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Abstract. Our main aim of this paper is to investigate some oscillation
criteria for solutions of certain odd order nonlinear neutral difference equa-
tion. We present some sufficient conditions that guarantee for all solutions
of odd order neutral difference equation are oscillatory. Some examples
are given to illustrate the main results.
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1 Introduction

In this paper, we are concerned with the following higher order neutral difference
equation of the form

∆m [x(n) + p(n)x (τ(n))] + q(n)f (x (σ(n))) = 0, n ∈ N = {0, 1, .....} ,(1.1)

where m is odd and m ≥ 1. ∆ is the forward difference operator defined by

∆x(n) = x (n+ 1)− x(n).

Throughout this paper, we assume the following conditions to hold:

(H1) {q(n)} is a real-valued sequence with q(n) ≥ 0, n ∈ N and {q(n)} is not identi-
cally zero.

(H2) {p(n)} is a real-valued sequence with 0 ≤ p(n) < 1, n ∈ N.

(H3) {τ(n)} and {σ(n)} are non-decreasing sequences such that τ(n) < n with
lim

n→+∞
τ(n) = +∞ and σ(n) < n with lim

n→+∞
σ(n) = +∞.

(H4) f : R → R is a non-decreasing continuous function such that xf (x) > 0 for
x ̸= 0 and

−f (−xy) ≥ f (xy) ≥ f (x) f (y) .(1.2)
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In recent years, the oscillation behavior of neutral difference equations has been
studied vigorously, for example, see (1-16) and the references cited therein. This is
because of the fact that neutral difference equations find various applications in some
variational problems, in natural science and technology.

In [5], Agarwal and Grace considered the higher order difference equation

∆
(
∆m−1x(n)

)α
+ q(n)xα (n− τ) = 0(1.3)

and obtained some sufficient conditions for the oscillation of all solutions of (1.3).
Yasar Bolat et. al. [8] have taken even order non-linear neutral difference equation

∆m [y (k) + p (k) y (τ (k))] + q (k) y (σ (k)) = 0,(1.4)

and established some criteria for oscillation of bounded solutions only.
Therefore, it is to be noted that, to the best of our knowledge, there is no paper

for higher order nonlinear neutral difference equations which ensures that all the
solutions are oscillatory when m is odd. Following this notion, in this paper, we
provide sufficient conditions which ensure that all solutions of (1.1) are oscillatory.

2 Preliminaries

Definition 2.1. The factorial expression is defined as (r)
(s)

=

s−1∏
i=0

(r − i)

with (r)
(0)

= 1, for all r ∈ R = (−∞,∞) and s, a non-negative integer.

Definition 2.2. Let N0 be a fixed non-negative integer. By a solution of equation
(1.1), we mean a nontrivial real sequence {x(n)} which is defined for all
n ≥ min

i≥0
{τ (i) , σ (i)} and satisfies equation (1.1) for n ≥ N0.

Definition 2.3. A solution {x(n)} of equation (1.1) is said to be oscillatory if for
every n1 ≥ N0, there exists n ≥ n1 such that xnxn+1 ≤ 0. Otherwise it is called
non-oscillatory.

Definition 2.4. A difference equation is said to be oscillatory if all of its solutions
are oscillatory. Otherwise, it is non-oscillatory.

To obtain the main results, we shall use the following notations.
For all large n ≥ n0 > 0, let

Rj(n) =f

(
(σ(n)−m+ j)

(j−i)

j!

) ∞∑
r=n

(r − n+m− j − 3)
(m−j−3)

(m− j − 3)! ∞∑
j=r

q(j)

 f (1− p (σ (r))) , j ∈ {1, 2, ...,m− 3} ;

Rm−1(n) = q(n)f (1− p (σ(n))) f

(
(σ(n)− 1)

(m−2)

(m− 1)!

)
;
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R0(n) = q(n)f (1− p (σ(n))) f

 η(n)∑
r=σ(n)

(r − σ(n) +m− 2)
(m−2)

(m− 2)!

 ,

for some non-decreasing function η(n) with σ(n) < η(n) ≤ n, n ≥ n0.

We need the following lemma to obtain our results.

