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Abstract. The extension of the Kluitenberg’s theory to the special rel-
ativistic case for thermo-mechanical model with internal variables is pre-
sented. In particular, as in the classical scheme, it is assumed that the
entropy density in an inertial frame of reference will depend on the density
of internal energy, on the total strain tensor and on a tensorial internal
variables. After having introduced the relativistic equilibrium stress ten-
sor, the relativistic viscous stress tensor and the relativistic memory stress
tensor, the expression for the entropy production is obtained.
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1 Introduction

It is well known that in non-equilibrium thermodynamics models the classical vari-
ables are not sufficient to describe some internal phenomena which occur inside the
medium [10, 11]. Therefore these phenomena can be studied by introducing some
additional variables, so called ”internal variables” [12]. Several authors [2, 17] include
internal variables in order to describe the behavior of materials in thermomechanics,
for example materials with microstructure. Two different types of internal variables
are distinguished: one is the internal degrees of freedom and the other one is internal
variables of state that, differently from the first one, has not inertia and does not
produce external work [1]. In this paper we will follow the terminology introduced
in the Kluitenberg’s framework that considers the internal variables such that its
substantial time derivatives does not occur in the first law of thermodynamics [12].
Sometimes internal variables or internal degrees of freedom are introduced without
thermodynamic basis under different denomination.
In this context, by mathematical point of view, it is useful to consider the entropy
function depending of these variables (in addition to the usual variables), even if from
physical point of view it is very difficult to associate them to a particular phenomena.
On the other hand, several questions arise as: what are the variables that, from a
physical point of view, has to be considered? How is it possible to define them? In
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some models it is not specified the physical nature of these variables and they are not
defined, but they are used in an appropriate way relatively to the obtained results.
The aim of this paper is to consider only mechanical phenomena in order to extend
to the special relativistic framework the thermo-mechanical Kluitenberg’s theory [10].
In agreement with Kluitenberg’s theory, we introduce some internal variables such a
way that the constitutive functions and, in particular, the entropy function depends
on them.
It is assumed that the entropy will depend on the internal energy, the total strain ϵik
and some ”internal” tensorial variable Ω [10, 11] . By introducing a reference state R
(for the medium), [11], and the Gibbs potential it is possible to split the total strain

tensor into two parts ϵ
(0)
ik and ϵ

(i)
ik with ϵik = ϵ

(0)
ik + ϵ

(i)
ik ; the term ϵ

(0)
ik vanishes in

the state R while ϵ
(i)
ik is assumed as the internal variable. In other words ϵ

(i)
ik takes

place of Ωik. In such a way, it is assumed that the internal variable is an independent
variable in the scheme of entropy. It is important to remark that the introduction of

the state R allows to the definition of ϵ
(i)
ik as the finding of ϵik in this state. After

the introduction of the two parts ϵ
(0)
ik and ϵ

(i)
ik in which ϵik can be split, it is possible

to define some tensorial quantities related to them which do not appear in previous
models.
Moreover, it is important to observe that many other models can be obtained from
this as particular case. The extension to relativistic case involves the fundamen-
tal problems concerning the transformation of the strain tensor in a frame reference
changing and the way in which it can be splitted. The first question has been solved
in a previous paper [4, 5] the second one is very important in order to compare with
the classical Kluitenberg’s theory and it will be solved in the section 4. This allows to
the introduction of quantities which appear in classical model by a special relativistic
point of view [8, 21].
In the last years the Kluitenberg’s non equilibrium thermodynamics has been further
developed by us, in [3, 6], in order to find some correlations between fundamental
entities of the theory and directly experimental measurable functions. This leads to
the experimental evaluation of some predicted results and some physical phenomena
described by phenomenological and state coefficients appearing in the theory. Let

us observe that ϵ
(0)
ik and ϵ

(i)
ik are quantity experimentally measurable even if, in a

particular simple case, it can be shown that it is possible to obtain experimental mea-
surements in relativistic case. In what follows, it will consider only one macroscopic
phenomenon which influences the mechanical properties of the medium; it is simple
to generalize to several microscopic phenomena.

