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Abstract. In [4] it was shown that if k (k ̸= 0) is a rational number
and µ (µ ̸= 0) is integer, (2m + 1)-dimensional (m ≥ 2) C-Bochner
semi-symmetric non Sasakian (k, µ)-contact metric manifolds do not ex-
ist. In this paper we consider an η-Einstein (k, µ)-contact metric manifold.
And we study the relation between numbers k or µ and C-Bochner semi-
symmetries on an η-Einstein (k, µ)-contact metric manifold.
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1 Introduction

Let R be the Riemannian curvature tensor of a Riemannian manifold M with a
positive-definite metric tensor g. M is said to be a locally symmetric if ∇R = 0,
where ∇ denotes the Levi-Civita connection. For any tangent vectors X and Y , we
consider R(X,Y ) as a derivation of the tensor algebra at each point on M . M is
said to be semi-symmetric if R(X,Y ).R = 0 as a proper generalization of locally
symmetric manifold. Many geometers have considered semi-symmetric spaces and in
turn their generalizations.

On the other hand, M. Matsumoto and G. Chuman [5] defined the contact Bochner
curvature tensor B by

B(X,Y ) = R(X,Y ) +
1

2(m+ 2)
[QY ∧X −QX ∧ Y +QϕY ∧ ϕX(1.1)

−QϕX ∧ ϕY + 2g(QϕX, Y )ϕ

+ 2g(ϕX, Y )Qϕ+ η(Y )QX ∧ ξ + η(X)ξ ∧QY ]

− p+ 2m

2(m+ 2)
[ϕY ∧ ϕX + 2g(ϕX, Y )ϕ]

− p− 4

2(m+ 2)
Y ∧X +

p

2(m+ 2)
[η(Y )ξ ∧X + η(X)Y ∧ ξ]

on (2m+1)-dimensional Sasakian manifold (B is called C-Bochner curvature), where
Q is the Ricci operator of M , p = 2m+r

2(m+1) (r is the scalar curvature of M) and
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(X∧Y )Z = g(Y, Z)X−g(X,Z)Y . C.D. Uday and G. Sujit [6] defined the C-Bochner
semi-symmetry on a (k, µ)-contact metric manifold as follows:

Definition 1.1. A (2m+1)-dimensional (k, µ)-contact metric manifold is said to be
C-Bochner semi-symmetric if

(1.2) R(X,Y ).B = 0

for any vector fields X and Y .

2 Preliminaries

Let (M,ϕ, ξ, η, g) be a (2m+ 1)-dimensional contact metric manifold, that is, let M
be a differentiable manifold and (ϕ, ξ, η, g) a contact metric structure on M , formed
by tensor fields ϕ, ξ, η, of type (1, 1), (1, 0) and (0, 1), respectively, and a Riemannian
metric g such that

(2.1)
ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1,
η(X) = g(X, ξ), g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),
dη(X,Y ) = g(X,ϕY )

for any vector fields X and Y . We denote by ∇ the Riemannian connection defined by
g and define a tensor field h on a contact metric manifold M by h = 1

2Lξϕ, where L
denotes the Lie differentiation. Then it is well-known that h is a symmetric operator,

∇Xξ = −ϕX − ϕhX

is satisfied for any vector field X, h anti-commutes with ϕ and trh = 0 on a contact
metric manifold, where trh is the trace of h (see. [1]).

If ξ is Killing vector on a contact metric manifold M , then M is said to be a
K-contact Riemannian manifold. If a contact metric manifold M is normal (i.e.,
N + 2dη ⊗ ξ = 0, where N denotes the Nijenhuis tensor formed with ϕ), then M
is called a Sasakian manifold. Every Sasakian manifold is a K-contact Riemannian
manifold. On a Sasakian manifold with structure tensors (ϕ, ξ, η, g), we have

∇Xξ = −ϕX, (∇Xϕ)Y = R(X, ξ)Y = g(X,Y )ξ − η(Y )X

(see [1]).
The (k, µ)-nullity distribution of a contact metric manifold for the pair (k, µ) ∈ R2,

is a distribution

N(k, µ) : p → Np(k, µ),

Np(k, µ) := [W ∈ TpM | R(X,Y )W = (kI + µh)(g(Y,W )X − g(X,W )Y )].

