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Abstract. This paper contains the study of a six-dimensional space time,
in which there are determined the scale factors A(t), B(t), C(t), D(t)
and E(t) with the help of the Einstein field equation and of the energy
momentum tensor for the case of the perfect fluid. We have also evaluated
some cosmological terms, like energy density ρ, energy pressure p, the
Hubble parameterH, the deceleration parameter q, the anistropic mean A,
and proved that all the parameters diverges at t = − c1

nl
, which emphasize

this point as being a singular one. Plots for the comparative study of scale
factors and cosmological terms are provided.
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1 Introduction

For the description of the universe there exist numerous tools which are used by
mathematicians and physicists. The cosmological models are such ones. The gener-
ally homogeneous and the anisotropic cosmological models are generally used. The
Bianchi models I-IX describe the construction of homogeneous cosmology. Numerous
works which modify the Einstein general relativity have been used by mathemati-
cians and Physicists. The cosmological models, the Bianchi type model and the field
equations have been studied by [2], Shrirams, and Cami et al.[6] by using different
types of metric. In [1], Berman introduced a new model called FRW model, and
obtained the solution of Einstein field equations by applying the law of variation of
the Hubble parameter. The cosmological model with constant deceleration param-
eter has been studied by Johri and Desikan[3], Singh and Desikan[4], Maharaj and
Naidu[5], Pradhan et al.[7] and Rahaman et al.[8], and Reddy et al.[10]. In [11], D.
P. Teltumbade, J. K. Jumale K. D. Thengane gave the solution of the six-dimension
static plane symmetric vacuum solutions in the F (R) gravity. Friedman-Lemaitre-
Robertson Walker (FLRW ) studied the almost homogeneous and anisotropic space
time. As consequence, in this paper, we consider a six-dimensional metric and eval-
uate all its scale factors and the cosmological terms. As well, we show that the scale
factors vanish for t = − c1

nl
.
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2 The metric and field equations

We have considered the following six-dimensional metric.

(2.1) ds2 = dt2 −A2dx2 −B2dy2 − C2dz2 −D2dµ2 − E2dν2,

where A, B, C, D and E are functions of t only. The energy momentum tensor T
j
i

for the perfect fluid is defined by

(2.2) T
j
i = (ρ+ p)ViV

j − p g
j
i ,

where p and ρ are the anistropic pressure and the energy density, respectively. We
are taking V i as the six-velocity of the particles, such that for V i = (0, 0, 0, 0, 0, 1), to
have V iVi = −1. In 1915, for the first time Einstein published a paper that described
how matter dynamically interacts with the geometry of space and time, which had
impact in view of practical applications in GPS and information systems.

In 1916, Albert Einstein gave the equation

(2.3) Ri j −
1

2
Rgi j = kTi j ,

called the Einstein field equation, where R, Ri,j , k and T are respectively the scalar
curvature, Ricci tensor, gravitational constant and energy momentum tensor.

Taking into consideration our model, the coefficients of the metric (2.1) form the
matrix

K =

















−A2 0 0 0 0 0
0 −B2 0 0 0 0
0 0 −C2 0 0 0
0 0 0 −D2 0 0
0 0 0 0 −E2 0
0 0 0 0 0 1

















The determinant K is given by

|K| = −A2 B2 C2 D2 E2,

and the non-vanishing Christoffel symbols corresponding to the metric are

Γ6
1 1 = A6A, Γ

6
2 2 = B6B, Γ6

3 3 = C6C, Γ
6
4 4 = D6D, Γ6

5 5 = E6E,

Γ1
6 1 =

A6

A
, Γ2

6 2 =
B6

B
, Γ3

6 3 =
C6

C
, Γ4

6 4 =
D6

D
, Γ5

6 5 =
E6

E
,

(2.4)

where the index 6 denotes the derivative with respect to the time t, i.e., A6 = ∂A
∂t

.
We know that the Ricci tensor of type (0,2) is defined as

(2.5) Ri j =
∂Γk

k i

∂xj
−

∂Γk
i j

∂xk
+ Γq

k iΓ
k
q j − Γq

i jΓ
k
q k.
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By using (2.4) in (2.5), we get all the non-zero components of the Ricci tensor,

(2.6)

R1 1 = −AA6 6 −
AA6 B6

A
− AA6 C6

C
− AA6 D6

D
− AA6 E6

E
.

