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Abstract. The Physics of spinor Lorentz group significantly differs from
the one based on the orthogonal Lorentz group L↑↓

+−
, and only experiments

may decide on this problem. In this context, the study of the fermion par-
ity problem based on investigating possible single-valued representations
of spinor coverings of the extended Lorentz group shows that P -parity and
T -parity do not exist as separate concepts. Instead of this, only some uni-
fied concept of (PT )-parity can be determined in group-theoretical terms.

The extension procedure which describes a space with spinor structure is
performed by relying on cylindrical parabolic coordinates. This is done
by expanding the region G(t, u, v, z) G̃(t, u, v, z), so that instead of the
half-plane (u, v > 0) the entire plane (u, v) is used, while considering new
identification rules for the boundary points. In the Cartesian picture, this
procedure corresponds to taking the two-sheet surface (x′, y′) ⊕ (x′′, y′′)
instead of the one-sheet surface (x, y).

The solutions of the Klein–Fock–Gordon equation classify into four types:
Ψ++, Ψ−−, Ψ+−, Ψ−+. The first two ones, Ψ++ and Ψ−−, provide
single-valued functions of the vector space points, whereas the last two,
Ψ+−,Ψ−+, have discontinuities in the frame of vector spaces, and there-
fore they are be discarded in this model. However, all the four types of
functions are continuous ones, while regarded in the spinor space. It is
established that all the solutions Ψ++,Ψ−−, Ψ+− and Ψ−+, are orthog-
onal to each other, provided that integration is done over the extended
region of integration which covers the spinor space. Similar results are
obtained for the Dirac equation. The solutions of the type (−−), (++)
are single-valued in the space with vector structure, whereas the solutions
of the types (−+), (+−) are not single-valued in the space with vector
structure, so the solutions of types (−+) and (+−) must be discarded.
However, they are valid solutions in the space with spinor structure.

M.S.C. 2010: 35Q41, 81Q05, 15A66, 35Q60, 22E43.
Key words: Dirac equation; Klein–Fock–Gordon equation; spinor structures; parabolic
cylindric coordinates; spinor Lorentz group; spinor coverings.

Applied Sciences, Vol.18, 2016, pp. 84-107.
c© Balkan Society of Geometers, Geometry Balkan Press 2016.



The Dirac equation in parabolic cylindric coordinates... 85

Introduction

In the literature [1–38], there exist three different approaches for describing the spinor
Lorentz group, whose intrinsic essence is similar: a space-time spinor structure (Pen-
rose, Rindler et al.); the Hopf bundle and the Kustaanheimo-Stiefel bundles.

In Hopf’s technique, one uses only complex 2-spinors (ξ) and their conjugates
(ξ∗), instead of real-valued 4-vector (tensor) objects. In the Kustaanheimo-Stiefel
approach, there are used four real-valued coordinates, the real and imaginary parts
of 2-spinor components.

The formalism developed in the present work exploits as well the possibilities given
by spinors to construct 3-vectors; however, the emphasis is put on doubling the set of
spacial points, so that we get an extended space model. In such a space, instead of the
2π-rotation, the 4π-rotation is considered - which transfers the space into itself. The
procedure of extending the set of manifold points is achieved much easier by using
curvilinear coordinates.

Within the framework of applications of spinor theory to Quantum Mechanics,
we discuss two actual issues: exact linear representations for spinor coverings of the
full Lorentz group and internal space-time parity of a relativistic fermion; the role
of spinor space structure in classifying solutions of scalar and spinor wave equations
specified for cylindric parabolic coordinates.

1 The concept of relativistic fermion parity

To study the problem of fermion parity, we will use 4-spinors instead of 2-spinors.
An additional motivation for this approach is that among 4-spinors there exist the
real-valued ones – the so-called Majorana 4-spinors; moreover, in this way we shall
be able to describe discrete symmetries by means of linear transformations1.

The obtained results will provide the grounds for a new discussion of the old
fermion parity problem of investigating possible linear single-valued representations
of spinor coverings of the extended Lorentz group. It is shown that, in the frame of
this theory, P -parity and T -parity for a fermion do not exist as separate concepts;
instead of these, only some unified concept of (PT )-parity can be described in a
group-theoretical language.

1.1 The spin covering for the full Lorentz group L
↑↓

+−

We attach to the proper orthochronous Lorentz matrices L(k, k∗) = L(−k,−k∗):

L b
a (k, k∗) = δ̄ba(−δbck

nk∗n + kck
b∗ + k∗ck

b + iǫ bmn
c kmk∗n),

the following two linear operations

P : L(P )b
a = +δ̄ba ; T : L(T )b

a = −δ̄ba,

1We shall mainly consider only the problem of the accurate description of the single-valued repre-

sentations of four different spinor groups, each of them covering the full Lorentz group L
↑↓
+−, including

the P and T -reflections.



86 E. M. Ovsiyuk, A.N. Red’ko, V. Balan, V. M. Red’kov

where δ̄ba = diag(+1,−1,−1,−1), of which one readily produces the full Lorentz group
L↑↓

+−
. The commutation rules between L b

a (k, k∗) and the discrete elements P, T are

δ̄ba L c
b (k, k∗) = L b

a (k̄∗ , k̄) δ̄cb .

The group L↑↓

+−
has four types of vector representations:

T b
a (L) = f(L) L b

a , L ∈ L↑↓

+−
,

namely
f1(L) = 1 , f2(L) = det(L) ,

f3(L) = sgn (L 0
0 ) , f4(L) = det(L) sgn (L 0

0 ) .

We emphasize that the above-described extension of the group L b
a (k, k∗) by adding

the two discrete operations P and T is not an extension of the spinor group SL(2,C):

actually this is just an expansion of the orthogonal group L↑
+. From the spinor point

of view, the operations P and T are transformations which act on the space of 2-rank
spinors, and not on the space of 1-rank spinors. Evidently, a more comprehensive
study of the P, T -symmetry can be done in the framework of first-rank spinors, when
one extends the covering group SL(2,C) by adding spinor discrete operations.

Now we can start solving the following task. A covering group for the total Lorentz
group can be constructed by adding two specific 4 × 4-matrices to the known set of
4-spinor transformations of the group SL(2,C),

S(k, k̄∗) =

(
B(k) 0
0 B(k̄∗)

)
∈ S̃L(2,C).

These two new matrices are taken from the set

M = ( 0 I
I 0 ) , M ′ = iM, N =

(
0 −iI

+iI 0

)
, ′N = iN.

Having added any two elements of the four ones, we provide the full extension of
the group S̃L(2,C), by means of two new operations only. Also, we note that since
the group L(2,C) contains −I, the extension of the group by any two elements of
{−M,−M ′,−N,−′N}, leads to the same result. However, if one takes any other
phase factor, different from +1,−1,+i,−i for M,M ′, N , ′N , then this will result in
substantially new extended groups.