If M is a contact metric manifold with ξ belonging to the (k, µ)-nullity distribution,
i.e.,

(2.2) R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ],
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then M is called a (k, µ)-contact metric manifold. And the following relations in a
(k, µ)-contact manifold are well known (see. [2],[1]) :

(2.3) h2 = (k − 1)ϕ2, k ≤ 1,

(2.4) (∇Xϕ)Y = g(X + hX, Y )ξ − η(Y )(X + hX),

(2.5) R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X] + µ[g(hX, Y )ξ − η(Y )hX],

for any vector fields X and Y . If k = 1, the structure is Sasakian ([2],[1]) and if k < 1,
the (k, µ)-nullity condition completely determines the curvature of M2m+1 (see. [3]).
The following theorem is well known:

Theorem 2.1 (e.g.,[3]). Let (M, ξ, η, ϕ, g) be a (k, µ)-contact metric manifold which
is not Sasakian, i.e., k < 1. Then its Riemann curvature tensor R is given explicitly
in its (0, 4)-form by

g(R(X,Y )Z,W )(2.6)

= (1− µ

2
)(g(Y, Z)g(X,W )− g(X,Z)g(Y,W ))

+ g(Y, Z)g(hX,W )− g(X,Z)g(hY,W )

− g(Y,W )g(hX,Z) + g(X,W )g(hY,Z)

+
1− µ

2

1− k
(g(hY, Z)g(hX,W )− g(hX,Z)g(hY,W ))

− µ

2
(g(ϕY,Z)g(ϕX,W )− g(ϕX,Z)g(ϕY,W ))

+
k − µ

2

1− k
(g(ϕhY, Z)g(ϕhX,W )− g(ϕhY,W )g(ϕhX,Z))

+ µg(ϕX, Y )g(ϕZ,W )

+ η(X)η(W )((k − 1 +
µ

2
)g(Y, Z) + (µ− 1)g(hY, Z))

− η(X)η(Z)((k − 1 +
µ

2
)g(Y,W ) + (µ− 1)g(hY,W ))

+ η(Y )η(Z)((k − 1 +
µ

2
)g(X,W ) + (µ− 1)g(hX,W ))

− η(Y )η(W )((k − 1 +
µ

2
)g(X,Z) + (µ− 1)g(hX,Z))

for any vector fields X,Y, Z and W on M .

C.D. Uday and G. Sujit [6] got the following result for (k, µ)-contact metric man-
ifold M2m+1 (2m+ 1 ≥ 5).

Lemma 2.2. Let (M2m+1, ξ, η, ϕ, g) be a (k, µ) contact metric manifold which is not
Sasakian. Then the following equations hold:

S(X,Y ) = [2(m− 1)−mµ]g(X,Y ) + [2(m− 1) + µ]g(hX, Y )(2.7)

+ [2(1−m) +m(2k + µ)]η(X)η(Y ),
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(2.8) B(X,Y )ξ =
2(k − 1)

m+ 2
[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ],

(2.9) B(X, ξ)Y =
2(k − 1)

m+ 2
[η(Y )X − g(X,Y )ξ] + µ[η(Y )hX − g(hX, Y )ξ],

for any vector fields X and Y .

Remark 2.1. In [6], (2.7) ∼ (2.9) hold good for the assumption that the dimension
n(= 2m+ 1) of M is greater than 5 or equal to 5. However, using (1.1) and (2.6), it
is showed that these three equations hold good even if in 3-dimensional (k, µ)-contact
metric manifold.

If the Ricci tensor S is of the form S = ag + bη ⊗ η, where a and b are smooth
functions, then M is called an η-Einstein manifold. Of course if b = 0, M is an
Einstein manifold.