R2 2 = −BB6 6 −
BA6 B6

A
− BB6 C6

C
− BB6 D6

D
− BB6 E6

E
,

R3 3 = −C C6 6 −
C C6 A6

A
− C D6 C6

D
− C C6 B6

B
− C C6 E6

E
,

R4 4 = −DD6 6 −
DA6 D6

A
− DB6 D6

B
− DC6 D6

C
− DD6 E6

E
,

R5 5 = −E E6 6 −
E A6 E6

A
− EE6 B6

B
− EE6 D6

D
− E C6 E6

C
,

R6 6 = A6 6

A
+ B6 6

B
+ C6 6

C
+ D6 6

D
+ E6 6

E
.

Then, the scalar curvature tensor is given by

(2.7) R = R1 1 g
1 1 +R2 2 g

2 2 +R3 3 g
3 3 +R4 4 g

4 4 +R5 5 g
5 5 +R6 6 g

6 6,

and further, by using (2.6) in (2.7), we have

R =2

(

A6 6

A
+

B6 6

B
+

C6 6

C
+

D6 6

D
+

E6 6

E

)

+ 2

(

A6 B6

AB
+

A6 C6

AC
+

A6 D6

AD
+

A6 E6

AE
+

C6 B6

C B

)

+

(

D6 B6

DB
+

E6 B6

EB
+

C6 D6

C D
+

C6 E6

C E
+

D6 E6

DE

)

.

(2.8)

This is the required scalar curvature in terms of scale factors. By the help of equation
(2.2), (2.3), (2.6) and (2.8), we get field equations

(2.9)

B6 6
B

+ C6 6
C

+ D6 6
D

+ E6 6
E

+ C6 B6
C B

+ D6 B6
DB

+ E6 B6
E B

+ C6 D6
C D

+ C6 E6
C E

+ D6 E6
DE

= p.

A6 6
A

+ C6 6
C

+ D6 6
D

+ E6 6
E

+ C6 A6
C A

+ D6 A6
DA

+ E6 A6
E A

+ C6 D6
C D

+ C6 E6
C E

+ D6 E6
DE

= p,

A6 6
A

+ B6 6
B

+ D6 6
D

+ E6 6
E

+ B6 A6
B A

+ D6 A6
DA

+ E6 A6
E A

+ B6 D6
B D

+ B6 E6
B E

+ D6 E6
DE

= p,

A6 6
A

+ B6 6
B

+ C6 6
C

+ E6 6
E

+ C6 E6
C E

+ D6 B6
DB

+ E6 A6
E A

+ C6 A6
C A

+ C6 B6
C B

+ B6 E6
B E

= p,

A6 6
A

+ B6 6
B

+ C6 6
C

+ D6 6
D

+ A6 B6
AB

+ D6 B6
DB

+ C6 B6
C B

+ C6 A6
C A

+ C6 E6
C E

+ D6 A6
DA

= p,

and also
ρ = −

(

A6 B6

AB
+ A6 C6

AC
+ A6 D6

AD
+ A6 E6

AE
+ C6 B6

C B

)

+
(

D6 B6

DB
+ E6 B6

E B
+ C6 D6

C D
+ C6 E6

C E
+ D6 E6

DE

)

.

3 Solving the field equations

By recombining by subtraction the equations (2.9), we get

(3.1)

A6 6

A
− B6 6

B
+
(

A6

A
− B6

B

) (

C6

C
+ D6

D
+ E6

E

)

= 0,

B6 6

B
− C6 6

C
+
(

B6

B
− C6

C

) (

A6

A
+ D6

D
+ E6

E

)

= 0,

C6 6

C
− D6 6

D
+
(

C6

C
− D6

D

) (

A6

A
+ B6

B
+ E6

E

)

= 0,

D6 6

D
− E6 6

E
+
(

D6

D
− E6

E

) (

C6

C
+ B6

B
+ A6

A

)

= 0,

E6 6

E
− A6 6

A
+
(

E6

E
− A6

A

) (

C6

C
+ D6

D
+ B6

B

)

= 0.
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The first equation in (3.1) can be written as

∂(A6

A
− B6

B
)

∂t
+

(

A6

A
−

B6

B

)(

A6

A
+

B6

B
+

C6

C
+

D6

D
+

E6

E

)

= 0,

which by two-fold integration relative to t yields

(3.2)
A

B
= d1 e

k1(
∫

1
(ABCDE)

dt)
.