The multiplication table for these four discrete elements is

M M ′ N ′N

M ( I 0
0 I ) ( iI 0

0 iI )
(
+iI 0
0 −iI

) (−I 0
0 +I

)

M ′ (
+iI 0
0 +iI

) (−I 0
0 −I

) (−I 0
0 +I

) (−iI 0
0 +iI

)

N
(−iI 0

0 +iI

) (
+I 0
0 −I

) (
+I 0
0 +I

) (
+iI 0
0 +iI

)

′N
(
+I 0
0 −I

) (
+iI 0
0 −iI

) (
+iI 0
0 +iI

) (−I 0
0 −I

)
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Hence we obtain six covering groups,

GM = { S(k, k̄∗) ⊎M ⊎M ′ } , GN = { S(k, k̄∗) ⊎N ⊎ ′N } ,

G′ = { S(k, k̄∗) ⊎M ′ ⊎N } , ′G = { S(k, k̄∗) ⊎′ N ⊎M } ,

G = { S(k, k̄∗) ⊎M ⊎N } , ′G′ = { S(k, k̄∗) ⊎M ′ ⊎′ N } ,

with the corresponding multiplication tables

GM : M2 = +I , M
′2 = −I , MM ′ = (M ′)M ;

GN : N2 = +I , ′N2 = −I , N(′N) = (′N)N ;

G′ : M
′2 = −I , N2 = +I , (M ′)N = −N(M ′) ;

′G : (′N)2 = −I , M2 = +I , (′N)M = −M(′N) ;
G : M2 = +I , N2 = +I , MN = −NM ;
′G′ : (M ′)2 = −I , N

′2 = −I , (M ′)(′N) = −(′N)(M ′) ,

and

F S(k, k̄∗) = S(k̄∗, k) F , F ∈ {M,M ′, N,′ N} .

One can notice that the multiplication laws for the groups GM and GN coincide;
the same happens for G′ and ′G. This implies that the groups GM and GN (and
respectively G′ and ′G) represent the same abstract group. Indeed, it is readily
verified that GM and GN (and, also, G′ and ′G), can be mutually transformed by
similarity transformations:

GN = A GM A−1, A S(k, k̄∗) = S(k̄∗, k) A,

A M A−1 = +N, A M ′ A−1 = +′N, A = const ·
(−iI 0

0 +I

)
,

′G = A G′ A−1, A S(k, k̄∗) = S(k̄∗, k) A ,

A M ′ A−1 = +′N, A N A−1 = −M, A = const ·
(−iI 0

0 +I

)
.

In other words, we define here only four different covering groups. Since in literature
all the six variants are discussed, we shall accordingly consider them all.

1.2 Representations of the extended spinor groups

We shall construct now the exact linear representations of the groupsGM , GN , G′, ′G,
G, ′G′. It suffices to consider in detail only one group; for convenience, let this be
GM . Its multiplication table is

M2 = −I , M
′2 = −I , M M ′ = M M ,

F S(k, k̄∗) = S(k̄∗, k) F , ( F = M ,M ′ ) ,

(k1, k̄
∗
1)(k2, k̄

∗
2) = (〈k1, k2〉, 〈k̄∗1 , k̄∗2〉) .(1.1)

where the symbol 〈 , 〉 stands for the known multiplication rule in the group SL(2,C):

〈k1, k2〉 = (k01k
0
2 +

~k1~k2; ~k1k
0
2 + k02

~k1 + i[~k1~k2]) .
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Let us look for the solution of the problem of constructing the simplest irreducible
representations of the spinor groups as mappings of the form

(1.2) T (g) = f(g) g , g ∈ GM , f(g1) · f(g2) = f(g1 · g2)

where f(g) is a numerical function on the group GM . Substitution of (1.2) into (1.1)
yields

[f(M)]2 = f(I) , [f(M ′)]2 = f(−I) , f(S(k, k̄∗)) = f(S(k̄∗, k)) ,

f(S(k1,~k
∗
1)) f(S(k2),

~k∗2)) = f(S(〈k1, k2〉 , 〈~k∗1 , ~k∗2〉)) .

There exist four different such functions fi, described by:

GM f1(g) f2(g) f3(g) f4(g)

S(k, k̄∗) +1 +1 +1 +1
M +1 −1 +1 −1
M ′ +1 −1 −1 +1,

which provide four representations Ti(g) of the group GM .

In the same manner, one can construct the analogous representation Ti(g) of the
remaining five groups. All these are described by the following table

g T1(g) T2(g) T3(g) T4(g)

S(k, k̄∗) S(k, k̄∗) S(k, k̄∗) S(k, k̄∗) S(k, k̄∗)
GM M +M −M +M −M

M ′ +M ′ −M ′ −M ′ +M ′

GN N +N −N +N −N
′N +′N −′N −′N +′N

G′ M ′ +M ′ −M ′ +M ′ −M ′

N +N −N −N +N

′G ′N +′N −′N +′N −′N
M +M −M −M +M

G M +M −M +M −M
N +N −N +N −N

′G′ M ′ +M ′ −M ′ +M ′ −M ′
′N +′N −′N −′N +′N.

For each of these groups, one can ask whether the four representations Ti(g) are
equivalent, or not. With the help of the relations

F = const
(−I 0

0 +I

)
, F S(k, k̄∗) F−1 = S(k, k̄∗) ,

F M F−1 = −M, F M ′ F−1 = −M ′ F ,

N F−1 = −N, F ′N F−1 = −′N,
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it is easily follows that the type T2(g) is equivalent to the type T1(g), as well, T4(g)
is equivalent to T3(g):

T2(g) = F T1(g) F
−1 , T4(g) = F T3(g) F

−1 .

Summarizing, for each of the six groups, only two non-equivalent representations
g → T (g) = f(g) g are possible:

T1(g) ∼ T2(g) , T3(g) ∼ T4(g) .

Evidently, this result does not depend on the explicit realization of the discrete spinor
transformations.

The above study of the exact linear representations of the extended spinor groups
leads to a new concept of a space-time intrinsic parity of a fermion. In group-
theoretical terms, P -parity and T -parity do not have any sense; instead, only their
joint characteristic, which might be called (PT )-parity, can be defined in the group-
theoretic framework.

1.3 Representations of the coverings for partly extended groups

L
↑

+−
and L

↑↓

+

Now we are going to consider the problem of linear representations of the spinor groups
that cover the partly extended Lorentz groups L↑

+−
and L↑↓

+
(improper orthochronous

and proper non-orthochronous, respectively). Such groups can be constructed by
adding any matrix from {M,M ′, N,′ N}.

