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Abstract. In this paper, we investigate the abstract Cauchy problem for
an elliptic equation. This problem is well known as severely ill-posed. The
goal of this paper is to present some extensions of the quasi-reversibility
method applied to an ill-posed Cauchy problem for elliptic equations.
The key point to our analysis is the use of the general modified quasi-
reversibility method to construct a family of regularizing operators for the
considered problem and we prove the convergence of this method.
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1 Introduction

Let H be a complex Hilbert space with inner product (., .) and norm ∥.∥, and let
A be a linear unbounded operator with dense domain D(A). Assume that A is self-
adjoint and positive definite in H, which has a continuous spectrum σ(A) = [γ,+∞[,
γ = inf(σ(A)) > 0.

We consider the elliptic Cauchy problem of finding a function u : [0, Z] −→ H
such that

(1.1)

{
Lu ≡ uzz −Au = 0, 0 < z < Z
u(0) = φ, uz(0) = 0,

where φ is prescribed data in the Hilbert space H.
Such problem aries in a number of applications, such as nondestructive testing

techniques [2], geophysics [4], cardiology [10], and other practical industrial pro-
cesses. There are many various monographs about the historical development of
this topic, for more details, we refer the reader to Isakov [18], Lavrent′ev, Romanov
and Šǐsatskĭı [22], S.I. Kabanikhin and M. Schieck [19], Alexander A. Samarskii, Peter
N. Vabishchevich [31], and the recent survey written by Giovanni Alessandrini, Luca
Rondi, Edi Rosset, and Sergio Vessella [1].

Unfortunately, the inverse Cauchy problem (1.1), is highly ill-posed i.e., the so-
lution does not depend continuously on the Cauchy data, and thus a small error
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in the given data may destroy the numerical solution. This fact was pointed out by
Hadamard [15]. Some conditional stability results were given by some papers [1, 2, 18]
these results are based on the exact given data. However, in practice, the given data is
polluted for a variety of reasons such as measurement error, round-off error in machine
representations. Because of these reasons, regularization strategies are necessary in
order to compute such a solution in some stable way.

The inverse Cauchy problems associated with the elliptic equations have been
studied by using different theoretical and numerical methods, such as, the modified
quasi-boundary value method [34], the improved non-local boundary value problem
method [35], the boundary element method (BEM) [23, 25], the modified collocation
Trefftz method [24], the finite element method (FEM) [8] and the Fourier regulariza-
tion method [13].

This work is mainly devoted to theoretical aspects of the method of quasi-reversibility
to problem (1.1) in the abstract setting, by considering more general self-adjoint oper-
ators when A is positive and induces the elliptic case, i.e., has the following properties:
for any λ ∈ (−∞, 0], the resolvent R(λ;A) = (A− λI)−1 exists and satisfies the esti-
mates

∃M > 0 : ∀λ ≥ 0, ∥(A+ λI)−1∥ ≤M(1 + λ)−1.

In the case when A is a linear positive self-adjoint operator with compact inverse,
problem (1.1) has been treated by a different methods. We can notably mention the
iterative procedure of Kozlov and Maz’ya [20], the nonlocal regularization method
[16], the quasi-reversibility method [1, Ch.7, pages 311-314], [5, 6, 7, 26, 27] and
recently by the Krylov subspaces method [12].

One method for approaching such problems is the Quasi-reversibility method orig-
inally introduced by Lattès and Lions in their pioneering work [21]. The main
idea of this method consists in replacing L in (1.1) by a sequences of operators

Lα ≡ d2

dz2
− fα(A) depending on small parameter α > 0, such that the perturbed

problem Lα is well-posed, and its solution uα can be taken as a candidate for an
approximate solution to the original problem (1.1) in some sense. The perturbation
fα(A) = (A − αA2) has been exploited for stabilizing a certain class of ill-posed
parabolic and elliptic problems. The modified version fα(A) = A(I + αA)−1 also
has been used in the parabolic and elliptic case [14]. This paper seeks to make some
extensions of this method applied to an abstract ill-posed elliptic problem.

