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Abstract. In a previous article we proved a pointwise ergodic theorem for
or sequences of barycentres of empirical measures which are defined from
the action of Fuchsian groups and for L2 maps valuated in CAT (0) spaces.
In this note we extend this result to the L1-setting for maps valuated in
nonpositively curved spaces.
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1 Introduction

The extension of the ergodic theorem to action groups as dynamics and to maps
valuated in more general spaces, like CAT (0) spaces or nonpositively curved spaces,
is an issue of interest in the area of Ergodic Theory and Dynamical Systems.

The usual ergodic averages for measure spaces (X, ν) and maps T : X → X, φ :
X → R are defined as

SN,φ(x) :=
1

N

N−1∑
n=0

φ (Tn(x)) .

For maps valuated in more general spaces a notion of ergodic average can be intro-
duced. Let φ : X → Y, with Y not necessarily R and let us consider the following
empirical measures

(1.1) EN,φ(x) :=
1

N

N−1∑
n=0

δφ(Tn(x)),

where δ is the point mass Dirac measure. For action groups as dynamics, a more
general class of empirical measures can be defined as we describe below.

In [1] Austin considered maps defined on a probability space (X, ν) and valuated
on a CAT (0) space Y. If µ is a measure on Y with second finite moment , i.e.,∫

Y

d(y, z)2dµ(z) <∞ for any y ∈ Y,

Applied Sciences, Vol.18, 2016, pp. 66-73.
c⃝ Balkan Society of Geometers, Geometry Balkan Press 2016.



On L1 convergence of barycentric sequences 67

then a barycenter bar (µ) can be assigned to µ in the following way: for any µ ∈
M2 (Y ) , there is an unique y ∈ Y which minimizes

∫
Y
d(y, z)2dµ(z)[4], thus is defined

bar (µ) = y. The function µ → bar (µ) is called the barycenter map. The sequence
of the barycenter of empirical measures can be considered as the analogue of the
usual ergodic averages for real valuated maps. Austin established the convergence
of the barycenter of the sequences of empirical measures from the Lindenstrauss er-
godic theorem for real valuated maps[6]. Those empirical measures were defined from
amenable action groups and maps φ : X → Y satisfying

∫
X
d(φ(x), y)2dν(x) < ∞,

for any y ∈ Y. The space of such a maps is denoted by L2(X,Y, ν).
The barycentric convergence of sequences of empirical measures from amenable

action groups in L1 spaces was studied by Navas[8]. He extended the result by Austin
to L1 maps valuated in nonpositively curved spaces and with a new definition of
barycenter adapted to the more general setting.

In [7] we have considered functions φ ∈ L2(X,Y, ν), with (X, ν) a probability
space and Y a complete, separable, CAT (0) space, and Fuchsian groups Γ acting on
the hyperbolic disc H2. For a Fuchsian group Γ acting on X by measure preserving
actions Tγ(x) = γx, γ ∈ Γ, we have defined the empirical measures

(1.2) EN,φ(x) :=
1

N

N−1∑
n=0

1

cardS(n)

∑
γ∈S(n)

δφ(Tγ(x)),

where S(n) denotes the sphere of radius n in the word metric in Γ and δ is the point
mass measure.

In the setting of [7] we have not needed, unlike in [1] or [8], a topological structure
on the group and the existence of Følner sequences. We have proved in [7] the point-
wise convergence of the barycenter of the empirical measures EN,φ(x) in L2(X,Y, ν).
We based on an ergodic theorem by Bufetov and Series for real valuated maps [3].
We call the real case when Y = R.

One of the objectives of this note is to extend the result of [7] to the L1 setting.
More precisely let (Y, d) be a complete, separable metric space with nonpositive cur-
vature in the sense of Busemann. Let (X, ν) be a probability space and let φ : X → Y
be a map satisfying

∫
X
d(φ(x), y)dν(x) < ∞, for any y ∈ Y. The space of maps with

this property is denoted by L1(X,Y, ν). Thus, we want to prove that the sequence
{bar(EN,φ(x))} converges in L1(X,Y, ν) for any φ ∈ L1(X,Y, ν). Like in our previous
article [7], we will not need herein the existence of Følner sequences and conditions
of amenability in the action group. Although the L2 setting is itself interesting, the
L1 spaces constitute the most important framework for the ergodic theorems.