The case of the orthogonal group L↑

+−
leads to

T1 = T3 ; L =⇒ L = (sgn L 0
0 ) L,(1.3)

T2 = T4 ; L =⇒ L = (detL)L = (detL)(sgn L 0
0 ) L ,(1.4)

and the case of the group L↑↓

+
is characterized by

T1 = T4 ; L =⇒ L = (detL)(sgn L 0
0 ) L ,(1.5)

T2 = T3 ; L =⇒ L = (detL) L = (sgn L 0
0 ) L .(1.6)

With the use of one additional discrete operation, one can determine four extended
spinor groups:

S̃L(2,C)M = { S(k, k̄∗) ⊕ M} and so on .(1.7)

We conclude that the extended groups S̃L(2,C)M , S̃L(2,C)N turn out to be iso-

morphic. Analogously, S̃L(2,C)M ′ is isomorphic to S̃L(2,C)′N . Each of them covers
both L↑↓

+
and L↑

+−
,

S̃L(2,C)M ∼ S̃L(2,C)N , S̃L(2,C)M ′ ∼ S̃L(2,C)′N .(1.8)

Now, we shall list the simplest representations of these groups. The obtained result is
as follows: all the representations Ti(g) from above, while confining them to the sub-
groups SL(2,C)M(N) and SL(2,C)M ′,(′N), lead to representations which mutually
change by a similarity transformation. In other words, in fact there exists only one
representation of these partly extended spinor groups. This may be understood as
the impossibility to determine any group-theoretical parity concept (P or T ) within
the limits of partly extended spinor groups.
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1.4 On reducing spinor groups to a real form

We have considered above all the spinor groups GM ∼ GN , G′ ∼′ G , G , ′G′ as
possible group covering candidates for the full Lorentz group L↑↓

+−
. It is desirable to

formulate some extra arguments in order to choose only one spinor group as a natural
(physical) covering.

We note that in the bispinor space, a special basis can be found by using the
bispinor wave function

ΦM (x) = ϕ(x) + iξ(x) ,

which transforms under the action of the group SL(2,C) by means of real (4 × 4)-
matrices. Therefore, the real 4-spinors ϕ(x) and ξ(x), two constituents of the complex-
valued spinor ΦM (x), transform as independent irreducible 4-dimensional real-valued
spinor representations. In the physical context, this reads as a group-theoretical
permission to exist real Majorana fermions.

But these arguments rely only on continuous SL(2,C)-transformations, while the
idea is to extend them to discrete operations too. So we must find the answer to
the question of which of the extended spinor groups of matrices can be reduced to
real-valued forms. To this goal, we write down the bispinor matrix a the form that
does not depend on the randomly chosen basis2:

S = 1
2 (k0 + k∗0) +

1
2 (k0 − k∗0)γ

5 + (k1 + k∗1)σ
01 + (k1 − k∗1)iσ

23

+(k2 + k∗2)σ
02 + (k2 − k∗2)iσ

31 + (k3 + k∗3)σ
03 + (k3 − k∗3)iσ

13.

Any Majorana basis satisfies the relations

(γa
M )∗ = −γa

M , (γ5
M )∗ = −γ5

M , (σab
M )∗ = σab

M =⇒ S∗ = S .

It remains to write down all the used discrete (matrix) operations M,M ′N,′ N in
terms of Dirac matrices:

M = +γ0 , M ′ = +i γ0 , N = +i γ5 γ0 , ′N = −γ5 γ0 .

In Majorana frames, the (continuous and discrete) group operations obey the following
properties

S∗ = S , M∗ = −M , (M ′)∗ = +M ′ , N∗ = −N , (′N)∗ = +′N.

Thus, the six spinor groups behave under complex conjugation as indicated below

GM GN G′ ′G G ′G′

S∗ = S S∗ = S S∗ = S S∗ = S S∗ = S S∗ = S
M∗ = −M N∗ = −N M ′∗ = +M ′ ′N∗ = +′N M∗ = −M M ′∗ = +M
(M ′)∗ = M ′ ′N∗ = +′N N∗ = −N M∗ = −M N∗ = −N ′M∗ =′ M.

Only the group ′G′ can be reduced to a real-valued form, and only this group allows
real-valued spinor representations, namely the Majorana fermions3.

2We employed above the Weyl basis.
3This variant coincides with the known in the literature Racah group.
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2 Space with spinor structure and solutions of the

Klein–Fock–Gordon equation

2.1 Cylindric parabolic coordinates

Let us start with the parabolic cylindrical coordinates

x = (u2 − v2)/2 , y = u v , z = z.

In order to cover the vector space (x, y, z), it suffices to make a choice out of the
following four possibilities:

v = +
√

−x+
√
x2 + y2 , u = ±

√
+x+

√
x2 + y2 ,

v = −
√

−x+
√
x2 + y2 , u = ±

√
+x+

√
x2 + y2 ,

v = ±
√

−x+
√
x2 + y2 , u = +

√
+x+

√
x2 + y2 ,

v = ±
√

−x+
√
x2 + y2 , u = −

√
+x+

√
x2 + y2 .

For definiteness, let us use the first variant from the above:

v = +

√
−x+

√
x2 + y2 , u = ±

√
+x+

√
x2 + y2 .

which is illustrated in Fig. 1.

✲ u

✻
v

�
��

�
��

�
��

�
��

�
��

�
��

�
��

Fig. 1. The region G(u, v), used to parameterize the vector model.

The correspondence between the points (x, y) and (u, v) can be illustrated by the
following formulas and Fig. 2:

u = k cosφ, v = k sinφ, φ ∈ [ 0, π ] ;

x = (k2/2) cos 2φ, y = (k2/2) sin 2φ, 2φ ∈ [0, 2π].

✲ x

✻y

B1

B2

A1

A2

✲ u

✻v

�
�

��

❅
❅

❅❅

A1A2

B1B2∗ ∗

r

r
❞ ✄ �✄ �

Fig. 2. The mapping G(x, y) =⇒ G(u, v); identification rules
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✲
y1

✻
y2

❜r r r r r r r r✡ ✠✚ ✙✫ ✪✫ ✪

Fig. 3. Parabolic cylindrical coordinates

In Fig. 3, the identified points on the boundary are connected by lines, and the domain
G(y1, y2)

y3 (at arbitrary y3) ranging in the half-plane (y1, y2) covers the whole vector
plane (x1, x2)

x3 .