This paper is outlined as follows: In Section 2, we present the notation and
the functional setting which will be used in this paper and prepare some material
which will be used in our analysis. Section 3 is devoted to the Yosida perturbation
method. Finally we give a general perturbation method based on the modified quasi-
reversibility method to construct an approximate solution of our problem in section
4.

2 Preliminaries and basic results

We denote by L(H) the Banach algebra of bounded linear operators acting in H and
by C(H) the set of all closed linear operators densely defined in H. The domain, range
and kernel of a linear operator B ∈ C(H) are denoted as D(B), R(B) and N (B), and
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the symbols ρ(B) and σ(B) are used for the resolvent set and the spectrum of B,
respectively.

Definition 2.1. We denote by {Hr}r∈R the Hilbert scale induced by A according to:
H0 := H, Hr := D(Ar) where ∥u∥r := ∥Aru∥ (r ≥ 0), H−r := (Hr)′, i.e., H−r is the
dual space of Hr.

Proposition 2.1. Let (Hr)r∈R be the Hilbert scale induced by A. Let −∞ < r1 ≤
r2 <∞. Then the space Hr2 is densely and continuously embedded in Hr1 .

We introduce the Lebesgue space L2(0, Z;Hs) of strongly measurable functions
(0, Z) ∋ z −→ u(z) ∈ Hs with inner product and norm

(u, v)L2(0,Z;Hs) =

Z∫
0

(u, v)s dz, ∥u∥2L2(0,Z;Hs) =

Z∫
0

∥u∥2s dt,

and the Sobolev space

Wm,2(0, Z;Hs) := {u ∈ L2(0, Z;Hs) : u(i) ∈ L2(0, Z;Hs), i = 1 . . . ,m}

with the usual norm

∥u∥2Wm,2(0,Z;Hs) :=
m∑
i=0

∥u(i)∥2L2(0,Z;Hs).

By C([0, Z];Hs) we denote the space of continuous functions [0, Z] ∋ z −→ Hs with
norm

∥u∥∞,s := max
z∈[0,Z]

∥u∥Hs .

For any integer m ∈ N∗, we denote by

Wm(0, Z;H1,H) := {u : u ∈ L2(0, Z;H1), u(m) ∈ L2(0, Z;H)}

the completion of C([0, Z];H1) in the norm

∥|u|∥2m := ∥u∥2L2(0,Z;H1) + ∥u(m)∥2L2(0,Z;H).

Remark 2.2. Note that if z ∈Wm(0, Z;H1,H) then

z(i) ∈ L2(0, T ;H1−i/m) ∩ C([0, Z];H1− i+1/2
m ), 0 ≤ i ≤ m− 1.

which guarantees that

z(i)(0), z(i)(Z) ∈ H1− i+1/2
m , 0 ≤ i ≤ m− 1.

Finally, V 2
0 := {u ∈W2(0, Z;H

1,H) : u(0) = u′(0) = 0}
(resp. V 2

Z := {u ∈W2(0, Z;H
1,H) : u(Z) = u′(Z) = 0}) denotes the closed subspace

of W2(0, Z;H
1, H).

Definition 2.3. By a weak solution to problem (1.1) we mean a function u(z) satis-
fying the following conditions:

1. u ∈ C([0, Z];H);

2.
Z∫
0

(u,Lv) = (φ, v′(0)), ∀v ∈ V 2
Z .
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2.1 Spectral theorem and properties

By the spectral theorem, for each positive self-adjoint operator A, there is a unique
right continuous family {Eλ}λ∈[0,∞[ : [0,∞[−→ L(H) of orthogonal projection oper-

ators such that A =
∫∞
0
λdEλ with

D(A) = {v ∈ H :

∫ ∞

0

λ2 d(Eλv, v) <∞}.

In our case, we have A =
∫∞
γ
λ dEλ because A ≥ γI, γ > 0.