2 Preliminaries

A space (Y, d) is nonpositively curved in the sense of Busemann if for any pair of
points x1, y1 ∈ Y and x2, y2 ∈ Y the corresponding, unique, midpoints m1,m2 satisfy

(2.1) d (m1,m2) ≤
d (x1, x2)

2
+
d (y1, y2)

2
.

This is equivalent to say that the distance function along geodesics is convex.
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Let us recall that by L1(X,Y, ν) is denoted the space of maps φ : X → Y with the
property

∫
X
d(φ(x), y)dν(x) < ∞, for any y ∈ Y. The space L1(X,Y, ν) is endowed

with the metric

d1 (φ,ψ) :=

√∫
X

d (φ (x) , ψ(x)) dν(x).

A measure µ on Y has finite first moment if∫
Y

d(y, z)dµ(z) <∞, for any y ∈ Y.

Let us denote by M1 (Y ) denotes the set of measures µ in Y with first finite moment.
A coupling of two measures µ1, µ2 ∈ M (Y ) is a measurem ∈ M (Y × Y ) which on

the first and second factor projects on µ1, µ2 respectively. The 1−Wasserstein metric

in M (Y ) is defined as W1 (µ1, µ2) = infm coupling of
µ1,µ2∈M(Y )

√∫
Y×Y d (y, z) dm(y, z).

Now we display the definition of barycenter map given in [8], for more details
about the constructions see that article. When Y is a Banach space the barycenter of

the measure
1

N

N−1∑
n=0

δxi is the Dirac measure concentrated in
1

N

N−1∑
n=0

xi. For a measure

µ ∈ M1 (Y ) the barycenter of µ is defined as bar(µ) =
∫
ydµ (y) .

For a nonpositively curved spaces the concept is constructed as follows. The first
step is to define the barycenter of any finite family of points (y1, y2, ..., yn) , for n = 1
is set bar1(x) = x. For n = 2 is defined bar2(x, y) = m, the midpoint between x and
y. Let us assume that barn−1 (y1, y2, ..., yn−1) is constructed, then barn (y1, y2, ..., yn)

is defined in the following way, start with (y1, y2, ..., yn) =
(
y
(0)
1 , y

(0)
2 , ..., y

(0)
n

)
and

replace each yi by barn−1 (y1, y2, ..., yi−1, yi+1,...,yn) , which is defined by the inductive

hypothesis. Thus results a set
(
y
(1)
1 , y

(1)
2 , ..., y

(1)
n

)
which applying the same procedure

leads to set
(
y
(2)
1 , y

(2)
2 , ..., y

(2)
n

)
. Continuing with the procedure is obtained a Cauchy

sequence
{(
y
(k)
1 , y

(k)
2 , ..., y

(k)
n

)}
k∈N

whose limit is denoted by (y1, y2, ..., yn) . Then is

defined barn (y1, y2, ...yn) = (y1, y2, ..., yn). To prove the convergence in [8] the fact
that

d (barn (y1, y2, ..., yn) , barn (z1, z2, ..., zn)) ≤
1

n

n∑
i=1

d (yi, zi) .

is used.
Let Q = (y1, y2, ..., yn) be an arbitrary family of points in Y and let

Qk = (y1, y2, ..., yn, y1, y2, ..., yn, ..., y1, y2, ..., yn) ,

where there are k−blocks in Qk. The sequence
{
barnk

(
Qk
)}

is a Cauchy sequence
[8], so is defined

bar

(
1

N

N−1∑
n=0

δyi

)
:= limit point of

{
barnk

(
Qk
)}
.
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It was proved in [8] that

d

(
bar

(
1

N

N−1∑
n=0

δyi

)
, bar

(
1

N

N−1∑
n=0

δzi

))
≤ 1

n
min
σ∈Sn

n∑
i=1

d
(
yi, zσ(i)

)
,

where Sn is the group of permutations of n−elements. Besides by the construction

bar

(
1

N

N−1∑
n=0

δyi

)
is the convex closure of the set {y1, y2, ..., yn}. The diameter of the

convex closure of the set {y1, y2, ..., yn} equals the diameter of {y1, y2, ..., yn} [8].
Let MQ (Y ) be the set of measures on Y whose atoms have rational mass, now

by the above construction is defined an application bar : MQ (Y ) → Y. This map is
1−Lipschitz as is controlled by the Wasserstein metric

d (bar (µ1) , bar (µ2)) ≤W1 (µ1, µ2) .