When turning to the case of spinor space, we shall see the complete symmetry
between the coordinates u and v; they relate to the Cartesian coordinates of the
extended model (x, y, z)⊕ (x′, y′, z′) through the formulas (see Fig. 4.):

v = ±
√

−x+
√
x2 + y2 , u = ±

√
+x+

√
x2 + y2

✲ u

✻
v

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

Fig. 4. G̃(u, v) covering the spinor space

The metric of space-time in parabolic cylindrical coordinates has the form

dS2 = c2dt2 − (u2 + v2)(du2 + dv2)− dz2 .

2.2 Solutions of the Klein–Fock–Gordon equation and spinors

Let us consider the KFG equation

[
− 1

c2
∂2

∂t2
+

∂2

∂z2
+

1

u2 + v2

(
∂2

∂u2
+

∂2

∂v2

)
− m2c2

~2

]
Ψ = 0.(2.1)

After separating the variables by the substitution

Ψ(t, u, v, φ) = e−iǫt/~ eipz/~ U(u) V (v),

one deduces
[
1

U

d2U

du2
+

(
ǫ2

~2c2
− m2c2

~2
− p2

~2

)
u2

]
+

[
1

V

d2V

dv2
+

(
ǫ2

~2c2
− m2c2

~2
− p2

~2

)
v2
]
= 0 .(2.2)
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In the following, we shall use the notation

λ2 =

(
ǫ2

~2c2
− m2c2

~2
− p2

~2

)
, [λ] =

1

meter
.(2.3)

By introducing two separation constants, a and b (a + b = 0), we can derive from
(2.2) two distinct equations:

d2U

du2
+ ( λ2 u2 − a ) U = 0 ,

d2V

dv2
+ ( λ2 v2 − b ) V = 0 .(2.4)

The transition in equations (2.4) to the canonical form is obtained by using dimen-
sionless variables:

√
2λ u → u ,

a

2λ
→ a ,

√
2λ v → v ,

b

2λ
→ b .(2.5)

The equations (2.4) will take the form:

d2U

du2
+

(
u2

4
− a

)
U = 0 ,

d2V

dv2
+

(
v2

4
+ a

)
V = 0 .(2.6)

The solutions of these similar equations can be found in series form:

F (ξ) = c0 + c1ξ + c2ξ
2 +

∑

k=1,2,...

c2k+1ξ
2k+1 +

∑

k=1,2,...

c2k+2ξ
2k+2.(2.7)

We note that in (2.7) the terms of even and odd powers of ξ are separated.
After tedious calculation, one derives the following two independent groups of

recurrent relations:

for even powers

ξ0 : 2 c2 − α c0 = 0 ,

ξ2 : c4 4× 3 + c0
4 − α c2 = 0 ,

ξ4 : c6 6× 5 + c2
4 − α c4 = 0 ,

n = 3, 4, ..., ξ2n : c2n+2(2n+ 2)(2n+ 1) + 1
4 c2n−2 − α c2n = 0 ;

(2.8)

for odd powers

ξ1 : c3 3× 2− α c1 = 0 ,

ξ3 : c5 5× 4 + c1
4 − α c3 = 0 ,

n = 3, 4, ..., ξ2n−1 : c2n+1(2n+ 1)(2n) + 1
4 c2n−3 − α c2n−1 = 0 .

(2.9)

So one can construct the following two linearly independent solutions

even

F1(ξ
2) = 1 + a2

ξ2

2!
+ a4

ξ4

4!
+ ...,

a2 = α , a4 = α2 − 1

2
, c6 = α3 − 7

2
α ,

n = 3, 4, ... : a2n+2 = α a2n − (2n)(2n− 1)

4
a2n−2 ;(2.10)
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odd

F2(ξ) = ξ + a3
ξ3

3!
+ a5

ξ5

5!
+ ... ,

a3 = α , a5 = α2 − 3

2
,

n = 3, 4, ... : a2n+1 = α a2n−1 − (2n− 1)(2n− 2)

4
a2n−3 .(2.11)

2.3 Manifestation of vector and spinor space structures

Having combined the two previous solutions F1 and F2, we can obtain four types of
wave functions4

(2.12)

(even⊗ even) : Φ++ = E(a, u2) E(−a, v2),

(odd⊗ odd) : Φ−− = O(a, u) O(−a, v ) ,

(even⊗ odd) : Φ+− = E(a, u2) O(−a, v ) ,

(odd⊗ even) : Φ−+ = O(a, u) E(−a, v2) .

We note the behavior of the constructed wave functions:

(2.13)
Φ++(x = 0, y = 0) 6= 0 , Φ−−(x = 0, y = 0) = 0 ,

Φ+−(x > 0, y = 0) = 0 , Φ−+(x < 0, y = 0) = 0 .

Now let us find which restrictions for the wave functions Ψ follow from the requirement
of single-valuedness. To this aim, two properties of the parametrization are essential:

v = 0 : x = +
u2

2
≥ 0, y = 0; u = 0 : x = −v2

2
≤ 0, y = 0 .

✲ x

✻
y

✲ x

✻
y

Fig. 5. The peculiarities of the parametrization

The four solutions behave in special regions, as follows:

(2.14)

Φ++(a;u = 0, v) = + Φ++(a;u = 0,−v),
Φ++(a; +u, v = 0) = + Φ++a;−u, v = 0),
Φ−−(a;u = 0,+v) = + Φ−−(a;u = 0,−v) = 0,
Φ−−(a;u, v = 0) = + Φ−−(a;−u, v = 0) = 0,

(2.15)

Φ+−(a;u = 0,+v) = − Φ+−(a;u = 0,−v),
Φ+−(a;u, v = 0) = Φ+−(a;−u, v = 0) = 0,
Φ−+(a;u = 0,+v) = Φ−+(a;u = 0,−v) = 0,
Φ−+(a; +u, v = 0) = − Φ−+(a;−u, v = 0) .

4We will change the notation: F1 =⇒ E; F2 =⇒ O.
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The boundary properties of the constructed wave functions can be illustrated by the
schemes described in Fig. 6.

So we conclude that the solutions Ψ of the types (++) and (−−) are single-valued
in the space with vector structure, whereas the solutions of the types (+−) and (−+)
are not single-valued in such a space, so these latter types (+−) and (−+) must be
discarded. However, these solutions ((+−) and (−+)) must be retained in the space
with spinor structure.

Φ+ +

✲ x

✻
y

��✠
non-zero

r

Φ− −

✲ x

✻
y

��✠
zero

r

Φ+ −

✲
x

✻y

��✠ zeror+ + + +− − − −

Φ− +

✲ x

✻y

❅❅❘zero r+ + + +− − − −

Fig 6. Boundary behavior of the wave functions in the (x, y)-plane

When using the spinor space model, the two sets (u, v) and (−u,−v) represent dif-
ferent geometrical points in the spinor space, so the requirement of single valuedness,
like applied in the case of the spinor space does not assume that the values of the
wave functions must be equal at the points (u, v) and (−u,−v):

Φ(u, v) = Φ(x, y) 6= Φ(−u,−v) = Φ(x′, y′) .