Theorem 2.2. [11, Theorem 6, XII.2.5, p. 1196-1198] Let {Eλ, λ ≥ γ > 0} be the
spectral resolution of the identity associate to A and let ϕ be a complex Borel function
defined E-almost everywhere on the real axis. Then f(A) is a closed operator with
dense domain. Moreover

(i) D(A) := {h ∈ H :
∫∞
γ

|f(λ)|2 d(Eλv, v) <∞},

(ii) (ϕ(A)h, z) =
∫∞
γ
ϕ(λ) d(Eλh, z), h ∈ D(ϕ(A)), z ∈ H,

(iii) ∥ϕ(A)h∥2 =
∫∞
γ

|ϕ(λ)|2 d(Eλh, h), h ∈ D(ϕ(A)),

(iv) ϕ(A)∗ = ϕ(A). In particular, if ϕ is real Borel function, then ϕ(A) is self-
adjoint,

(v) The operator ϕ(A) is bounded if and only if ϕ(λ) is bounded on σ(A) = [γ,+∞[.
In this case, ∥ϕ(A)∥ = sup

λ∈[γ,+∞[

|ϕ(λ)|.

We denote by S(z) = e−z
√
A =

∞∫
γ

e−z
√
λ dEλ ∈ L(H), y ≥ 0, the C0-semigroup

generated by −
√
A. Some basic properties of S(z) are listed in the following theorem:

Theorem 2.3. (see [28], chapter 2, Theorem 6.13, page 74). For this family of
operators we have:

1. ∥S(z)∥ ≤ 1, ∀z ≥ 0;

2. the function z 7−→ S(z), z > 0, is analytic;

3. for every real r ≥ 0 and z > 0, the operator S(z) ∈ L(H,D(Ar/2));

4. for every integer k ≥ 0 and z > 0, ∥S(k)(z)∥ = ∥Ak/2S(z)∥ ≤ c(k)z−k;

5. for every x ∈ D(Ar/2), r ≥ 0 we have S(z)Ar/2x = Ar/2S(z)x.

Theorem 2.4. For z > 0, S(z) is self-adjoint and one to one operator with dense
range (S(z) = S(z)∗, R(S(z)) = H).
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Proof. Let ψz : [γ,+∞[→ R, s 7→ ψz(s) = e−z
√
s. Then by virtue of (4) of Theorem

2.3, we can write (S(z))∗ = ψz(A) = ψz(A) = e−z
√
A = S(z).

Let h ∈ N (S(z0)), z0 > 0, then S(z0)h = 0, which implies that S(z)S(z0)h =
S(z + z0)h = 0, z ≥ 0. Using analyticity, one obtains that S(z)h = 0, z ≥ 0. Strong
continuity at 0 now gives h = 0. This shows thatN (S(z0)) = 0. Thanks toR(S(z0)) =

N (S(z0))
⊥ = {0}⊥ = H, we conclude that R(S(z0)) is dense in H. �

3 The Yosida perturbation method

In this section we use quasi-reversibility method, where the main idea consists in
replacing the operator A by the Yosida approximation Aα = A(I + αA)−1. Then let
uα be the solution of the perturbed problem

(3.1)


u′′α(z)−Aαuα(z) = 0, z ∈ [0, Z],

uα(0) = φδ,

u′α(0) = 0,

where the operator A is replaced by

(3.2) Aα = A(I + αA)−1.

We show that

(3.3) sup
0<z<Z

∥uα(z)− u(z)∥ → 0, as α→ 0,

(3.4) ∥uα(Z)− u(Z)∥ → 0, as α→ 0.

We show that the problem (3.1) is well posed, i.e., its solution

(3.5) uδα(z) = cosh(z
√
Aα)φ

δ,

is dependent continuously on the data φδ. Moreover, it is an approximation of the
exact solution u(z).

Lemma 3.1. The problem (1.1) has a unique solution if and only if φ ∈ {φ ∈ H :

∥φ∥21 =
+∞∫
γ

e2Z
√
λ d∥Eλφ∥2 < +∞}, and its unique solution represented by

(3.6) u (z) = cosh(z
√
A)φ.

