained that the
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studies concerning the qualitative behaviors of solutions of integro-differential equa-
tions are very few in comparison to that on the nonlinear differential equations of
third order. The qualitative properties of differential and integro-differential equa-
tions of third order have been studied by many authors in the literature. There are
many interesting works on the global existence, boundedness, asymptotic behavior,
periodicity and stability of solutions for nonlinear differential equations of third or-
der. In particular, for some works on the stability and boundedness of solutions of
nonlinear differential equations of third order, the readers can refer to the papers or
books of Ademola and Arawomo [1,2], Ahmad and Rama Mohana Rao [3], Burton
[5,6], Ezeilo [9], Hara [11], Mehri [13], Miller and Michel [14], Omeike [16-17], Oudjedi
et al. [18], Qian [19], Reissig et al. [20], Remili and Oudjedi [21], Remili and Beldjerd
[22], Swick [23], Tunç [26-27], Tunç and Ayhan [28], Yoshizawa [30], Zhang and Yu
[31]. In this regards, It should be noted that, in 1960, Ezeilo [9] investigated the
stability of solutions of the following nonlinear third order differential equation:

x
′′′

+ ψ
(
x, x

′
)
x
′′

+ φ
(
x
′
)

+ g (x) = p(t, x, x
′
, x′′)

Also, in 2010, Omeike [16] took into consideration the following ordinary differential
equation of third order:

x
′′′

+ ψ
(
x, x

′
)
x
′′

+ f
(
x, x

′
)

= p (t) .

The author established sufficient conditions for asymptotic behaviour of solutions of
the equation by building a suitable Lyapunov function.

Recently, in 2014, Remili and Beldjerd [22] obtained sufficient conditions which
guarantee the uniformly asymptotically stable and boundedness of solutions of the
following third order non-autonomous differential equation with delay r > 0 :(

Ψ(x)x
′
)′′

+ a (t)x
′′

+ b (t) Φ(x)x
′
+ c (t) f (x (t− r)) = e(t).

We should note that the continuability and boundedness of solutions of equation
(1.1) have not been discussed in the literature until now. In addition to the results
established in the above mentioned papers, the motivation for our work comes chiefly
from the articles of Baxley [4], Changian et al. [7], Constantin [8], Graef and Tunç
[10], Napoles Valdes [15], Tidke and Dhakne [24], Tidke [25] and Tunç and Ayhan
[29]. In all these studies, it is pointed out that the Lyapunov’s second method is used
as a fundamental tool to reach the results there.

It should be noticed that the problem of defining appropriate Lyapunov functions
remains as an open problem in the literature until now. The main goal of this paper
is to give sufficient conditions which ensure the continuability and boundedness of
solutions of equation (1.1) by defining an appropriate Lyapunov function. On the
other hand, this paper may be beneficial for researchers working on the qualitative
behaviors of solutions of third order integro-differential equations.The result obtained
in this investigation improves the existing results on the third order nonlinear integro-
differential equations in the literature.

We presume that there are positive constants σ0, σ1, u0, u1, n,N, δ0, δ1, δ2, δ3, δ4
and δ5 such that the undermentioned conditions hold:
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(A1) σ0 ≤ σ(x) ≤ σ1,
∫ +∞
−∞ |σ

′(u)| du <∞,

(A2) u0 ≤ u (t) ≤ u1, u
′
(t) ≤ 0,

(A3) n ≤ w(t) ≤ v(t) ≤ N, v′ (t) ≤ w′ (t) ≤ 0,

(A4) Ω(0) = 0, Ω(x)
x ≥ δ0, ( x 6= 0), |Ω′(x)| ≤ δ1,

(A5) Ψ(0) = 0 and 0 < δ2 ≤ Ψ(y)
y ≤ δ3, (y 6= 0),

(A6) δ4 ≤ Γ (x, y) ≤ δ5, yΓx (x, y) ≤ 0,

(A7) max
(
ασ0

2

∫ t
0
|∆ (t, s)| ds+

∫∞
t
|∆ (u, t)| du

)
≤ R.

2 Preliminaries

Firstly, we give a well known preliminary result which will be used in the proof of our
main result.

Consider the non-autonomous differential system

(2.1)
dx

dt
= F (t, x)

where x is an n− vector, t ∈ [0,∞). Suppose that F (t, x) is continuous in (t, x) on
D, where D is a connected open set in <×<n . Now, we give the following theorem.

Theorem 2.1. Let F ∈ C (D) and |F | ≤M on D. Suppose that ϕ is a solution
of (2.1) on the interval j = (α, β) such that the following conditions hold:

(i) The two limits limt→α+ ϕ (t) = ϕ (α+) and limt→β− ϕ (t) = ϕ (β−) exist,

(ii) (α,ϕ (α+)) (respectively, (β, ϕ (β−))) is in D.