The splitting of the basis wave functions into two subsets may be mathematically
formalized with the help of the special discrete operator acting in the spinor space:

δ̂ =

(
−1 0
0 −1

)
, δ̂

(
u
v

)
=

(
−u
−v

)
.(2.16)

It is easily verified that the solutions which are single-valued in the vector space model
are eigenfunctions of δ for the eigenvalue δ = +1:

δ̂ Φ++(a;u, v) = + Φ++(a;u, v) , δ̂ Φ−−(a;u, v) = + Φ−−(a;u, v) ,

and the additional ones - which are acceptable only in the spinor space model - are
eigenfunctions for the eigenvalue δ = −1:

δ̂ Φ+−(a;u, v) = − Φ+−(a;u, v) , δ̂ Φ−+(a;u, v) = − Φ−+(a;u, v) .
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2.4 Orthogonality and completeness of the bases for vector

and spinor spaces

Now let us consider the scalar multiplication
∫

Ψ∗
µ′ Ψµ

√−g dtdzdudv .

of the basic constructed wave functions:

Ψ++(ǫ, p, a) = eiǫt eipz Φ++(a;u, v) , Ψ−−(ǫ, p, a) = eiǫt eipz Φ−−(a;u, v) ,

Ψ+−(ǫ, p, a) = eiǫt eipz Φ+−(a;u, v) , Ψ−+(ǫ, p, a) = eiǫt eipz Φ−+(a;u, v) .(2.17)

where µ and µ′ stand for generalized quantum numbers.

First of all, we note some interesting integrals5:

in the vector space

I0 =

∫ +∞

0

dv

∫ +∞

−∞
du Φ∗

++ Φ−− (u2 + v2),

in the spinor space

I1 =
∫ +∞
−∞ dv

∫ +∞
−∞ du Φ∗

++ Φ−− (u2 + v2) ,

I2 =
∫ +∞
−∞ dv

∫ +∞
−∞ du Φ∗

+− Φ−+ (u2 + v2) ,

I3 =
∫ +∞
−∞ dv

∫ +∞
−∞ du Φ∗

++ Φ+− (u2 + v2) ,

I4 =
∫ +∞
−∞ dv

∫ +∞
−∞ du Φ∗

++ Φ−+ (u2 + v2) ,

I5 =
∫ +∞
−∞ dv

∫ +∞
−∞ du Φ∗

−− Φ+− (u2 + v2) ,

I6 =
∫ +∞
−∞ dv

∫ +∞
−∞ du Φ∗

−− Φ−+ (u2 + v2) .

All these seven integrals I0, I1...I6 are equal to zero, which means that the constructed
functions provide us with an orthogonal basis for the Hilbert space Ψ(t, z, u, v), where
(u, v, z) belong to the extended (spinor) space model.

2.5 The Schrödinger equation

The study of the analytical properties of the Klein-Fock-Gordon wave solutions in
vector and spinor space models is still applicable, with slight changes, to the non-
relativistic Schrödinger equation as well:

i~
∂

∂t
Ψ = − ~

2

2m

[
∂2

∂z2
+

1

u2 + v2

(
∂2

∂u2
+

∂2

∂v2

) ]
Ψ ,

where the substitution for the wave functions is the same

Ψ(t, u, v, z) = e−iǫt/~ eipz/~ U(u)V (v) ,

and then, the equation for U(u)V (v) is
[

~
2

2m

(
∂2

∂u2
+

∂2

∂v2

)
+

(
ǫ− p2

2m

)
(u2 + v2))

]
U(u)V (v) = 0 .

5The arguments (a;u, v) are omitted here.
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3 The Dirac particle and the space with spinor structure

3.1 The separation of variables

We shall apply a tetrad based form of the Dirac equation to construct solutions of
the Dirac equation in parabolic cylindric coordinates. The last ones are defined by
the formulas

x1 =
u2 − v2

2
, x2 = uv , x3 = z .

To parameterize the space with vector structure (x, y, z), it is enough to make use of
the following formulas

v = +

√
−x1 +

√
x2
1 + x2

1 , u = ±
√
+x1 +

√
x2
1 + x2

2 ,

However, to parameterize the space (x, y, z)⊕(x, y, z) with spinor structure, one must
use for u and v more symmetrical, substantially different formulas:

v = ±
√
−x1 +

√
x2
1 + x2

2 , u = ±
√
+x1 +

√
x2
1 + x2

2 .

We will further denote the parabolic cylindric coordinates by (u, v, z) = (y1, y2, y3),

and use the explicit formulas: dxi = ∂xi

∂yj dy
j , and

(Si
j) =

(
∂xi

∂yj

)
=




u −v 0
v u 0
0 0 1


 , (S−1)jk =

(
∂yj

∂xk

)
=

1

u2 + v2




u v 0
−v u 0
0 0 1


 .

The metric of the Minkowski 4-space in cylindric parabolic coordinates is given by

gαβ =




1 0 0 0
0 −(u2 + v2) 0 0
0 0 −(u2 + v2) 0
0 0 0 −1


 ,

and the most simple tetrad to use is

e α
(k) =




1 0 0 0
0 (u2 + v2)−1/2 0 0
0 0 (u2 + v2)−1/2 0
0 0 0 1


 .

To specify the Dirac equation in this tetrad, it is convenient to start with the general
form of the equation in any orthogonal coordinate system [37]

[
iγk

(
eα(k)(y)

∂

∂yα
+

1

2
eα(k);α(y)

)
−M

]
Ψ(y) = 0 .(3.1)

By using the known formula

Aα
;α =

1√−g

∂
√−gAα

∂yα
, g = det(gαβ) ,
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we get

eα(0);α = 0 , eα(3);α = 0 , eα(1);α(y) =
u

(u2 + v2)3/2
, eα(2);α(y) =

v

(u2 + v2)3/2
.

Therefore, (3.1) admits the equivalent form:

{
iγ0 ∂

∂t
+ iγ3 ∂

∂z
−M +

i√
u2 + v2

×
[
γ1

(
∂

∂u
+

u

2(u2 + v2)

)
+ γ2

(
∂

∂v
+

v

2(u2 + v2)

)]}
Ψ(y) = 0 .

In spinor basis, this is written in 2-block form as follows:
{

i
∂

∂t
+ iσ

3 ∂

∂z
+

i√
u2 + v2

[

σ
1

(

∂

∂u
+

u

2(u2 + v2)

)

+ σ
2

(

∂

∂v
+

v

2(u2 + v2)

)]}

E = MH ,

{

i
∂

∂t
− iσ

3 ∂

∂z
− i√

u2 + v2

[

σ
1

(

∂

∂u
+

u

2(u2 + v2)

)

+ σ
2

(

∂

∂v
+

v

2(u2 + v2)

)]}

H = ME .