We will derive a bound on the difference between the solutions of the problem (1.1)
and (3.1). However, before doing that, we need to assume that ∥u(Z)∥ is bounded,
i.e., ∥u(Z)∥ ≤ E, where E > 0 is a constant.

The relation between any two regularized solutions of (3.1) is given by the following
lemma.
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Lemma 3.2. Suppose we have two regularized solutions u1α and u2α defined by (3.5)
with φδ

1 and φδ
2, satisfying ∥φδ

1 − φδ
2∥ ≤ δ. If we choose

√
α = Z/ ln(2E/δ). then we

get the error bound

(3.7) ∥u1α(z)− u2α(z)∥ ≤ (2E)z/Zδ1−z/Z

Proof. From (3.5) we have

∥u1α(z)− u2α(z)∥2 = ∥ cosh(z
√
Aα)φ

δ
1 − cosh(z

√
Aα)φ

δ
2∥2

≤ ∥φδ
1 − φδ

2∥2 cosh
2(z/

√
α)

≤ δ2e2z/
√
α.

The choice of parameter
√
α = Z/ ln(2E/δ) leads to ∥u1α(z)−u2α(z)∥ ≤ (2E)z/Zδ1−z/Z .

�

From lemma (3.2) we see that the solution defined by (3.5) depends continuously
on the data φδ.

Lemma 3.3. Let u and uα be the solutions of problem (1.1) and (3.1) with the same
exact data φ. Suppose that ∥u(Z)∥ ≤ E. Then we have

(3.8) ∥u(z)− uα(z)∥ ≤ CE(z)α,

where CE(z) =
( 3

(Z − z)e

)3

Ez/2.

Proof. From (3.6) the assumption ∥u(Z)∥ ≤ E is equivalent to

(3.9) ∥u(Z)∥2 =

∫ +∞

γ

cosh2(Z
√
λ)d∥Eλφ∥2 ≤ E2.

Consequently,

∥u(z)− uα(z)∥2 =

∫ +∞

γ

H2
α(z, λ) cosh

2(Z
√
λ)d∥Eλφ∥2

≤
(
sup
λ≥γ

e−(Z−z)
√
λFα(z, λ)

)2
∫ +∞

γ

cosh2(Z
√
λ)d∥Eλφ∥2,

then, using the inequality 1− e−r ≤ r (r ≥ 0), we have

e−(Z−z)
√
λFα(z, λ) ≤

αz

2
λ

3
2 e−(Z−z)

√
λ.

Then the function Jα(λ) = λ
3
2 e−(Z−z)

√
λ satisfies the properties

Jα(0) = 0, Jα(+∞) = 0 and J ′
α(λ) =

3

2

√
λe−(Z−z)

√
λ(3− (Z − z)

√
λ),

J ′
α(λ) = 0 ⇒ λ∗ =

( 3

Z − z

)3

.

The function Jα attains its maximum at λ∗ =
(

3
Z−z

)3

and supλ≥γ Jα(λ) = Jα(λ∗) =(
3

(Z−z)e

)3

, so we have ∥u(z)− uα(z)∥ ≤ CE(z)α. �
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Theorem 3.4. Let u the solution of problem (1.1) with exact data φ and uδα is given
by (3.5) with measured data φδ. Suppose that ∥u(Z)∥ ≤ E, and the measured function
φδ satisfies ∥φ− φδ∥ ≤ δ and if we choose

√
α = Z/ ln(2E/δ). Then we have

(3.10) ∥u(z)− uδα(z)∥ ≤ (2E)z/ZδZ−z +
CE(z)

ln2(2E/δ)
,

where CE(z) =
( 3

(Z − z)e

)3

Ez/2.