Similarly by rearranging and integrating the rest of the equations from (3.1), we infer

B
C

= d2 e
k2(

∫
1

(ABCDE)
dt)

, C
D

= d3 e
k3(

∫
1

(ABCDE)
dt)

,

D
E

= d4 e
k4(

∫
1

(ABCDE)
dt)

, E
A

= d5 e
k5(

∫
1

(ABCDE)
dt)

.

We further propose the following result:

Theorem 3.1. In the six dimensional space time, if k1 + k2 + k3 + k4 + k5 = 0, then
d1 d2 d3 d4 d5 = 1.

Proof. By multiplying the relations (3.2), we get

1 = d1 d2 d3 d4 d5 e
k1+k2+k3+k4+k5(

∫
1

(ABCDE)
dt).

Then, by using the relation k1 + k2 + k3 + k4 + k5 = 0, we get d1 d2 d3 d4 d5 = 1. �

By transvecting (2.2) by gi k, we get

T j k = (ρ+ p)V kV j − p gj k,

and by taking the covariant derivative of T j k with respect to k, we get

T
j k
;k = ∂k T

j k + T k α Γj
α k + T j α Γk

α k,

which implies
T 6 6
;6 = ∂6 T

6 6 + T 6α Γ6
α 6 + T 6α Γ6

α 6,

and further, T 6 6
;6 = ∂6 T

6 6. But ∂6 T
6 6 = ρ6, and hence we get

(3.3) T 6 6
;6 = ρ6.

Similarly, we infer

T 6 1
;1 = (ρ− p)

A6

A
, T 6 2

;2 = (ρ− p)
B6

B
, T 6 3

;3 = (ρ− p)
C6

C
,

T 6 4
;4 = (ρ− p)

D6

D
and T 6 5

;5 = (ρ− p)
E6

E
.

(3.4)

We know that the energy conservation equation is given by T
j k
;k = 0, which implies

(3.5) T 6 6
;6 + T 6 1

;1 + T 6 2
;2 + T 6 3

;3 + T 6 4
;4 + T 6 5

;5 = 0.
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By using (3.3) and (3.4) in (3.5), we get

(3.6) ρ6 + (ρ− p)

(

A6

A
+

B6

B
+

C6

C
+

D6

D
+

E6

E

)

= 0,

which is the required energy conservation equation in terms of scale factors.

Now we propose the following:

Theorem 3.2. In a six dimensional space time the energy density ρ is constant if

and only if either ρ = p, or ABCDE = constant.

Proof. If we take ρ = costant, then ρ6 = 0. Replacing this in (3.6), we get

(ρ− p)

(

A6

A
+

B6

B
+

C6

C
+

D6

D
+

E6

E

)

= 0,

which implies either ρ = p or
(

A6

A
+

B6

B
+

C6

C
+

D6

D
+

E6

E

)

= 0.

This infers that either ρ = p or ABCDE = constant. Conversely, let ρ = p.
Then from (3.6) we infer ρ6 = 0, which implies ρ = constant; if we take ABCDE =
constant, then we can write

logA+ logB + logC + logD + logE = log(constant).

Differentiating this with respect to t, we get

A6

A
+

B6

B
+

C6

C
+

D6

D
+

E6

E
= 0,

and using this in (3.6), we get ρ6 = 0. �

4 The scale factor

We have seven unknowns A, B, C, D, E, p and ρ in five equations (3.1). Therefore,
after solving these equations, we can not find an explicit solution. To solve this is-
sue, we consider other two parameters related to these unknowns. In [9], Pradhan
and Chouhan consider the relation A = (BC)m, where m is positive constant, and
obtained the explicit solution of the Einstein field equations of Bianchi type-I. In [1],
Berman gave the special law of variation for the Hubble parameter which has a con-

stant value of deceleration parameter. This parameter is defined by H = l(ABC)
−n

3 ,
where l > 0 and n ≥ 0.