This important result was initially proved by Sturn [12] and extended by Navas to
Busemann spaces.

Since Y is separable, MQ (Y ) is W1−dense in M1 (Y ) the map bar is extended
to a function bar : M1 (Y ) → Y and it is called the barycenter map. This function
replaces the ergodic averages in the real case.

For real valuated maps Bufetov and Series[3] proved the ergodic convergence of
surface groups. This result was obtained from a previous result by Bufetov[2] about
convergence of Cesàro averages. Let Γ be the fundamental group of a surface of genus
g ≥ 2 acting on probability space (X, ν), the length of γ ∈ Γ,denoted |γ| , is the
minimal number of generators needed to represent γ. Let S(n) be the sphere of radius
n in this metric, i.e.,

S(n) = {γ : |γ| = n} .
For γ ∈ Γ, by Tγ is denoted the transformation on X given by Tγ (x) = γx. Let
φ ∈ L1 (X, ν) , in [3] was established that the ergodic average

SN,φ(x) :=
1

N

N−1∑
n=0

1

cardS(n)

∑
γ∈S(n)

φ (Tγ(x)) ,

converges for ν − a, e, x ∈ X. When Γ acts ergodically on X holds:

SN,φ(x) →N

∫
φdν.

Actually the Bufetov and Series ergodic theorem can be applied for a wide class of
finitely generated Fuchsian groups. For the class of groups for which the real ergodic
convergence of [3] is valid we shall consider the empirical measures

EN,φ(x) :=
1

N

N−1∑
n=0

1

cardS(n)

∑
γ∈S(n)

δφ(Tγ(x)).

where δ is the point mass Dirac measure. Thus the measure of E ⊂ Y is

EN,φ(x) (E) :=
1

N

N−1∑
n=0

1

cardS(n)
× card {γ ∈ S(n) : φ (Tγ(x)) ∈ E} .
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Recall that our aim is to prove the pointwise L1convergence of the sequence
{bar(EN,φ(x))}.

3 L1 barycentric convergence

Before stating and proving our result, we must specify the class of action groups to
be considered. As we earlier mentioned the groups should be those for which the
Bufetov and Series ergodic theorem works. They are non-elementary Fuchsian groups
acting on the hyperbolic disc H2 with a symmetric set of generators S, and such that
the Series coding can be done. For details about Series coding see[11]. By the Series
coding, a partition I of the boundary of the hyperbolic disc H2 in intervals can be
defined, which results a Markov partition. Then a transition matrix (AI,J)I,J∈I can
be obtained and a Markov symbolic space given by the sequences Ii0 ...Iin−1 , allowed
by the matrix A. A matrix A = (ai,j), ai,j ≥ 0, is irreducible if for any i, j there is a

n > 0 such that a
(n)
i,j > 0, where a

(n)
i,j is the i, j−entry of An. A matrix A is strictly

irreducible if AtA is irreducible (At means the transpose of A). Let I, J ∈ I, and the
equivalence relation I ∼ J if f (I)∩ f (J) ̸= ∅, where f is the boundary map defined
in[11], A is strictly irreducible if there is just one equivalence class. Then is established
that when |∂R| ≤ 4 to obtain a symbolic representation it must be imposed that A be
strictly irreducible[3]. Here |∂R| means the number of sides of ∂R. Another condition
on the group is that it has fundamental domain R with |∂R| ≥ 5 or if |∂R| < 5 then
the transition matrix from the Series coding is strictly irreducible. The class of groups
considered include fundamental groups of surfaces with genus ≥ 2.