2 Remarks on Kluitenberg’s theory

In this section we will briefly recall some fundamental aspects of mechanical phe-
nomena of the classical non-equilibrium Kluitenberg’s theory that are useful for the
relativistic extension. Kluitenberg’s theory [10, 11], is based on the idea that the
usual variables of non equilibrium thermodynamics are not sufficient to describe some
relaxation mechanical phenomena that occur in a medium whenever subjected to per-
turbations.
In this theory it is introduced the following [13]
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Postulate 2.1. Let’s consider an elastic medium which is represented here by a reg-
ular subset B of the point space E3. A thermodynamical state of B is represented by
the values taken by the set of regular functions

(2.1) S = {u, ϵik,Ωik}

in B at a given instant t; where u, ϵik and Ωik are the specific internal energy, the
strain tensor and tensorial symmetric variables respectively.

Postulate 2.2. The specific entropy s is a function defined in B× [0,∞[, as follows:

(2.2) s = s(u, ϵik,Ωik).

Definition 2.1. The temperature T , the equilibrium stress tensor τ
(eq)
ik and the

conjugate variable Gik are

1

T
=

∂s(u, ϵik)

∂u
,

τ
(eq)
ik = −ρT

∂s(u, ϵik,Ωik)

∂ϵik
,(2.3)

Gik = T
∂s(u, ϵik,Ωik)

∂Ωik
.(2.4)

By differentiating the relation (2.2) and by virtue of the definitions 2.1., the fol-
lowing Gibbs’ relation [10, 11] yields:

(2.5) Tds = du− ντ
(eq)
ik dϵik +GikdΩik,

in which ρ = 1
ν is the specific density and ν is the specific volume.

Postulate 2.3. It exists a state R at the constant temperature T0 in which it results:

(2.6) τ
(eq)
ik (T0) = τ

(eq)
ik(0) = 0.

Theorem 2.4. In the state R the strain ϵik is a regular function only of Ω.

Proof. The differentiation of the generalized free energy potential

(2.7) g = u− Ts− ντ
(eq)
ik ϵik

reads

(2.8) dg = du− sdT − Tds− ϵikd(ντ
(eq)
ik )− ντ

(eq)
ik dϵik,

on the other hand, the Gibbs’ relation (2.5) allows to rearrange the equality (2.8) as
follows

(2.9) dg = −sdT − ϵikd(ντ
(eq)
ik )− ν Gik · dΩik.

As a consequence

(2.10) ϵik = −
∂g(T, ντ

(eq)
ik ,Ωik)

∂(ντ
(eq)
ik )

,
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that is

(2.11) ϵik = f(T, ντ
(eq)
ik ,Ωik);

hence this function in the state R will depend only on Ωik

(2.12) f(T0, ντ
(eq)
ik(0),Ωik) = ϵ

(i)
ik (Ωik).

�

Proposition 2.5. Under the hypothesis of invertibility of the function ϵ
(i)
ik (Ωik), i.e.

Ωik = Ωik(ϵ
(i)
ik ), the function ϵik can be expressed as

(2.13) ϵik = ϵ
(0)
ik + ϵ

(i)
ik .

Proof. From physical considerations it is supposed that the inverse function theorem
can be applied in the range of physical interest. This means that the following function
can be obtained:

(2.14) Ωik = Ωik(ϵ
(i)).

If we substitute this equation into (2.2) and (2.10) it follows:

s = s̄(u, ϵik, ϵ
(i)
ik ),

ϵik = ϵ̄ik(T, ντ
(eq)
ik , ϵ

(i)
ik ).(2.15)

Let us emphasize that (2.12) will specify that in the state R occurs a ”strain phe-
nomena” (described by vector variable Ω) although there is no stress and his time
evolution is postulated independently from other variables. Let us introduce a new

vector field ϵ
(0)
ik

(2.16) ϵ
(0)
ik = ϵ̄ik(T, ντ

(eq)
ik , ϵ

(i)
ik )− ϵ

(i)
ik ,

obviously ϵ
(0)
ik vanishes in the state R for all values of ϵ

(i)
ik . Hence, from (2.16) it

follows:

(2.17) ϵik = ϵ
(0)
ik + ϵ

(i)
ik .