In the following we consider

(4.1) A = (BCDE)m,

and

(4.2) H = l(ABCDE)
−n

5 ,
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we also define the average scale factor R for the six-dimensional metric equation, by
the relation R5 = ABCDE. We know that the generalized Hubble parameter H for
six-dimensions is given by

(4.3) H =
R6

R
=

1

5

(

A6

A
+

B6

B
+

C6

C
+

D6

D
+

E6

E

)

,

which, replaced in (4.2), leads to

l(ABCDE)
−n

5 =
1

5

(

A6

A
+

B6

B
+

C6

C
+

D6

D
+

E6

E

)

,

which, integrated with respect to t, infers

(4.4) (ABCDE) = (nlt+ c1)
5
n ,

for n 6= 0, and

(4.5) (ABCDE) = c52 e5lt,

for n = 0, where c1 and c2 are intergration constants. Thus (4.4) and (4.5) show
the power expansion and exponential expansion respectively. In [9], Pradhan and
Chouhan obtained scale factors by using the power law and the exponential law in
anisotropic Bianchi type-I model string cosmology. By solving equations (3.2), (4.1)
and (4.4), we get

(4.6) A(t) = (nlt+ c1)
5m

n(m+1) ,

and using (4.6) in (3.2), we get

(4.7) B(t) = (nlt+ c1)
5m

n(m+1) d−1
1 e

−

k1
l(n−5)

(nlt+c1)
n−5
n

, n 6= 5.

Similarly, for n 6= 5, we obtain

(4.8)

C(t) = (nlt+ c1)
5m

n(m+1) d−1
1 d−1

2 e
−

k1+k2
l(n−5)

(nlt+c1)
n−5
n

,

D(t) = (nlt+ c1)
5m

n(m+1) d−1
1 d−1

2 d−1
3 e

−

k1+k2+k3
l(n−5)

(nlt+c1)
n−5
n

,

E(t) = (nlt+ c1)
5m

n(m+1) d−1
1 d−1

2 d−1
3 d−1

4 e
−

k1+k2+k3+k4
l(n−5)

(nlt+c1)
n−5
n

.

Hence equation (2.1) reduces to

ds2 = dt2 − [(nlt+ c1)
5m

n(m+1) ]2
(

dx2 + d−2
1 e

−2
k1

l(n−5)
(nlt+c1)

n−5
5

dy2

+d−2
1 d−2

2 e
−2

k1+k2
l(n−5)

(nlt+c1)
n−5
5

dz2 + d−2
1 d−2

2 d−2
3 e

−2
k1+k2+k3

l(n−5)
(nlt+c1)

n−5
5

dµ2

+d−2
1 d−2

2 d−2
3 d−2

4 e
−2

k1k2+k3+k4
l(n−5)

(nlt+c1)
n−5
5

dν2
)

.

Taking two times the covariant derivative of (4.6) with respect to t, we get

(4.9) A6 6 =
5ml2(5m− n(m+ 1))

(m+ 1)2
(nlt+ c1)

5m
n(m+1)

−2
.
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From (4.6) and (4.9), we have

A6 6

A
=

5ml2(5m− n(m+ 1))

(m+ 1)2
(nlt+ c1)

−2.

Taking once the covariant derivative of (4.7) with respect to t, we get

B6 =
5ml

(m+ 1)
(nlt+ c1)

5m
n(m+1)

−1
d−1
1 e

−

k1
l(n−5)

(nlt+c1)
n−5
n

− (nlt+ c1)
5m

n(m+1) d−1
1 k1(nlt+ c1)

−5
n e

−

k1
l(n−5)

(nlt+c1)
n−5
n

.

(4.10)

From (4.7) and (4.10), we infer

(4.11)
B6

B
=

5ml

(m+ 1)
(nlt+ c1)

−1 − k1(nlt+ c1)
−5
n .

Similarly, we obtain

(4.12)

A6

A
= 5ml

(m+1) (nlt+ c1)
−1,

C6

C
= 5ml

(m+1) (nlt+ c1)
−1 − (k1 + k2)(nlt+ c1)

−5
n ,

D6

D
= 5ml

(m+1) (nlt+ c1)
−1 − (k1 + k2 + k3)(nlt+ c1)

−5
n ,

E6

E
= 5ml

(m+1) (nlt+ c1)
−1 − (k1 + k2 + k3 + k4)(nlt+ c1)

−5
n .