On the other hand, the condition R(X,Y )ξ = 0 for all vector fields X and Y
has a strong and interesting implication for a contact metric manifold. The following
theorem is well known:

Theorem 2.3 ([1]). A contact metric manifold M2m+1 satisfying R(X,Y )ξ = 0 is
locally isometric to Em+1 × Sm(4) for m > 1 and flat for m = 1.

On the other hand, we got the following three results in [4] ;

Theorem 2.4 ([4]). If M is a 5-dimensional C-Bochner semi-symmetric non-Sasakian
(k, µ)-contact metric manifold, then k = µ = 0. i.e., M is a locally isometric to
E3 × S2(4).

Theorem 2.5 ([4]). Let M be a (2m + 1)-dimensional (m ≥ 2) C-Bochner semi-
symmetric non-Sasakian (k, µ)-contact metric manifold. If k (k ̸= 0) is a rational
number and µ (µ ̸= 0) is a integer, then there does not exist manifold M satisfying
these conditions.

Theorem 2.6 ([4]). If M be a (2m + 1)-dimensional (m ≥ 2) non-Sasakian (k, µ)-
contact metric manifold satisfying B(ξ,X).R = 0 for any vector fields X, then one of
the following cases holds:

(a) µ =
(m2+2m−2)+

√
(m2+2m−2)2+4(m+2)(m2+2m−1)

(m+2)(m2+2m−1) , k = 4−(m+2)2µ2

4 ,

(b) µ =
(m2+2m−2)−

√
(m2+2m−2)2+4(m+2)(m2+2m−1)

(m+2)(m2+2m−1) , k = 4−(m+2)2µ2

4 .

3 an η-Einstein (k, µ)-contact metric manifold

In this section, we deal with a (2m+ 1)-dimensional η-Einstein (k, µ)-contact metric
manifolds. Then we have

S(X,Y ) = ag(X,Y ) + bη(X)η(Y )(3.1)

for any vector fields X and Y , where a and b are smooth functions.
Before proving our assertions, we give some lemmas.
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Lemma 3.1. Let Mn be an n(= 2m+1)-dimensional non-Sasakian η-Einstein (k, µ)-
contact metric manifold. Then we have

(3.2) µ = 3− n.

Moreover a and b elements of (3.1) are constant, i.e.,

a =
1

2
(n− 3)(n+ 1), b = (n− 1)k − 1

2
(n− 3)(n+ 1).(3.3)

Proof. Making use of (2.7) and (3.1), we get

[(n− 3) + µ]g(hX, Y ) =

[
a− (n− 3) +

n− 1

2
µ

]
g(X,Y )(3.4)

+

[
b− (3− n)− n− 1

2
(2k + µ)

]
η(X)η(Y ).

Let λ be an eigenvalue of h and eλ an eigenvector corresponding to λ. Since h is
anti-commutes with ϕ, we get hϕeλ = −λϕeλ.

Substituing eλ into X and Y in (3.4), we have

λ[(n− 3) + µ]g(eλ, eλ) = [(n− 3) + µ]g(heλ, eλ)(3.5)

=

[
a− (n− 3) +

n− 1

2
µ

]
g(eλ, eλ).

Also, substituing ϕeλ into X and Y in (3.4) and using g(ϕeλ, ϕeλ) = g(eλ, eλ), it
follows that

−λ[(n− 3) + µ]g(eλ, eλ) = −λ[(n− 3) + µ]g(ϕeλ, ϕeλ)(3.6)

= [(n− 3) + µ]g(hϕeλ, ϕeλ)

=

[
a− (n− 3) +

n− 1

2
µ

]
g(ϕeλ, ϕeλ),

=

[
a− (n− 3) +

n− 1

2
µ

]
g(eλ, eλ).

Subtracting (3.6) from (3.5), it yields (3.2). Substituting (3.2) into (3.4), we get

S(X,Y ) =
1

2
(n− 3)(n+ 1)g(X,Y )(3.7)

+

[
(n− 1)k − 1

2
(n− 3)(n+ 1)

]
η(X)η(Y ),

which implies (3.3). �

From Lemma 3.1, we have

Corollary 3.2. Let M be a non-Sasakian η-Einstein (k, µ)-contact metric manifold.
Then there does not exist M satisfying µ > 0.