Then the solution ϕ can be continued to the left pass the point t = α (respectively,
to the right pass the point t = β).

Proof. See Hsu [12]. �

3 The main result

Now we give the following theorem as the main result.

Theorem 3.1. Presume that conditions (A1)− (A7) hold. If

Nδ1
σ0

+
R

σ2
0

≤ αnδ2
σ2

1

, α+
σ1R

ασ0
≤ u0δ4,

δ1 < α ≤ σ0 and σ1 ≤ δ2.

Then all the solutions of (1.1) are continuable and bounded.
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Proof. We use the undermentioned differential system which is equivalent to (1.1),

x
′

=
y

σ(x)
,

y
′

= z,

z
′

=

∫ t

0

∆ (t, s)
y(s)

σ(x(s))
ds− u (t) Γ

(
x,

y

σ(x)

)
z

σ(x)

+
u (t)σ

′
(x)

σ3(x)
Γ

(
x,

y

σ(x)

)
y2 − v (t) Ψ

(
y

σ(x)

)
− w (t) Ω (x) .(3.1)

To prove the Theorem, we define a continuously differantiable Lyapunov function
V (t) = V (t, x (t) , y (t) , z (t)) by

(3.2) V (t) = e−
ρ(t)
ε U (t, x (t) , y (t) , z (t)) ,

where ε is a positive constant which will be determine later,

ρ(t) =

∫ t

0

|ϕ(s)| ds =

∫ t

0

∣∣∣∣x′(s)σ′(x(s))

σ2(x(s)

∣∣∣∣ ds
=

∫ α2(t)

α1(t)

∣∣∣∣ σ′(u)

σ2(u)

∣∣∣∣ du ≤ 1

σ2
0

∫ +∞

−∞
|σ′(u)| du <∞,

for ϕ(t) = x′(t)σ′(x(t))
σ2(x(t) , α1(t) = min {x(0), x(t)} , α2(t) = max {x(0), x(t)} and

U (t) = U (t, x (t) , y (t) , z (t)) = αw (t)

∫ x

0

Ω (u) du+ w (t) Ω (x) y

+v(t)σ(x)

∫ y
σ(x)

0

Ψ(τ)dτ +
1

2
z2 +

α

σ(x)
yz

+αu(t)

∫ y
σ(x)

0

Γ(x, τ)τdτ +

∫ t

0

∫ ∞
t

|∆ (u, s)| y2(s)

σ2 (x(s))
duds.(3.3)

Further, since
∫ t

0

∫∞
t
|∆ (u, s)| y2(s)

σ2(x(s))duds is non negative, from the definition of U (t)

in (3.3), we get

U (t) ≥ w (t)

(
α

∫ x

0

Ω (u) du+ Ω (x) y +
v(t)

w (t)
σ(x)

∫ y
σ(x)

0

Ψ(τ)dτ

)

+
1

2
z2 +

α

σ(x)
yz + αu(t)

∫ y
σ(x)

0

Γ(x, τ)τdτ.
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From the assumptions (A1)− (A6) we obtain

U (t) ≥ w (t)

 ∫ x
0

(
α− Ω

′
(u)
)

Ω (u) du+ 1
2 (Ω (x) + y)

2

+σ(x)
∫ y
σ(x)

0

(
Ψ(τ)
τ − σ(x)

)
τdτ


+

1

2

(
z +

α

σ(x)
y

)2

+ αu(t)

∫ y
σ(x)

0

(
Γ(x, τ)− α

u(t)

)
τdτ

≥ w (t)

(∫ x

0

(α− δ1)
Ω (u)

u
udu+ σ(x)

∫ y
σ(x)

0

(δ2 − σ1) τdτ

)

+
1

2

(
z +

α

σ(x)
y

)2

+ αu(t)

∫ y
σ(x)

0

(
δ4 −

α

u0

)
τdτ.

Thus, if δ1 < α < u0δ4 and σ1 ≤ δ2, we have

U (t) ≥ n (α− δ1) δ0
2

x2 +
1

2

(
z +

α

σ(x)
y

)2

+
α (u0δ4 − α)

2σ2
1

y2.

From the terms included in the last inequality, it is easy to see that there exists a
sufficiently small positive δ6 constant such that

(3.4) U (t) ≥ δ6
(
x2 + y2 + z2

)
,

which implies V (t) ≥ 0. Therefore, the function V (t) defined by the expression (3.2)
is positive definite.