Proof. Let uα be the solution defined by (3.5) with exact data. Then the theorem is
straightforward by using the triangle inequality ∥u−uδα∥ ≤ ∥u−uα∥+∥uα−uδα∥ and
the two previous lemmas �

Theorem (3.4) does not give any information about the continuous dependence of
the solution of (1.1)-(3.9) at z = Z on the data, as the condition (3.9) is too weak.
We show several error estimates according to conditions that we impose on the final
data u(Z).

Theorem 3.5. Let u and uα be the solutions of problem (1.1) and (3.1) with the
same exact data φ. Suppose that
(i) u(Z) ∈ D(A

3
2 ) Then we have

(3.11) ∥u(Z)− uα(Z)∥ ≤
√
2cZ(α, 1)E3.

(ii) u(Z) ∈ D(A) Then we have

(3.12) ∥u(Z)− uα(Z)∥ ≤
√
2cZ(α,

2

3
)E2.

(iii) u(Z) ∈ D(A
1
2 ) Then we have

(3.13) ∥u(Z)− uα(Z)∥ ≤
√
2cZ(α,

1

3
)E1.

Proof. (i)Using the assumption u(Z) ∈ D(A
3
2 ) who is equivalent to

∫ +∞
γ

λ3 cosh2(Z
√
λ)d∥Eλφ∥2 ≤

E2
3 , the difference (u(Z)− uα(Z)) can be estimated as follows

∥u(Z)− uα(Z)∥2 =

∫ +∞

γ

(
cosh

(
z
√
λ
)
− cosh

(
z
√
λα

))2

d∥Eλφ∥2

≤
∫ λ∗

γ

F 2
α(Z, λ) cosh

2(Z
√
λ)d∥Eλφ∥2 +

∫ ∞

λ∗
F 2
α(Z, λ) cosh

2(Z
√
λ)d∥Eλφ∥2(3.14)

= I1 + I2,

where Fα(z, λ) = 1− e

−αzλ 3
2

2 . The function I2 can be estimated as follows:

(3.15) I2 ≤ cZ(α, θ)∥A
3θ
2 u(Z)∥2,
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where cZ(α, θ) = (αZ/2)2θ.

Indeed, let m = (αZλ
3
2 )/2 ≥ 1 ⇒ λ ≥ (2/αZ)

2
3 = λ∗, by virtue of (1 − e−m ≤

mθ, m ≥ 1, θ > 0), then I2 can be estimated as follows:

I2 ≤
∫ ∞

λ∗

(αZλ 3
2

2

)2θ

cosh2(Z
√
λ)d∥Eλφ∥2

≤
(αZ

2

)2θ
∫ ∞

γ

λ3θ cosh2(Z
√
λ)d∥Eλφ∥2 = cZ(α, θ)∥A

3θ
2 u(Z)∥2.(3.16)

Let Nα(λ) = Fα(Z, λ)/(αZλ
3
2 /2), then the function I1 can be estimated as follows:

I1 ≤ cZ(α, 1)
(

sup
γ≤λ≤λ∗

Nα(λ)
)2

∥A 3
2u(Z)∥2,

we now set f(s) =
1− e−s

s
, where

0 < αZγ
3
2 /2 ≤ s = αZλ

3
2 /2 ≤ αZ(λ∗)

3
2 /2 = 1, for all λ ∈ [γ, λ∗],

then f(s) ≥ 0, for all s ∈ [0, 1], and we have

f ′(s) =
(1 + s)e−s − 1

s2
=
M(s)

z2
.

The function M satisfies the properties

M(0) = 0, M ′(s) = −se−s ≤ 0 ⇒M ↓,

this implies that
M(s) ≤ 0, for all s ∈ [0, 1],

and
f ′(s) ≤ 0 ⇒ f ↓⇒ f(s) ≤ f(s̃), for all s ≥ s̃ = αZγ

3
2 /2,

it follows that

(3.17) sup
s̃≤s≤1

f(s) = f(s̃) =
1− es̃

s̃
,

but,

(3.18) lim
α→0

s̃ = 0 ⇒ 0 < lim
s̃→0

f(s̃) = 1 ⇒ sup
s̃≤s≤1

f(s) ≤ 1.