This equation shows that the strain ϵik is additively composed of two parts ϵ
(0)
ik and

ϵ
(i)
ik . �

Definition 2.2. The tensor

(2.18) τ
(i)
ik = ρT

∂s(u, ϵik, ϵ
(i)
ik )

∂ϵ
(i)
ik

is said inelastic stress tensor.
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Definition 2.3. The tensor

(2.19) τ
(vi)
ik = τik − τ

(eq)
ik

is called viscous stress tensor.

Let us remark that changes of ϵ
(0)
ik and ϵ

(i)
ik contribute to entropy production then

they express irreversible processes. Moreover, if the viscous stress (2.19) vanishes, the

variation of ϵ
(0)
ik does not contribute to the entropy production, i.e. changes in ϵ

(0)
ik

represent reversible processes.

3 Remark on energy momentum tensor and first
law of thermodynamics

In the present section we extend the Kluitenberg’s theory to the special relativistic
case. Let us suppose the medium in motion with respect to an inertial frame of
reference Σ and we indicate Σ0 the rest frame of reference of an element of fluid.
Let us introduce the Galilean coordinates defined in terms of spatial and temporal
variables (x, y, z, t) as follows:

x0 = ct, x1 = x, x2 = y, x3 = z,

where c is the scalar velocity of light in the vacuum. It is well known that the study of
the motion of such a medium implies to consider different forms of density of energy
flow. We will limit our considerations only on three forms of density of energy flow,
do not taking into account electrodynamics phenomena.

In such a context we consider the following quantities, [16]-[23]:

i) Ei is the vector representing density of energy flow of not mechanical nature (as
the heat),

ii) ρc2vi is the density of energy flow due only to the motion of the medium, where
ρ is the mass density,

iii) vjϕji is the density of energy flow due to the action of the forces of stress flowing
in the positive xi direction, where ϕji is the relativistic (no symmetric) stress
tensor.

hence, the total density of energy flow Li, is [22]

(3.1) Li = Ei + ρc2vi + vjϕji,

according to Einstein relation between mass and energy, it is possible to associate to
this quantity the following total momentum density

(3.2) Hi =
Li

c2
= ρvi +

Ei

c2
+

vjϕji

c2
.
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Definition 3.1. The tensor

(3.3) χβδ =

 χik = Hivk + ϕik

χi0 = χ0i = cHi ,
χ00 = ρc2

in which Latin index assumes the values 1, 2, 3 and Greek index assumes the values
0, 1, 2, 3, is said energy momentum tensor [14, 16, 19, 22].

If ρFi is the unitary volume force, the introduction of a four vector Wδ defines as
[10]-[18]

(3.4) Wδ ≡
(ρviFi

c
, ρFi

)
allows us to write the equation

(3.5)
∂χβδ

∂xβ
= Wδ,

in which the temporal component represents the balance equation for the energy
density and the spatial components represent the balance equation for the momentum
density. Moreover, by introducing the four vector V δ defined as

(3.6) V δ ≡
(
α, α

vi
c

)
and by combining the (3.5) and (3.6) the first law of thermodynamics easily is ob-
tained:

(3.7)
∂χβδ

∂xβ
V δ = WδV

δ.

By substituting (3.4) into (3.7) the following temporal component holds:

(3.8)
∂χ00

∂x0
=

2ρFivi
c

− ∂χi0

∂x0
V i − ∂χi0

∂xi
− ∂χik

∂xk
V i.

Let us remark that all these equations are relative to an arbitrary inertial frame Σ.