By using the substitutions

E(t, z, u, v) = e−iǫteikzE(u, v), H(t, z, u, v) = e−iǫteikzH(u, v) ,

we further obtain
{

ǫ− kσ
3 +

i√
u2 + v2

[

σ
1

(

∂

∂u
+

u

2(u2 + v2)

)

+ σ
2

(

∂

∂v
+

v

2(u2 + v2)

)]}

E = MH ,

{

ǫ+ kσ
3 − i√

u2 + v2

[

σ
1

(

∂

∂u
+

u

2(u2 + v2)

)

+ σ
2

(

∂

∂v
+

v

2(u2 + v2)

)]}

H = ME .

It is convenient to make the following substitutions for the following 2-component
entities

E(u, v) = (u2 + v2)−1/4e(u, v) , H(u, v) = (u2 + v2)−1/4h(u, v),

which yields

[
(ǫ− kσ3) +

i√
u2 + v2

(
σ1 ∂

∂u
+ σ2 ∂

∂v

)]
e(y) = Mh(y) ,

[
(ǫ+ kσ3)− i√

u2 + v2

(
σ1 ∂

∂u
+ σ2 ∂

∂v

)]
h(y) = Me(y) .(3.2)

The equations (3.2) are rather complicated, and to proceed with them we shall diag-
onalize the helicity operator (sp)0. We shall translate it to cylindric coordinates and
then translate it (see [37]) to the cylindric parabolic tetrad (sp) = S(sp)0S

−1, where:

S =

(
B(y) 0
0 B(y)

)
, B(y) =

1

(u2 + v2)1/4

( √
u+ iv 0
0

√
u− iv

)
.

In this way, we get
( ~σ~p ) = B( ~σ~p )0B

−1
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= −i

{
σ3 ∂

x3
+

1√
u2 + v2

[
σ1

(
∂

∂u
+

u

2(u2 + v2)

)
+ σ2

(
∂

∂v
+

v

2(u2 + v2)

)]}
.

The explicit form of the eigenvalue equation for the 4-spinor wave function can be
simplified by the following substitution

( ~σ~p ) E(y) = λE(y) , E(y) = (u2 + v2)−1/4e(y) ,

( ~σ~p ) H(y) = λH(y) , H(y) = (u2 + v2)−1/4h(y) ;(3.3)

so we obtain
[
σ3k − i√

u2 + v2

(
σ1 ∂

∂u
+ σ2 ∂

∂v

)]
e(u, v) = λ e(u, v) ,

[
σ3k − i√

u2 + v2

(
σ1 ∂

∂u
+ σ2 ∂

∂v

)]
h(u, v) = λ h(u, v) .(3.4)

Let us turn back to eqs. (3.2). With the help of (3.4), from (3.2) we infer the algebraic
system

(ǫ− λ)e(u, v) = Mh(u, v) , (ǫ+ λ)h(u, v) = Me(u, v) ,

which leads to the following solutions

λ = ±
√
ǫ2 −M2 , µ =

(ǫ− λ)

M
=

M

(ǫ+ λ)
,

hj = µ ej , Ψ =
e−iǫteikz√
u2 + v2

(
e1(u,v)
e2(u,v)
µe1(u,v)
µe2(u,v)

)
.(3.5)

Thus, we have only two independent variables, e1(u, v) and e2(u, v), which obey the
following equations

(λ− k) e1 +
i√

u2 + v2
(∂u − i∂v) e2 = 0 ,

(λ+ k) e2 +
i√

u2 + v2
(∂u + i∂v) e1 = 0 .(3.6)

Using the substitutions e1 =
√
u+ iv F, e2 =

√
u− iv G, and taking into account

the identities

(∂u + i∂v)
√
u+ iv F =

√
u+ iv (∂u + i∂v) F ,

(∂u − i∂v)
√
u− iv G =

√
u− iv (∂u − i∂v) G ,

we simplify (3.6) to the simpler form

(λ− k) (u+ iv) F + i (∂u − i∂v) G = 0 ,

(λ+ k) (u− iv) G+ i (∂u + i∂v) F = 0 .(3.7)

These equations are associated with the wave functions of the form

Ψ =
e−iǫteikz√
u2 + v2




√
u+iv F (u,v)√
u−iv G(u,v)

µ
√
u+iv F (u,v)

µ
√
u−iv G(u,v)


 ;(3.8)
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the transition of (3.8) to Cartesian tetrads is made according to the rule

Ψ0(x) =
1

(u2 + v2)1/4




√
u−iv 0 0 0

0
√
u+iv 0 0

0 0
√
u−iv 0

0 0 0
√
u+iv


Ψ(x) ,

whence it follows

Ψ0(x) =
e−iǫteikz

(u2 + v2)1/4

(
F (u,v)
G(u,v)

µ F (u,v)
µ G(u,v)

)
.

Note that after introducing the two complex variables

u+ iv = x, u− iv = y , (∂u + i∂v) = 2∂y, (∂u − i∂v) = 2∂x ,

the system (3.7) takes the form

(λ− k) x F + 2i∂x G = 0 , (λ+ k) y G+ 2i∂y F = 0.

By eliminating the function G, we get

G = − 2i

(λ+ k)

1

y
∂y F , (λ− k) x F − 2i∂x

2i

(λ+ k)

1

y
∂y F . = 0 .

Searching for solutions F (x, y) of the form F = X(x)Y (y), we infer:

−λ2 − k2

4
=

X ′

X

1

x

Y ′

Y

1

y
=⇒ X ′

X

1

x
= α,

Y ′

Y

1

y
= β, αβ = −λ2 − k2

4
.

The separated equations can be readily integrated,

X = C1e
αx2/2, Y = C2e

βy2/2 ;

to which there correspond a quite definite function G(x, y):

G = − 2i

λ+ k

1

y

∂

∂y
XY = − 2i

λ+ k
C1e

αx2/2βC2e
βy2/2 .

In fact, the constructed solutions represent the well known plane waves. Indeed, by
assuming that x1 = (u2 − v2)/2, x2 = uv, we get:

X(x)Y (y) ∼ eα(u
2−v2+2iub)/2eβ(u

2−v2−2iub)/2 = e(α+β)x1e(α−β)x2 = eik1x1eik2x2 ,

whence
α+ β = ik1, α− β = k2 =⇒

α =
ik1 + k2

2
, β =

ik1 − k2
2

, αβ = −k21 + k22
4

= −λ2 − k23
4

;

so we get the claimed identity ǫ2 = M2 + k21 + k22 + k23.