Lemma 2.1. (see [1]) Let x(n) be defined for n ≥ n0 ∈ N and x(n) > 0 with ∆nx(n)
be of constant sign for n ≥ n0 and not identically zero. Then there exists an integer
l, 0 ≤ l ≤ m with (m+ l) odd for ∆mx(n) ≤ 0 and (m+ l) even for ∆mx(n) ≥ 0
such that

(i) l ≤ m− 1 implies (−1)
l+k

∆kx(n) > 0 for all n ≥ n0, l ≤ k ≤ m− 1;

(ii) l ≥ 1 implies ∆kx(n) > 0 for all large n ≥ n0, 1 ≤ k ≤ l − 1.

3 Main results

In this section, we discuss the following theorems.

Theorem 3.1. Assume that the conditions (H1)-(H4) hold and

∞∑
n=n0

 ∞∑
j=n

q(j)

 (σ(n))
(m−2)

= ∞.(3.1)

Let m be odd. If all the second order equations

∆2y(n) +Rj(n)f (y (σ(n))) = 0, j ∈ {2, 4, ...,m− 1}(3.2)

for n ≥ n0 are oscillatory and if there exists a non-decreasing sequence {η(n)} with
σ(n) < η(n) ≤ n, n ≥ n0 such that the first order difference equation

∆v(n) +R0(n)f (v (η(n))) = 0(3.3)

is oscillatory, then every solution of equation (1.1) oscillates.

Proof. Let {x(n)} be a non-oscillatory solution of (1.1). Without loss of generality,
assume that x(n) > 0, x (τ(n)) > 0, x (σ(n)) > 0, for all n ≥ n0 ≥ 0.
Let

z(n) = x(n) + p(n)x (τ(n)) ≥ x(n) > 0.(3.4)

Then (1.1) becomes

∆mz(n) = −q(n)f (x (σ(n))) ≤ 0, for n ≥ n1 ≥ n0.(3.5)

From Lemma 2.1, it is evident that

∆m−1z(n) > 0, for n ≥ n1.(3.6)
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Also from (3.5), we have ∆mz(n) ≤ 0.
So, z(n) satisfies Lemma 2.1, for some l ∈ {1, 2, ....,m− 3} and (l +m) odd. Also by
Lemma 2.1, ∆z(n) > 0. Since z(n) is increasing, we have

(1− p(n)) z(n) ≤ z(n)− p(n)z (τ(n))

= x(n)− p(n)p (τ(n))x (τ (τ(n)))

≤ x(n), for n ≥ n1.

That is,

(1− p(n)) z(n) ≤ x(n), for n ≥ n1.(3.7)

Now the following two cases are considered:
l ∈ {1, 2, ....,m− 3} and l = 0.

Case(i). Let l ∈ {1, 2, ....,m− 3}.
From the discrete Taylor’s formula, we have
(3.8)

−∆l+1z(n) =

m−2∑
j=l+1

(s− n+ j − l − 2)
(j−l−1)

(j − l − 1)!
(−1)

j−l
∆jz (s)

+ (−1)
m−l−3

s−1∑
r=n

(r − n+m− l − 3)
(m−l−3)

(m− l − 3)!
∆m−1z (r) ,

for s ≥ n ≥ n1. Using Lemma 2.1 in (3.8), we obtain

−∆l+1z(n) ≥
∞∑

r=n

(r − n+m− l − 3)
(m−l−3)

(m− l − 3)!
∆m−1z (r) .(3.9)

Summing up the equation (1.1) from r to u− 1 and letting u → ∞, we have

∆m−1z (r) ≥
∞∑
j=r

q(j)f (x (σ (r))) , for n ≥ n2 ≥ n1.(3.10)

Substituting (3.10) in (3.9), we have

−∆l+1z(n) ≥
∞∑

r=n

(r − n+m− l − 3)
(m−l−3)

(m− l − 3)!

 ∞∑
j=r

q(j)

 f (x (σ (r))) .(3.11)

Using (3.7) and (1.2) in (3.11), we get
(3.12)

−∆l+1z(n) ≥
∞∑

r=n

(r − n+m− l − 3)
(m−l−3)

(m− l − 3)! ∞∑
j=r

q(j)

 f (1− p (σ (r))) f (z (σ (r))) .
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From (3.10), we can see that

(n)(m−l−1)∆m−1z(n) ≥ (n)(m−l−1)

 ∞∑
j=n

q(j)

x (σ(n))

≥ (n)(m−l−1)

 ∞∑
j=n

q(j)

 (σ(n))
(l−1)

≥
∞∑
j=n

q(j) (σ(n))
(m−l−2)

.