4 Relativistic thermodynamic approach

It is well known, that the tensor of order two χβδ, given by Definition 3.1., satisfies
the following transformation law [15]:

(4.1) χβδ =
∂xµ

∂xδ′
∂xν

∂xβ′

∗
χµν ,

where
∗
χµν is the energy momentum tensor in a rest frame of reference and the law of

transformation is related to Lorentz transformation.
In the following, a function evaluated in the rest frame of reference will be denoted
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with the symbol ”∗” as upper index. Taking into account the relations (3.3) and (4.1),
it is easy to obtain the following relation [19, 23]:

(4.2) χ00 = α2ρ0c
2 + 2

α2vi

c2

∗
Ei +

α2

c2
vivk

∗
ϕik = ρc2,

where ρ0 and
∗
ϕik are respectively the mass density and the symmetric Cauchy stress

tensor in a rest frame of reference, and where α = 1√
1− v2

c2

. Our relativistic approach is

completely based on the principle of special relativity which expresses the invariability
of the law of the physic in two arbitrary inertial reference frames. This allows us to
preserve the assumption on the insufficient number of the variables for the description
of some internal phenomena which occur in a medium. Indeed, this cannot be proved,
but we think that it is a reasonable assumption also in a relativistic approach [7, 9].

Postulate 4.1. The entropy density ϕ in an arbitrary inertial frame of reference Σ,
depends on the density of energy χ00 [13], on the total relativistic strain tensor γik
and on the relativistic internal variables γ

(i)
ik ,

(4.3) ϕ = ϕ(χ00γik, γ
(i)
ik )

and in Σ0:

(4.4)
∗
ϕ =

∗
ϕ(

∗
χ00,

∗
γik,

∗
γ
(i)

ik ).

Since the entropy σ is an invariant quantity, it follows from (4.3) and (4.4) that

(4.5) ϕ = α
∗
ϕ,

such that

(4.6) d
∗
σ =

∗
ϕd

∗
V

represents the entropy of the volume d
∗
V in Σ0. Here χ00 and

∗
χ00 represent the

temporal components of the energetic tensor in Σ and Σ0 respectively. From (4.3)-
(4.5) follows:

(4.7)
∂ϕ

∂χ00
= α

∂
∗
ϕ

∂
∗
χ00

∂
∗
χ00

∂χ00
,

recalling the expression of the temperature T in Σ0, [4, 5], as

(4.8)
1
∗
T

=
∂
∗
ϕ

∂
∗
χ00

,

the relation (4.7) becomes

(4.9)
∂ϕ

∂χ00
=

1

α

1
∗
T
,

in which the (4.2) has been considered.
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Definition 4.1. The relativistic temperature T , in a generic inertial frame Σ, is a
function satisfying the relation

(4.10)
1

T
=

∂ϕ

∂χ00
=

1

α
∗
T
.

In other words the last definition is equivalent to

(4.11) T = α
∗
T ,

that is in agreement with Ott’s transformation formula [20]. Now, from (4.3)-(4.5),
it follows:

(4.12)
∂ϕ

∂γrs
= α

∂
∗
ϕ

∂
∗
γik

∂
∗
γik

γrs
.

By virtue of the well known classical relation in Σ0, ([4, 5, 10, 11])

(4.13)
∂
∗
ϕ

∂
∗
γik

=
1
∗
T

∗
ϕ
(eq)

ik

and taking into account the (4.11), the expression (4.12) becomes:

(4.14) T
∂ϕ

∂γrs
= α2

∗
ϕ
(eq)

ik

∂
∗
γik

∂γrs
.

Definition 4.2. The tensor in Σ

(4.15) ϕ(eq)
rs = T

∂ϕ

∂γrs

is said equilibrium relativistic stress tensor.

Hence

(4.16) ϕ(eq)
rs = α2

∗
ϕ
(eq)

ik

∂
∗
γik

∂γrs
,

where
∗
ϕ
(eq)

rs is the equilibrium stress tensor in Σ0.