Theorem 3.1. Let (X, ν) be a probability space and Y a complete, separable, nonpos-
itively curved space in the sense of Busemann. Let Γ be a non-elementary Fuchsian
group acting on the hyperbolic disc H2 with a symmetric set of generators S and ad-
mitting a Series coding. Besides Γ there acts on X by measure preserving actions T ,
which has a fundamental region R satisfying the above conditions. If φ : X → Y is
in the class L1(X,Y, ν) then there exists a T−map φ, such that bar(EN,φ(x)) con-
verges in L1(X,Y, ν) to φ(x). The map φ is constant ν − a.e. when the group acts
ergodically.

To prove the theorem we follow the idea used in [1] and [8]. Firstly we prove the
theorem for maps taking only a finite number of values. Since Y is separable, any
map φ : X → Y can be approximate, in the d1 metric, by as sequence of finite-valued
maps {ψn} , let us fix ψ := ψn0 such that d1 (φ,ψ) < α. It can be proved that
the measure of set

{
x : supN≥1 d (bar (EN,φ(x)) , bar(EN,ψ(x))) > α

}
can be bounded

by a quantity which be arbitrary small. This will be possible by a maximal ergodic
theorem for real valuated maps.

For amenable locally compact groups, a maximal ergodic theorem was proved by
Lindenstrauss [6]. Austin and Navas used this result. Here we formulate a maximal
ergodic theorem for our setting.

For the proof of the theorem we shall use the following result:

Proposition 3.2. [7] Let α > 0, φ ∈ L1(X, ν) and Zα :=
{
x : supN≥1 SN,φ(x) > α

}
.

Then

ν (Zα) ≤
1

α

∫
Zα

φdν.
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Proof of the Theorem. Let φ,ψ ∈ L1(X,Y, ν), α > 0 and Φ(x) = d (φ(x), ψ(x)) .
By the above proposition applied to the real valuated function Φ, we have

ν

({
x : sup

N≥1
{SN,Φ(x)} > α

})
≤ 1

α

∫
Φdν =

1

α

∫
d (φ(x), ψ (x))

and since d (bar(EN,φ(x)), bar (EN,ψ(x))) ≤W1 (EN,φ(x), EN,ψ(x)) , one gets{
x : sup

N≥1
d (bar(EN,φ(x)), bar (EN,ψ(x))) > α

}

⊂
{
x : sup

N≥1
W1 (EN,φ(x), EN,ψ(x)) > α

}
.

Let us consider the measure FN,φ,ψ(x) :=
1

N

N−1∑
n=0

1

cardS(n)

∑
γ∈S(n)

δ(φ(Tγ(x)),ψ(Tγ(x))),

with x, y ∈ X, which is a joining between EN,φ(x), EN,ψ(y). Thus by the definition of
the W1 metric

W1 (EN,φ(x), EN,ψ(x)) ≤

√∫
Y×Y

d (φ (Tγ(x)) , ψ (Tγ(x))) dFN,φ,ψ(x)

≤ 1

N

N−1∑
n=0

1

cardS(n)

∑
γ∈S(n)

Φ(γx) ,

and so

(3.1)

{
x : sup

N≥1
d (bar(EN,φ(x)), bar (EN,ψ(x))) > α

}
⊂
{
x : sup

N≥1
{SN,Φ(x)} > α

}
.

Therefore

ν

({
x : sup

N≥1
d (bar (EN,φ(x)) , bar (EN,ψ(x))) > α

})
≤ ν

({
x : sup

N≥1
{SN,Φ(x)} > α

})
≤ 1

α
d1 (φ,ψ) .