Let us turn again to the system (3.7). First, by eliminating the function G from
(3.7), we derive

G = − i

λ+ k

1

u− iv

(
∂

∂u
+ i

∂

∂v

)
F ,

[
∂2

∂u2
+

∂2

∂v2
+ (λ2 − k2)(u2 + v2)

]
F (u, v) = 0 .(3.9)
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Alternatively, by eliminating the function F from (3.7), we obtain

F = − i

λ− k

1

u+ iv

(
∂

∂u
− i

∂

∂v

)
G ,

[
∂2

∂u2
+

∂2

∂v2
+ (λ2 − k2)(u2 + v2)

]
G((u, v) = 0 .(3.10)

The second order differential equation is the same for both cases, (3.9) and (3.10).
For definiteness, let us examine the case (3.9), starting with the equation
[
∂2

∂u2
+

∂2

∂v2
+ σ2(u2 + v2)

]
F (u, v) = 0 , σ2 = (λ2 − k2) = ǫ2 −M2 − k2 > 0 .(3.11)

Let F (u, v) = U(u)V (v); then, instead of (3.11), we obtain
(

1

U

d2U

du2
+ σ2u2

)
+

(
1

V

d2V

dv2
+ σ2v2

)
= 0 .

By introducing a separating constant Λ, we get two equations in variables u and v,
respectively:

d2U

du2
+ ( σ2 u2 + Λ ) U = 0 ,

d2V

dv2
+ ( σ2 v2 − Λ ) V = 0 .

For functions U, V we have similar equations, which differ only by the sign of the
separation constant Λ. For definiteness, let us consider the function U(u) given by

d2U

du2
+ ( σ2 u2 + Λ) U = 0 .

Further, rewriting in terms of the variable bu2 = z, this takes the form:
(
z
d2

dz2
+

1

2

d

dz
+ σ2 z

4b2
+

Λ

4b

)
U = 0 .

Separating a simple factor, U(z) = e−z/2f(z), we derive

zf ′′ − zf ′ +
1

4
zf +

1

2

(
f ′ − 1

2
f

)
+ σ2 z

4b2
f +

Λ

4b
f = 0 .

Let b2 = −σ2 and b = +iσ, σ > 0; then get

z
d2f

dz2
+

(
1

2
− z

)
df

dz
− 1 + iΛ/σ

4
f = 0 ,

which is in fact a confluent hypergeometric equation

z
d2f

dz2
+ (c− z)

df

dz
− af = 0 , c =

1

2
, a =

1 + iΛ/σ

4
.

We further use two independent solutions

U− = e−z/2Φ

(
a,

1

2
; z

)
, U+ = e−z/2

√
z Φ

(
a+

1

2
,
3

2
; z

)
.
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Analogous results for (3.10) are obtained by the formal change Λ −Λ:

V (v) = e−y/2g(y), y = +iσv2 ,

d2g

dy2
+

(
1

2
− y

)
dg

dy
− 1− iΛ/σ

4
g = 0 ,

c′ =
1

2
= c , a′ =

1− iΛ/σ

4
=

1

2
− a ;(3.12)

the two independent solutions are written as follows

V−(y) = e−y/2Φ

(
1

2
− a,

1

2
; y

)
, V+(y) = e−y/2√y Φ

(
1− a,

3

2
; y

)
.

Thus, the total functions F (u, v) and G(u, v) will be constructed in terms of the
following solutions

U−(u) = e−iσu2/2Φ
(
a, 1

2 ; iσu
2
)
, U+(u) = e−iσu2/2uΦ

(
a+ 1

2 ,
3
2 ; iσu

2
)
,

V−(v) = e−iσv2/2Φ
(
1
2 − a, 1

2 ; iσv
2
)
, V+(v) = e−iσv2/2vΦ

(
1− a, 3

2 ; iσv
2
)
;

U ′
−(u) = e−iσu2/2Φ

(
a′, 1

2 ; iσu
2
)
, U ′

+(u) = e−iσu2/2uΦ
(
a′ + 1

2 ,
3
2 ; iσu

2
)
,

V ′
−(v) = e−iσv2/2Φ

(
1
2 − a′, 1

2 ; iσv
2
)
, V ′

+(v) = e−iσv2/2vΦ
(
1− a′, 3

2 ; iσv
2
)
.

Now, we should turn to the first order equation in (3.9)

i(λ+ k)G =
1

u− iv

(
∂

∂u
+ i

∂

∂v

)
F ;

by using it and starting with any known F (u, v), we can find an explicit form for the
corresponding function G(u, v).

3.2 Continuity properties of the Dirac solutions and

spinor space structure

Let us discuss in more detail some subtleties of the properties of the solutions and of
their relations to the stricture of spatial, vector and spinorial models.

While considering the relation between parabolic and Cartesian coordinates:

{
x1 = u2−v2

2 ,
x2 = u v

⇒





v = 0 : x1 = +u2

2 ≥ 0, x2 = 0 ,

u = 0 : x = − v2

2 ≤ 0, y = 0,

we noted existence of two special regions (see. Fig. 5).
Now let us consider which restrictions for the Dirac wave functions Ψ follow from

the requirement of single-valuedness.

Let us consider the variant (−−):

F−−(u, v) = U−(u)V−(v) = e
−iσu2/2Θ1e

−iσv2/2Θ2,
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i(λ+ k)G = 1
(u−iv)

(

∂
∂u

+ i ∂
∂v

)

U−(u)V−(v) =

= 1
(u−iv)

(

∂
∂u

+ i ∂
∂v

)

e−iσu2/2Θ1e
−iσv2/2Θ2 =

=
1

(u− iv)
e
−iσu2/2

e
−iσv2/2

[(

−iσ u Θ1 + 2iσ u
d

d(iσu2)
Θ1

)

Θ2+

+iΘ1

(

−iσ v Θ2 + 2iσ v
d

d(iσv2)
Θ2

)]

.

where Θ1 = Φ
(
a, 1

2 ; iσu
2
)
and Θ2 = Φ

(
1
2 − a, 1

2 ; iσv
2
)
.

We note that related pair of functions, F−−  G−−(u, v) are single-valued in the
special region:

F−−(u = 0, v) = +F−−(u = 0,−v) 6= 0 , F−−(u, v = 0) = +G−−(−u, v = 0) 6= 0 ;

G−−(u = 0, v) = +G−−(u = 0,−v) 6= 0 , G−−(u, v = 0) = +G−−(−u, v = 0) 6= 0 .