Definition 4.3. The tensor

(4.17) ϕ(i)
rs = T

∂ϕ

∂γ
(i)
rs

= α2
∗
ϕ
(i)

ik

∂
∗
γik

∂γ
(i)
rs

is called relativistic affinity stress tensor.
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(4.16) and (4.17) are unusable if it does not know the law of transformation of
∗
γik. Let us remark that the quantities ϕ

(eq)
ik , ϕ

(i)
ik have the same transformation law

because of the intrinsic meaning of the stress as ratio between the force and the surface

[22]. By indicating with Sik a generic stress tensor (which can be ϕ
(i)
ik , ϕik, ϕ

(eq)
ik ) the

transformation laws of the stress tensor are well known [19, 23], i.e. the following
transformation laws yields, [22, 23]:

S11 =
∗
S11 S12 = α

∗
S12 S13 = α

∗
S13,

S21 =
1

α

∗
S21 S22 =

∗
S22 S23 =

∗
S23,

S31 =
1

α

∗
S31 S32 =

∗
S32 S33 =

∗
S33.(4.18)

From these relations follow two properties:

• relativistic stress tensor is not symmetric,

• every component in Σ will depend only on component with same index in Σ0.

By using (4.18), (4.16) allows also to get the transformation law for the strain tensor,
for this reason we prove the following theorem.

Theorem 4.2. The transformation laws of the relativistic strain tensor is given by:

γ11 = α2 ∗
γ11 γ12 = α

∗
γ12 γ13 = α

∗
γ13,

γ21 = α3 ∗
γ21 γ22 = α2 ∗

γ22 γ23 = α2 ∗
γ23,

γ31 = α3 ∗
γ31 γ32 = α2 ∗

γ32 γ33 = α2 ∗
γ33.

Proof. By taking into account the non-symmetry of stress tensor, (4.16) or (4.17) lead
to

(4.19)
∗
Sik

∂
∗
γik

∂γrs
̸=

∗
Sik

∂
∗
γik

∂γsr
,

from which follows the not symmetry of the strain tensor,

γrs ̸= γsr.

Let us rewrite (4.16), where is denoted with Sik the stress tensor:

(4.20) Srs = α2
∗
Sik

∂
∗
γik

∂γrs

and let us compute the above relation for example for the component r = 1, s = 3,
i.e. (see relations (4.18)):

S13 = α
∗
S13 = α2

( ∗
S11

∂
∗
γ11

∂γ13
+

∗
S12

∂
∗
γ12

∂γ13
+

∗
S13

∂
∗
γ13

∂γ13

)
+ ...

+α2
( ∗
S31

∂
∗
γ31

∂γ13
+ ...+

∗
S33

∂
∗
γ33

∂γ13

)
.(4.21)
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Since the term S13 is a function only of
∗
S13 and by assuming that Sik is different

from zero, the above equation becomes:

(4.22)
∂
∗
γ13

∂γ13
=

1

α
.

(4.21) reduces to (4.22) if and only if

(4.23)
∂
∗
γrs

∂γik
= 0 i ̸= r k ̸= s.

This means that any components of the strain tensors in Σ depends on the component
with the same index in Σ0. By integrating the relation (4.22), the transformation law

for the strain tensor of the component
∗
γ13 is obtained:

(4.24) γ13 = α
∗
γ13 + c1,

where c1 is the integration constant that can be choosen equal to zero because of, in
rest frame of reference Σ0, has to satisfy:

(4.25) γ13 =
∗
γ13.

Analogously for all components, the transformation laws for relativistic strain are
obtained. �

As explained above, the law of transformation for the stress tensor is independent

of the character of anelasticity, viscosity etc. of the tensors ϕ
(i)
ik , ϕ

(eq)
ik , i.e. all stress

tensors have the same transformation law, therefore the transformation laws for any

kind of strain tensor,
∗
γik, γ

(i)
ik ..., will assume the same form.

Definition 4.4. The tensor

(4.26) ϕ
(vi)
ik = ϕik − ϕ

(eq)
ik

is said relativistic viscous stress tensor.