Again, taking the covariant derivative of (4.10) and dividing by (4.7), it follows that

B6 6

B
=
5ml2(5m− n(m+ 1))

(m+ 1)2
(nlt+ c1)

−2

−

(

5lk1(2m− 1)

m+ 1

)

(nlt+ c1)
−n−5

n + k21(nlt+ c1)
−10
n .

(4.13)

Similarly, we find

(4.14)

C6 6

C
= 5ml2(5m−n(m+1))

(m+1)2 (nlt+ c1)
−2

−
(

5l(k1+k2)(2m−1)
m+1

)

(nlt+ c1)
−n−5

n + (k1 + k2)
2(nlt+ c1)

−10
n ,

D6 6

D
= 5ml2(5m−n(m+1))

(m+1)2 (nlt+ c1)
−2

−
(

5l(k1+k2+k3)(2m−1)
m+1

)

(nlt+ c1)
−n−5

n

+(k1 + k2 + k3)
2(nlt+ c1)

−10
n ,

E6 6

E
= 5ml2(5m−n(m+1))

(m+1)2 (nlt+ c1)
−2

−
(

5l(k1+k2+k3+k4)(2m−1)
m+1

)

(nlt+ c1)
−n−5

n

+(k1 + k2 + k3 + k4)
2(nlt+ c1)

−10
n ,

Using (4.11), (4.12), (4.13), and (4.14) in (2.9), we get

(4.15)
p = 275(ml)2−25nml2(m+1)

(m+1)2 (nlt+ c1)
−2−

− (5lL1)(5m−1)
m+1 (nlt+ c1)

(−n−5)
n + L2(nlt+ c1)

−10
n ,
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where L1 = 4k1 + 3k2 + 2k3 + k4, and

L2 = 10k21 + 5k22 + 3k23 + k24 + 16k1k2 + 10k1k3 + 5k1k4 + 8k3k2 + 4k2k4 + 3k3k4.

Similarly, using (4.11) and (4.12), we get

(4.16)
ρ = − 250(ml)2

(m+1)2 (nlt+ c1)
−2+

20lmL1

(m+1) (nlt+ c1)
(−n−5)

n − L3(nlt+ c1)
−10
n ,

where L3 = 6k21 + 3k22 + k23 + 8k1k2 + 6k1k3 + 3k1k4 + 4k3k2 + 2k2k4 + k3k4.

From equation (4.16) we see that if ρ ≥ 0 then

t ≤
1

nl





( 250(ml)2

(m+ 1)2( 5lmL3

(m+1) (nlt+ c1)
(−n−5)

n − L4(nlt+ c1)
−10
n )

)
1
2

− c1



 .

From (4.16), we can say that all the parameters are diverging at t = − c1
nl
; this shows

that the model has a singularity at t = − c1
nl
, and implies that t = 0 if only if c1 = 0.

Since the pressure p and the energy density ρ are diverging at (t = − c1
nl
), this type of

singularity is called point type singularity.

The rates of expansion Hi along X, Y , Z, µ and ν are

(4.17)

Hx = A6

A
= 5ml

(m+1) (nlt+ c1)
−1,

Hy = B6

B
= 5ml

(m+1) (nlt+ c1)
−1 − k1(nlt+ c1)

−5
n ,

Hz = C6

C
= 5ml

(m+1) (nlt+ c1)
−1 − (k1 + k2)(nlt+ c1)

−5
n ,

Hµ = D6

D
= 5ml

(m+1) (nlt+ c1)
−1 − (k1 + k2 + k3)(nlt+ c1)

−5
n ,

Hν = E6

E
= 5ml

(m+1) (nlt+ c1)
−1 − (k1 + k2 + k3 + k4)(nlt+ c1)

−5
n .

Using (4.17) in (4.3), we infer

(4.18) H =
5ml

(m+ 1)
(nlt+ c1)

−1 −
1

5
L1(nlt+ c1)

−5
n .

We know that the description of homogeneous universe is given by the values of all
density parameters and the present Hubble parameter H, which we need to compute.
As well, there are some important physical quantities of observational interest in
cosmology: the expansion scalar θ, the Hubble parameter H and the deceleration
parameter q, defined as follows.