Let (x (t) , y (t) , z (t)) be any solution of (1.1). Calculating the time derivative of
the function U (t) , along the trajectories of system (3.1), we obtain

U
′
(t) = αw

′
(t)

∫ x

0

Ω (u) du+ w
′
(t) Ω (x) y + v

′
(t)σ(x)

∫ y
σ(x)

0

Ψ(τ)dτ

+
w (t)

σ(x)
Ω
′
(x) y2 + ϕ(t)v(t)σ2(x)

∫ y
σ(x)

0

Ψ(τ)dτ

−ϕ(t)v(t)σ(x)Ψ(
y

σ(x)
)y + z

∫ t

0

∆ (t, s)
y(s)

σ(x(s))
ds

−u (t)

σ(x)
Γ

(
x,

y

σ(x)

)
z2 + u (t)ϕ(t)Γ

(
x,

y

σ(x)

)
zy

−αϕ(t)yz +
α

σ(x)
z2 +

αy

σ(x)

∫ t

0

∆ (t, s)
y(s)

σ(x(s))
ds

−αv (t)

σ(x)
Ψ

(
y

σ(x)

)
y + αu

′
(t)

∫ y
σ(x)

0

Γ(x, τ)τdτ

+
αu(t)

σ(x)
y

∫ y
σ(x)

0

Γx(x, τ)τdτ +
y2(t)

σ2 (x(t))

∫ ∞
t

|∆ (u, t)| du

−
∫ t

0

|∆ (t, s)| y2(s)

σ2 (x(s))
ds.
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It is obvious that

U
′
(t) = w

′
(t)

(
α

∫ x

0

Ω (u) du+ Ω (x) y +
v
′
(t)

w′ (t)
σ(x)

∫ y
σ(x)

0

Ψ(τ)dτ

)

+

w (t)

σ(x)
Ω
′
(x)− αv (t)

σ(x)

Ψ
(

y
σ(x)

)
y

 y2

+ϕ(t)

(
v(t)σ2(x)

∫ y
σ(x)

0

Ψ(τ)dτ − v(t)σ(x)Ψ(
y

σ(x)
)y

)

+ϕ(t)

(
u (t) Γ

(
x,

y

σ(x)

)
− α

)
zy +

1

σ(x)

(
α− u (t) Γ

(
x,

y

σ(x)

))
z2

+z

∫ t

0

∆ (t, s)
y(s)

σ(x(s))
ds+

αy

σ(x)

∫ t

0

∆ (t, s)
y(s)

σ(x(s))
ds

+αu
′
(t)

∫ y
σ(x)

0

Γ(x, τ)τdτ +
αu(t)

σ(x)
y

∫ y
σ(x)

0

Γx(x, τ)τdτ

+
y2(t)

σ2 (x(t))

∫ ∞
t

|∆ (u, t)| du−
∫ t

0

|∆ (t, s)| y2(s)

σ2 (x(s))
ds.

Thus, from the assumptions (A1) − (A7) and the inequality |ab| ≤ 1
2

(
a2 + b2

)
, we

obtain the following inequality

U
′
(t) ≤ w

′
(t)

 ∫ x
0

(
α− Ω

′
(u)
)

Ω (u) du+ 1
2 (Ω (x) + y)

2

+σ(x)
∫ y
σ(x)

0

(
Ψ(τ)
τ − σ(x)

)
τdτ


+

(
Nδ1
σ0
− αnδ2

σ2
1

)
y2 + |ϕ(t)| (Nδ3 − nδ2) y2

+ |ϕ(t)| (u1δ5 − α) |yz|+
(
α− u0δ4

σ1
+

1

2

∫ t

0

|∆ (t, s)| ds
)
z2

+
1

σ2
0

(
ασ0

2

∫ t

0

|∆ (t, s)| ds+

∫ ∞
t

|∆ (u, t)| du
)
y2

+

(
α

2σ0
− 1

2

)∫ t

0

|∆ (t, s)| y2(s)

σ2 (x(s))
ds

≤ w
′
(t)

(∫ x

0

(α− δ1)
Ω (u)

u
udu+ σ(x)

∫ y
σ(x)

0

(δ2 − σ1) τdτ

)

+

(
Nδ1
σ0
− αnδ2

σ2
1

+
R

σ2
0

)
y2 +

(
α− u0δ4

σ1
+

R

ασ0

)
z2

+ |ϕ(t)|
(
(Nδ3 − nδ2 + u1δ5 − α) y2 + (u1δ5 − α) z2

)
+

(
α

2σ0
− 1

2

)∫ t

0

|∆ (t, s)| y2(s)

σ2 (x(s))
ds.

If
Nδ1
σ0

+
R

σ2
0

≤ αnδ2
σ2

1

, α+
σ1R

ασ0
≤ u0δ4
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δ1 < α ≤ σ0 and σ1 ≤ δ2,

then we have

(3.5) U
′
(t) ≤ |ϕ(t)| δ7

(
y2 + z2

)
,

where δ7 = Nδ3 − nδ2 + u1δ5 − α.