Let us consider the variant (++):

F++(u, v) = U+(u)V+(v) = e
−iσu2/2

u Θ1e
−iσv2/2

v Θ2 ,

i(λ+ k)G = 1
(u−iv)

(

∂
∂u

+ i ∂
∂v

)

U+(u)V+(v) =

= 1
(u−iv)

(

∂
∂u

+ i ∂
∂v

)

e−iσu2/2 u Θ1e
−iσv2/2 v Θ2 =

= e
−iσu2/2

e
−iσv2/2 1

(u− iv)

[(

(−iσ u
2 + 1) Θ1 + 2iσ u

2 d

d(iσu2)
Θ1

)

v Θ2+

+iuΘ1

(

(−iσ v
2 + 1) Θ2 + 2iσ v

2 d

d(iσv2)
Φ

(

1− a,
3

2
; iσv2

))]

,

where Θ1 = Φ
(
a+ 1

2 ,
3
2 ; iσu

2
)
and Θ2 = Φ

(
1− a, 3

2 ; iσv
2
)
.

The related functions, F++  G++(u, v) are single-valued in the spacial region:

F++(u = 0,+v) = +F++(u = 0,−v) = 0 , F++(u, v = 0) = +F++(−u, v = 0) = 0 ;

G++(u = 0,+v) = +G++(u = 0,−v) 6= 0 , G++(u, v = 0) = +G++(−u, v = 0) 6= 0 .

Let us consider the variant (−+):

F−+(u, v) = U−(u)V+(v) = e
−iσu2/2Θ1e

−iσv2/2
v Φ

(

1− a,
3

2
; iσv2

)

,

i(λ+ k)G = 1
(u−iv)

(

∂
∂u

+ i ∂
∂v

)

U−(u)V+(v) =

= 1
(u−iv)

(

∂
∂u

+ i ∂
∂v

)

e−iσu2/2Θ1e
−iσv2/2 v Θ2 =

= e
−iσu2/2

e
−iσv2/2 1

(u− iv)

[(

−iσ u Θ1 + 2iσ u
d

d(iσu2)
Θ1

)

v Θ2+

+iΘ1

(

(−iσ v
2 + 1) Θ2 + 2iσ v

2 d

d(iσv2)
Θ2

)]

.

where Θ1 = Φ
(
a, 1

2 ; iσu
2
)
and Θ2 = Φ

(
1− a, 3

2 ; iσv
2
)
.

The related functions, F−+  G−+(u, v), are double-valued in the spacial region:

F−+(u = 0,+v) = −F−+(u = 0,−v) 6= 0 , F−+(u, v = 0) = −F−+(−u, v = 0) = 0 ,

G−+(u = 0,+v) = −G−+(u = 0,−v) 6= 0 , G−+(u, v = 0) = −G−+(−u, v = 0) 6= 0 .



104 E. M. Ovsiyuk, A.N. Red’ko, V. Balan, V. M. Red’kov

Let us consider the variant (+−):

F+−(u, v) = U+(u)V−(v) = e
−iσu2/2

uΘ1e
−iσv2/2Φ

(

1

2
− a,

1

2
; iσv2

)

,

i(λ+ k)G = 1
(u−iv)

(

∂
∂u

+ i ∂
∂v

)

U+(u)V−(v) =

= 1
(u−iv)

(

∂
∂u

+ i ∂
∂v

)

e−iσu2/2uΘ1e
−iσv2/2Θ2 =

= e
−iσu2/2

e
−iσv2/2 1

(u− iv)

[(

(−iσ u
2 + 1) Θ1 + 2iσ u

2 d

d(iσu2)
Θ1

)

Θ2

+iuΘ1

(

−iσ v Θ2 + 2iσ v
d

d(iσv2)
Θ2

)]

.

where Θ1 = Φ
(
a+ 1

2 ,
3
2 ; iσu

2
)
and Θ2 = Φ

(
1
2 − a, 1

2 ; iσv
2
)
.

The related functions, F+−  G+−(u, v), are double-valued in the spacial region:

F+−(u = 0,+v) = −F+−(u = 0,−v) = 0 , F+−(+u, v = 0) = −F+−(−u, v = 0) 6= 0 ;

G+−(u = 0,+v) = −G+−(u = 0,−v) 6= 0 , G+−(+u, v = 0) = −G+−(−u, v = 0) 6= 0 .

When using the spinor space model, the two sets of couples (u, v) and (−u, v) (or,
similarly, the sets of couples (u, v) and (u,−v)) represent different geometrical points,
so the requirement of single valuedness in the case of a spinor space does not imply
that the values of the wave functions must be equal at the points (u, v) and (−u, v):

Ψ(u, v) = Ψ((x1, x2)
(1)) 6= Ψ(−u, v) = Ψ((x1, x2)

(2)) .

Therefore, we conclude that the solutions F (u, v), G(u, v) of the types (−−) and
(++) are single-valued in the spaces with vector structure, whereas the solutions
F (u, v), G(u, v) of the types (−+) and (+−) are not single-valued in spaces with
vector structure, so the solutions of these two types (−+) and (+−) must be discarded.
However, the types of solutions (−+) and (+−) are valid in the space with spinor
structure.

4 Conclusions

The study of the fermion parity problem by means of investigating possible single-
valued representations of spinor coverings of the extended Lorentz group shows that
P -parity and T -parity for a fermion do not exist as separate concepts. Instead of
this, only some unified concept of (PT )-parity can be determined in group-theoretical
terms.

The extension procedure which describes a space with spinor structure is per-
formed by relying on cylindrical parabolic coordinates. This is done through the
expansion of the region, G(t, u, v, z)  G̃(t, u, v, z), so that instead of the half plane
(u, v > 0) now the entire plane (u, v) should be used, accompanied with new iden-
tification rules for the boundary points. In the Cartesian picture, this procedure
corresponds to taking the two-sheet surface (x′, y′)⊕ (x′′, y′′) instead of the one-sheet
surface (x, y).

The solutions of the Klein–Fock–Gordon and Schrödinger equations are constructed
in terms of parabolic cylindric functions. Four types of solutions are possible: Ψ++,Ψ−−;
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Ψ+−,Ψ−+. The first two ones, Ψ++ and Ψ−−, provide us with single-valued functions
of the vector space points, whereas the last two, Ψ+− and Ψ−+, have discontinuities
in the framework of vector spaces, and therefore they must be discarded in this model.
All the four types of functions are continuous while regarded in the spinor space. It
is established that all solutions Ψ++,Ψ−−, Ψ+− and Ψ−+, are orthogonal to each
other, provided that integration is done over the extended region of integration which
covers (corresponds to) the spinor space.

Similar results are obtained for the Dirac equation. The solutions of the type
(−−), (++) are single-valued in the space with vector structure, whereas the solutions
of the types (−+), (+−) are not single-valued in the space with vector structure, so
the solutions of types (−+) and (+−) must be discarded. However, they must are
valid solutions in the space with spinor structure.
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