Definition 4.5. The tensor

(4.27) ϕ
(i)
ik(m) = ϕ

(i)
ik − ϕ

(eq)
ik

is called relativistic memory stress tensor.

Let us remark that if no viscous phenomena occur it follows

(4.28) ϕik = ϕ
(eq)
ik .

From (4.27), it follows

(4.29) ϕik = ϕ
(vi)
ik + ϕ

(i)
ik − ϕ

(i)
ik(m).
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5 Entropy production

In this section obtain the expression of relativistic entropy production.

Theorem 5.1. The relativistic entropy density production is due to the following
phenomena:

• the gradient of temperature;

• the flow of the unitary volume force;

• the equilibrium strain phenomena;

• the affinity stress phenomena

and assumes the following expression

(5.1) Ω(σ) = −χ0i

T 2

∂T

∂xi
+

ρFivi
Tc

+
ϕ
(eq)
ik

T

∂γik
∂x0

+
ϕ
(i)
ik

T

∂γ
(i)
ik

∂x0
.

Proof. From relation (4.3) one obtains:

(5.2)
∂ϕ

∂x0
=

∂ϕ

∂χ00

∂χ00

∂x0
+

∂ϕ

∂γik

∂γik
∂x0

+
∂ϕ

∂γ
(i)
ik

∂γ
(i)
ik

∂x0
;

by taking into account (4.11), (4.15) and (4.17), (5.2) becomes:

(5.3)
∂ϕ

∂x0
=

1

T

∂χ00

∂x0
+

1

T
ϕ
(eq)
ik

∂γik
∂x0

+
1

T
ϕ
(i)
ik

∂γ
(i)
ik

∂x0
.

By recalling the expressions (3.4), (3.7) and (3.8), it follows:

(5.4)
(∂χi0

∂x0
+

∂χik

∂xk

)
V i =

ρFivi
c

,

in which the term ρFi is the unitary volume force, by substituting it into (5.3), it
follows:

(5.5)
∂ϕ

∂x0
= − 1

α2

∂J (σ)

∂xi
+Ω(σ),

where

(5.6) J (σ) =
χ0i

T
.

Then

(5.7) Ω(σ) = −χ0i

T 2

∂T

∂xi
+

ρFivi
Tc

+
ϕ
(eq)
ik

T

∂γik
∂x0

+
ϕ
(i)
ik

T

∂γ
(i)
ik

∂x0

and the assert is proved. �

Let us observe that the relation (5.1) restore the classical entropy production in
the proper reference Σ0.
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6 Conclusions

The extension of a classical theory to the relativistic case generally presents some
difficulties especially defining the relativistic form of the corresponding classical quan-
tities. In particular, the main difficulty is to express the transformation law of the
classical quantities. Our approach is based entirely on the principle of relativity and
on the transformation law of the strain tensor obtained by us in a previous paper. In
particular, by taking into account the classical non equilibrium thermodynamics ap-
proach, we introduce a relativistic entropy function, as in the classical case, depending
on the corresponding relativistic variables. Moreover, by invoking the principle of rel-
ativity, even in the relativistic approach, it is possible to split the strain tensor as the
sum of an ”elastic” and ”inelastic” parts as in the classical case. If this is not true we
can evidence by experiments the motion of an inertial frame with respect to another
contradicting the principle of special relativity. Obviously, it is possible to obtain the
classical case if we refer to a rest reference frame. By considering the definition of
temperature, introduced by us in a previous paper, [5], we have been able to define
the corresponding relativistic stress tensor (equilibrium, inelastic) and therefore to
place the foundations in order to treat every quantity of the classical Kluitenberg’s
theory in a relativistic framework. In some sense, the quantities introduced by us
are the fundamental in order to develop an relativistic Kluitenberg’s extension. Of
course, even for those quantities we obtain the classical form if we refer to a rest ref-
erence frame. It is our opinion this is a very simple and natural approach to extend
the Kluitenberg’s ideas to relativistic case and it allows to develop the theory. This
approach can be useful for the study of astrophysical problems in which it needs a
more complete description, as in the black holes.
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