Hence from (3.1), we get

∞∑
(s)

(m−l−1)
∆m−1z (s) = ∞.(3.13)

Consider the equality

m−2∑
j=l−1

(−1)
(j+l+1) (n−m+ j + 1)

(j−l+1)

(j − l + 1)!
∆jz(n)

=
m−2∑
j=l−1

(−1)
(j+l+1) (n2)

(j−l+1)

(j − l + 1)!
∆jz (n1 +m− j − 2)

+ (−1)
m+l−1

m−2∑
s=n2

(s)
(m−l−1)

∆m−1z (s) .

with l ∈ {1, 2, ...,m− 1} and (l +m) is odd.
Now from the above, as in ([9],[16]), there exists an integer n ≥ n3 ≥ n2 such that

∆l−1z(n) ≥ (n−m+ l + 1)∆lz(n)(3.14)

and

z(n) ≥ (n−m+ l)
(l−1)

l!
∆l−1z(n).(3.15)

Then we can find an integer N ≥ n3 such that

z (σ(n)) ≥ (σ(n)−m+ l)
(l−1)

l!
∆l−1z (σ(n)) , for n ≥ N(3.16)

Using (3.16) in (3.12), we have

−∆l+1z(n) ≥
∞∑

r=n

(r − n+m− l − 3)
(m−l−3)

(m− l − 3)!

 ∞∑
j=r

q(j)

 f (1− p (σ (r)))

f

(
(σ(n)−m+ l)

(l−1)

l!

)
f
(
∆l−1z (σ(n))

)
.
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That is,

−∆l+1z(n) ≥ Rl(n)f
(
∆l−1z (σ(n))

)
.

Let y(n) = ∆l−1z(n).
Then y(n) > 0 for n ≥ N and above inequality becomes,

∆2y(n) +Rl(n)f (y (σ(n))) ≤ 0, for n ≥ N.

Thus the last inequality has a positive solution. By a well-known result in [10, 12],
we can see that the equation

∆2y(n) +Rl(n)f (y (σ(n))) = 0, for n ≥ N

also has a positive solution, which contradicts our assumption.

Case(ii). Let l = 0.

From discrete Taylor’s formula, we have

z(n) =

m−2∑
j=0

(s− n+ j − 1)
(j)

j!
(−1)

j
∆jz (s)

+
s−1∑
r=n

(r − n+m− 2)
(m−2)

(m− 2)!
∆m−1z (r) ,

for s ≥ n. Considering Lemma 2.1 with l = 0 and using this in the above equation,
we get

z(n) ≥
s−1∑
r=n

(r − n+m− 2)
(m−2)

(m− 2)!
∆m−1z (r) ,

for n ≥ n1 ≥ n0. Then we can find an integer n2 ≥ n1 and a non-decreasing function
η(n) with σ(n) < η(n) ≤ n such that

z (σ(n)) ≥
η(n)∑

r=σ(n)

(r − σ(n) +m− 2)
(m−2)

(m− 2)!
∆m−1z (η(n)) ,(3.17)

for n ≥ n2 ≥ n1. From (1.1), (1.2), (3.7) and (3.17), we have

−∆
(
∆m−1z(n)

)
= q(n)f (x (σ(n)))

≥ q(n)f (1− p (σ(n))) f (z (σ(n)))

≥ q(n)f (1− p (σ(n))) f

 η(n)∑
r=σ(n)

(r − σ(n) +m− 2)
(m−2)

(m− 2)!


× f

(
∆m−1z (η(n))

)
= R0(n)f

(
∆m−1z (η(n))

)
.
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Let v(n) = ∆m−1z (η(n)). Then v(n) > 0, for n ≥ n2 and the above inequality
becomes,

∆v(n) +R0(n)f (v (σ(n))) ≤ 0,

for which a positive solution exists. By a well-known result in [10, 12], we have
equation (3.3) also has a positive solution, which contradicts our assumption. This
completes the proof. �

Example 3.1. Consider the third order difference equation

∆3

[
x(n) +

1

2
x (n− 1)

]
+ 4x (n− 2) = 0.(E1)

Here 0 ≤ p(n) = 1
2 < 1, q(n) = 4n, τ(n) = n−1 < n, σ(n) = n−2 < n and f (u) = u

n .
Also

∞∑
n=n0

 ∞∑
j=n

q(j)

 (σ(n))
(m−2)

=
∞∑

n=n0

 ∞∑
j=n

4j

 (n− 2) = ∞.