It is now evident that the time derivative of the function V (t) defined by (3.2)
throughout any solution of system (3.1) is as follows

V
′
(t) = e−

ρ(t)
ε

(
−ϕ (t)

ε
U (t, x (t) , y (t) , z (t)) + U

′
(t, x (t) , y (t) , z (t))

)
.

Thus, using (3.4), (3.5) and taking ε = δ6
δ7
, the last equality becomes

V
′
(t) ≤ e−

ρ(t)
ε

(
− |ϕ (t)| δ7(y2 + z2) + |ϕ(t)| δ7

(
y2 + z2

))
= 0,

which implies V
′
(t) ≤ 0.

Since all the functions in equation (1.1) are continuous, by the Cauchy-Peano
existence theorem, then it is clear that there exists at least one solution of equation
(1.1) defined on [t0, t0 + a) for some a > 0. We want to demonstrate that the solution
can be expanded to the entire interval [t0,∞). We suppose, on the contrary, that
there is a first time T <∞ such that the solution exists on [t0, T ) and

lim
t→T−

(|x(t)|+ |y(t)|+ |z(t)|) =∞.

Let (x(t), y(t), z (t)) be such a solution of system (3.1) under initial condition
(x0, y0, z0) . Since V (t) is positive definite and decreasing function on the trajectories
of system (3.1), we can say that V (t) is bounded on [t0, T ) , that is,

V (x(T ), y(T ), z (T )) ≤ V (t0, x0, y0, z0) = V0.

Hence, it follows from (3.2) and (3.4) that

x2(T ) + y2(T ) + z2(T ) ≤ V0

K
,

where K = δ6e
− ρ(T )

ε . The last inequality implies that |x(t)| , |y(t)| and |z(t)| are
bounded as t → T−. Therefore, we conclude that T < ∞ is not possible, we must
have T =∞. This finishes the proof of the theorem. �

Example. We take into consideration the undermentioned nonlinear integro-
differential equation of third order

((
5 +

1

1 + x2

)
x
′
)′′

+

(
4 +

1

1 + t

)(
2 +

1

1 + y2

)
x
′′

+

(
8 +

1

1 + t

)(
10y +

y

1 + y2

)
+

(
8 +

1

2 + t

)(
2x+

x

1 + x2

)
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(3.6) =

∫ t

0

t

(50t2 + 1)
2x
′ (s) ds.

When we compare (3.6) with (1.1), the following expressions are obtained.

σ0 = 5 ≤ σ (x) = 5 + 1
1+x2 ≤ 6 = σ1,

∫ +∞
−∞ |σ

′(u)| du ≤
∫ +∞
−∞

∣∣∣ 2u
(1+u2)2

∣∣∣ du = 0 <∞,

u0 = 4 ≤ u (t) = 4 + 1
1+t ≤ 5 = u1, u

′
(t) = − 1

(1+t)2
≤ 0,

v (t) = 8 + 1
1+t , v

′
(t) = − 1

(1+t)2
, w (t) = 8 + 1

2+t , w
′
(t) = − 1

(2+t)2
,

n = 8 ≤ w(t) ≤ v(t) ≤ 9 = N, v
′
(t) ≤ w′(t) ≤ 0,

δ4 = 2 ≤ Γ
(
x, x

′
)

= 2 + 1
1+y2 ≤ 3 = δ5, yΓx

(
x, x

′
)

= 0,

Ψ (0) = 0, δ2 = 10 ≤ Ψ(y)
y =

(
10 + 1

1+y2

)
≤ 11 = δ3,

h (0) = 0, h(x)
x = 2 + 1

1+x2 ≥ 2 = δ0, (x 6= 0) , |h′(x)| ≤ 3 = δ1,

ασ0

2

t∫
0

|∆ (t, s)| ds+

∞∫
t

|∆ (u, t)| du ≤ 25

2

t∫
0

t

(50t2 + 1)2
ds+

∞∫
t

u

(50u2 + 1)2
du ≤ 1

100
= R

Thus, all assumptions of Theorem 3.1 hold. Therefore, we can finalize that all
solutions of equation (3.6) are continuable and bounded.

Also the trajectories of solutions of equation (3.6) are shown in Figure 1.

Acknowledgements. The authors are very grateful to the referee and the edi-
tor(s) for their valuable comments and suggestions.
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[28] C. Tunç, T. Ayhan, New Boundedness Results For a Kind of Nonlinear Differ-
ential Equations of Third Order, Journal of Computational Analysis and Appli-
cations, 13, 3 (2011), 477-484.
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