The expansion scalar θ is the quantity given by

θ = vi;i =

(

A6

A
+

B6

B
+

C6

C
+

D6

D
+

E6

E

)

.

By using (4.11)-(4.12) in this expression, we have

(4.19) θ =
25ml

(m+ 1)
(nlt+ c1)

−1 − L1(nlt+ c1)
−5
n .
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The deceleration parameter is defined by

q =
∂

∂t

(

1

H

)

− 1,

and by using (4.18), we get

(4.20) q =

(

5ml2n
m+1 (nlt+ c1)

−2 − L5l(nlt+ c1)
−5−n

n

( 5ml
(m+1) (nlt+ c1)−1 − L5

5 (nlt+ c1)
−5
n )2

)

,

The expression of the mean anistropy is

A =
1

n− 1

n−1
∑

i=1

(

∆Hi

H

)2

,

where ∆Hi = Hi −H; by using (4.17) and (4.18), we infer

(4.21) A =





(

4ml
m+1 (nlt+ c1)

−1 − 4
25L1(nlt+ c1)

−

5
n

)

(

5ml
m+1 (nlt+ c1)−1 − 1

5L1(nlt+ c1)−
5
n

)





2

.

From (4.15), (4.16), (4.18), (4.19), (4.20) and (4.21), we infer the following:

Theorem 4.1. In the 6-dimensional space time, the cosmological terms of energy

density ρ, pressure p, Hubble parameter H, expansion scalar θ, deceleration parameter

q and anistropic mean A diverge at t = − c1
nl
. In other words, we can say that the

point t = − c1
nl

is a singular point for these cosmological terms.

5 Plots and conclusions

All the scale factors were explicitly obtained in (4.6)-(4.8). As well, the cosmological
terms of energy pressure p, energy density ρ, Hubble parameter H, expansion scalar
θ, deceleration parameter q and anistropic mean were evaluated and given in (4.15),
(4.16), (4.18), (4.19), (4.20) and (4.21) respectively. From these equations we remark
that all cosmological terms diverge at t = − c1

nl
and the scale factors vanish at t = − c1

nl
.

Therefore we can say that t = − c1
nl

is a singular point for all cosmological terms. The
t-plots of these quantities are given in Fig.1, Fig.2, Fig.3, Fig.4, Fig.5 and Fig.6.

From Fig.2 one can easily see that the cosmological evolution of the six-dimensional
space time is expansionary, with all the five scale factors monotonically increasing
functions of time t. Also, the variation of all the scale factors relative to time, are
shown in Fig.2, and we can see that A(t) maximally varies in terms of T , while E(t)
minimally varies. From Fig.1 and fig.4, it is clear that the energy density and the en-
ergy pressure are both independent of t in the six-dimensional cosmological evolution
of model. As well, Fig.5 shows the variation of the expansion scalar θ with the cosmic
time t, and reveals that the expansion scalar θ tends to zero as t approaches infinity.
From Fig.3. and Fig.6. one notices the variation of the deceleration parameter q and
the Hubble parameter H in terms of t.
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Figure 1: Pressure vs. time t, where (l = m = n = c = 0.5) and (k1, k2, k3, k4, k5) =
(0.1, 0.2, 0.3, 0.4, 0.5)
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Figure 2: Scale factor vs. time t, where (l = m = n = c = 0.5) and (k1, k2, k3, k4, k5) =
(0.1, 0.2, 0.3, 0.4, 0.5)
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Figure 3: Deceleration parameter vs. time t, where (l = m = n = c = 0.5) and
(k1, k2, k3, k4, k5) = (0.1, 0.2, 0.3, 0.4, 0.5)
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Figure 4: Energy density vs. time t, where (l = m = n = c = 0.5) and
(k1, k2, k3, k4, k5) = (0.1, 0.2, 0.3, 0.4, 0.5)
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Figure 5: Expansion scalar vs. time t, where (l = m = n = c = 0.5) and
(k1, k2, k3, k4, k5) = (0.1, 0.2, 0.3, 0.4, 0.5)
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Figure 6: The Hubble parameter vs. time t, where (l = m = n = c = 0.5) and
(k1, k2, k3, k4, k5) = (0.1, 0.2, 0.3, 0.4, 0.5)
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