From Lemma 3.1, we get
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Lemma 3.3. Let Mn be an n-dimensional non-Sasakian Einstein (k, µ)-contact met-
ric manifold. Then n is either 3 or 5. Moreover if n = 3, then M is flat. If n = 5,
then we get

(3.8) k =
3

2
, µ = −2,

and

(3.9) S(X,Y ) = 6g(X,Y )

for any tangent vector fields X,Y of M .

Proof. By the assumption we have b = 0 in (3.1). By means of (3.3), we get

k =
1

2(n− 1)
(n− 3)(n+ 1).(3.10)

Making use of (2.3) and (3.10), we obtain

(3.11) (n− 2)2 ≤ 5,

which yields either n = 3 or n = 5.
Using (3.3) and (3.2) in the case of n = 3, we have

a = k = µ = 0,(3.12)

or equivalently,
R(X,Y )ξ = 0

for any tangent vector fields X,Y of M . Applying Theorem 2.3, we see that M is
flat.

Also using (3.3) and (3.2) in the case of n = 5, we obtain (3.8) and (3.9). �

By virtue of Theorem 2.5 and Lemma 3.1 we have

Theorem 3.4. Let Mn be an n-dimensional non-Sasakian η-Einstein (k, µ)-contact
metric manifold satisfying that k (k ̸= 0) is a rational number. Then M is not
C-Bochner semi-symmetric.

Proof. Since M is η-Einstein, by applying Lemma 3.1, we see that k (k ̸= 0) is a
rational number and µ (µ ̸= 0) is a integer. Hence, by using Theorem 2.5, we infer
our result. �

In view of Theorem 2.4, Theorem 2.6 and Lemma 3.3, we conclude the following:

Theorem 3.5. Let M be an n-dimensional non-Sasakian Einstein (k, µ)-contact met-
ric manifold satisfying (k, µ) ̸= (0, 0). Then M is not C-Bochner semi-symmetric and
M does not satisfy B(ξ,X).R = 0 for any vector fields X.

Proof. Since M is Einstein, applying Lemma 3.3, we get n = 5 and µ = −2. We
assume that M is 5-dimensional C-Bochner semi-symmetric. Using Theorem 2.4, we
have k = µ = 0, which yields a contradiction to the fact that µ = −2. Hence we find
that M is not C-Bochner semi-symmetric.

On the other hand, we can assume that M is 5-dimensional non-Sasakian (k, µ)-
contact metric manifold satisfying B(ξ,X).R = 0 for any vector fields X. Making

use of Theorem 2.6, we have µ = 3±
√
51

14 ̸= −2. Hence we conclude that M does not
satisfy B(ξ,X).R = 0 for any vector fields X. �



On an η-Einstein (k, µ)-contact metric manifold 49

References

[1] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress
in Mathematics 203, Birkhauser, Boston 2002.

[2] D. E. Blair, Th. Koufogiorgos, and B. J. Papantoniou, Contact metric manifolds
satisfying a nullity condition, Israel J. Math. 91 (1995), 189-214.

[3] E. Boeckx, A full classification of contact metric (k, µ)-spaces, Illinois J. Math.
44 (2000), 212-219.

[4] S. Fueki and H. Endo, On k and µ elements of a (k, µ)-contact metric manifold
satisfying certain conditions of C-Bochner curvature tensor, to appear.

[5] M. Matsumoto and G. Chuman, On the C-Bochner curvature tensor, TRU Math.
5,21 (1969), 21-30.

[6] C. D. Uday and G. Sujit, On C-Bochner curvature tensor of (k, µ)-contact metric
manifolds, Novi Sad J. Math. 44, 2 (2014), 41-51.

Authors’ address:

Shigeo Fueki and Hiroshi Endo
Tokoha University, Faculty of Education,
Sena 1-22-1, Aoi-ku, Shizuoka-shi 420-0911, Japan.
E-mail: s-fueki@sz.tokoha-u.ac.jp & pipos@m4.dion.ne.jp