We can easily see that all conditions of Theorem 3.1 are satisfied and hence all the
solutions of equation (E1) are oscillatory.
One of such solutions is x(n) = (−1)

n
.

Next we consider the following theorem.

Theorem 3.2. Assume that the conditions (H1)-(H4) and (3.1) hold. Let m be odd.
If
(3.18)

f

(
(σ(n)−m+ j)

(j−i)

j!

) ∞∑
r=n0

(r − n+m− j − 2)
(m−j−2)

(m− j − 2)! ∞∑
j=r

q(j)

 f (1− p (σ (r))) = ∞,

for j ∈ {2, 4, ...,m− 1} and if there exists a non-decreasing sequence {η(n)} with
σ(n) < η(n) ≤ n, n ≥ n0 such that the equation (3.3) is oscillatory, then every
solution of equation (1.1) oscillates.

Proof. Assume that {x(n)} be a non-oscillatory solution of (1.1). Without loss of
generality, assume that x(n) > 0, x (τ(n)) > 0, x (σ(n)) > 0, for all n ≥ n0 ≥ 0.
Let

z(n) = x(n) + p(n)x (τ(n)) ≥ x(n) > 0.(3.19)

Proceeding as in the proof of Theorem 3.1, we get the following two cases:
l ∈ {1, 2, ....,m− 3} and l = 0.

Case(i). Let l ∈ {1, 2, ....,m− 3}.
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From the discrete Taylor’s formula, we have
(3.20)

∆lz(n) =
m−2∑
j=l

(s− n+ j − l − 2)
(j−l)

(j − l)!
(−1)

j−l
∆jz (s)

+ (−1)
m−l−1

s−1∑
r=n

(r − n+m− l − 2)
(m−l−2)

(m− l − 2)!
∆m−1z (r) ,

for s ≥ n. Using (1.2), (3.7), (3.10) and Lemma 2.1 in (3.20), we obtain
(3.21)

∆lz(n) ≥
∞∑

r=n

(r − n+m− l − 2)
(m−l−2)

(m− l − 2)!

 ∞∑
j=r

q(j)


f (1− p (σ(n))) f (z (σ(n))) .

From (3.15), there exists a n2 ≥ n1 and a positive constant c > 0 such that

z (σ(n)) ≥ (σ(n)−m+ l)
(l−1)

l!
∆l−1z (σ(n)) , for n ≥ n2.(3.22)

and

∆l−1z (σ(n)) ≥ c, for n ≥ n2.(3.23)

Using (3.22) and (3.23) in (3.21), we get

∞ > ∆lz (n2) ≥
∞∑

r=n2

(r − n+m− l − 2)
(m−l−2)

(m− l − 2)! ∞∑
j=r

q(j)

 f (1− p (σ(n))) f (c) f

(
(σ(n)−m+ l)

(l−1)

l!

)
,

which contradicts (3.18).

Case(ii). Let l = 0.

The proof for this case is similar to the proof of Case(ii) in Theorem 3.1 and hence
omitted. This completes the proof. �

Example 3.2. Consider the first order difference equation

∆

[
x(n) +

3

4
x (n− 1)

]
+

1

2
x (n− 2) = 0.(E2)

Here 0 ≤ p(n) = 3
4 < 1, q(n) = 1

2 , τ(n) = n− 1 < n, σ(n) = n− 2 < n and f (u) = u.
We can find that all hypotheses of Theorem 3.2 are fulfilled. Also, equation(E2) has

an oscillatory solution given by x(n) = (−1)n

2 .
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4 Conclusions

In this paper, we have proposed the comparison method for identifying oscillatory
solutions of odd order neutral difference equations. This method compares the first
and second order equations which are very simple. Moreover, the above examples
reveal the efficiency of our method.
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