Let {y1, y2, ..., ym} be the image of φ and Ai := φ−1 (yi) , i = 1, 2, ...m. Let {νx}
be the ergodic decomposition of ν with respect to T , by the convergence theorem of
Bufetov and Series, for any ε > 0 , 0 ≤ i ≤ n, there is a N0 = N0(ε, x, i) such that
for N ≥ N0

(3.2)
∣∣SN,IAi

(x)− νx (Ai)
∣∣ < ε,

for any ν− a.e., x. Let m(x) :=
m∑
i=1

νx (Ai) δyi , we have

W1 (EN,φ(x),m(x)) ≤
m∑
i=1

∣∣SN,IAi
(x)− νx (Ai)

∣∣ [max
i,j

d (yi, yj)

]
< ε

[
max
i,j

d (yi, yj)

]
,
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for N ≥ N0. By the property that the barycentre is dominated by the W1−metric we
have d (bar(EN,φ(x)), bar (m(x))) < ε×fixed quantity, therefore

bar(EN,φ(x)) → bar (m(x)) := φ(x) as N → ∞.

Thus the sequence {bar (EN,φ(x))} pointwise converges to φ(x). Also since φ take
finite values {y1, y2, ..., ym} the barycenter of EN,φ(x) is in the convex closure of
{y1, y2, ..., ym}, so that d (bar(EN,φ(x)), φ(x)) ≤ maxi,j d (yi, yj). Now the conver-
gence dominated theorem can be applied to the sequence {bar(EN,φ(x))} and then
the convergence is also in L1(X,Y, ν), for maps taken finite values. For the general
case, let φ ∈ L1(X,Y, ν), since Y is separable φ can be approximate, in the d1 metric
by mean a sequence of finite-valuated maps, i.e. there is a family {ψn} of finite-
valuated maps such that for any ε > 0 there is a k0 = k0(ε) and a ψ := ψk0with
d1 (φ,ψ) < ε2.By (13) we have

(3.3) ν

({
x : sup

N≥1
d (bar (EN,φ(x)) , bar (EN,ψ(x))) > ε2

})
≤ 1

ε2
d1 (φ,ψ)

2
< ε.

Therefore the sequence {bar(EN,φ(x))} oscillates in a set of measure at most ε, with α
arbitrary, and since the sequence bar (EN,ψ(x)) is almost surely convergent to a map
ψ (x), the sequence {bar (EN,φ(x))} also converges, ν − a.e, for any x. To show the
convergence in L1, let ε > 0, since {bar (EN,ψm(x))} converges in L1(X,Y, ν), when
ψm takes finite values, there is a n0 = n0(ε) such that for N,M ≥ n0∫

d (bar(EN, ψm(x)), bar (EM, ψm(x))) dν(x) < ε/3.

Let {ψm} be a sequence of maps taking finite values converging to φ in L1. We have∫
d (bar(EN,φ(x)), bar (EM,φ(x))) dν(x)

≤
∫
d (bar(EN,φ(x)), bar (EN, ψm(x))) dν(x)

+

∫
d (bar(EN, ψm(x)), bar (EM, ψm(x))) dν(x)

+

∫
d (bar (EM, ψm(x)) , bar (EM,φ(x))) dν (x) .

Thus for N,M ≥ n0∫
d (bar(EN,φ(x)), bar (EM,φ(x))) dν(x) ≤ 2d1 (φ,ψm) + ε/3.

If m is taken enough large such that d1 (φ,ψm) < ε/3 then∫
d (bar(EN,φ(x)), bar (EM,φ(x))) dν(x) < ε, for N,M ≥ n0.

Then the sequence {bar(EN,φ(x))} is Cauchy in L1(X,Y, ν) so it converges in this
space. �



On L1 convergence of barycentric sequences 73

Acknowledgements. The support of this work by Consejo Nacional de Investiga-
ciones Cient́ıficas y Técnicas, Universidad Nacional de La Plata and Agencia Nacional
de Promoción Cient́ıfica y Tecnológica of Argentina is greatly appreciated. FV is a
member of CONICET . The authors are deeply grateful to Andrés Navas for his
comments that have motivated this work.

References

[1] T. Austin, A CAT (0)−valued pointwise ergodic theorem, J. of Topology and
Analysis 3 (2) (2011), 145-152.

[2] A. Bufetov, Convergence of spherical averages for actions of free groups, Ann. of
Math. 155 (2) (2002), 929-944.

[3] A. Bufetov and C. Series, A pointwise ergodic theorem for Fuchsian groups, Math.
Proc. of the Cambridge Phil. Soc. 151 (2011), 145-159.
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