We now return to I1 and use (3.18) to write

I1 ≤ cZ(α, 1)
(

sup
γ≤λ≤λ∗

Nα(λ)
)2

∥A 3
2u(Z)φ∥2

= cZ(α, 1)
(

sup
s̃≤s≤1

f(s)
)2

∥A 3
2u(Z)∥2

≤ cZ(α, 1)∥A
3
2u(Z)∥2,(3.19)

and by virtue of inequality (3.16) with θ = 1 and the inequality (3.19) we obtain the
desired estimates. The claims (ii) and (iii) follow with the same manner. �
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4 The general perturbation method

Quasi-reversibility is a regularization technique for ill-posed problems that is designed
to generate approximate solutions to the problem in question. The central idea of
quasi-reversibility is to solve the original problem backward, after first replacing A
by f(A), whose spectrum is bounded above. By following the idea in [3] and by
using a modified quasi-reversibility method(M.Q.R.M) we construct an approximate
solution of the considered problem. In Theorem 4.2, we will demonstrate that we
obtain Hölder continuous dependence for the control problem when f satisfies
Condition (A).

Definition 4.1. Let f : [0,∞) → R+ be a Borel function, and assume that there
exists ω ∈ R+ such that f(λ) ≤ ω2 for all λ ∈ [0,∞).

We consider the general approximate problem

(4.1)


v′′(z) = f(A)v(z), z ∈ [0, Z],

v(0) = φ,

v′(0) = 0.

In this case, the problem 4.1 is well-posed, and the solution is given by

(4.2) v(z) = cosh
(
z
√
f(A)

)
φ =

1

2

∫ ∞

0

(
ez
√

f(λ) + e−z
√

f(λ)
)
dEλφ,

where
{
ez
√

f(A)
}
z≥0

is a strongly continuous semigroup of bounded operators.

In order to establish continuous dependence on modeling, in addition we assume
that f satisfy the following condition

The Condition (A). There exist positive constants β, δ, with 0 < β < 1, for which
D(A(1+δ)/2) ⊆ D(

√
f(A)), and

(4.3)
∥∥∥(−√

A+
√
f(A)

)
ψ
∥∥∥ ≤ β∥A(1+δ)/2ψ∥,

for all ψ ∈ D(A(1+δ)/2), we use implicitly the fact that D(A(1+δ)/2) ⊆ D(
√
A), which

follows immediately from the Spectral Theorem.

Next, we note that for ψ ∈ D(
√
f(A)),

(√
f(A)ψ,ψ

)
≤ ω(ψ,ψ), so that

√
f(A) is

the generator of a strongly continuous semigroup
{
ez
√

f(A)
}
z≥0

of bounded operators,

with ∥ez
√

f(A)∥ ≤ eωz. If we set g(λ) = −
√
λ+

√
f(λ), for λ ∈ [0,∞), then g(A) is a

self-adjoint operator, with domain

D(g(A)) =

{
ψ ∈ H |

∫ ∞

0

|g(λ)|2d(E(λ)ψ,ψ) <∞
}
.

It follows from properties of the functional calculus (cf. [30]) that −
√
A+

√
f(A) ⊆

g(A), in the sense of unbounded operators; that is, D(−
√
A +

√
f(A)) = D(

√
A) ∩
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D(
√
f(A)) ⊆ D(g(A)), and g(A)ψ = (−

√
A+

√
f(A))ψ for all ψ ∈ D(−

√
A+

√
f(A)).

Since g(A) is self-adjoint, and (g(A)ψ,ψ) ≤ ω(ψ,ψ) for all ψ ∈ D(g(A)), it follows
that g(A) is also the generator of a strongly continuous semigroup {ezg(A)}z≥0 of
bounded operators, with ∥ezg(A)∥ ≤ eωz. Before stating our main result, we shall
need the following:

Lemma 4.1. For all z ≥ 0,

(4.4) ezg(A) = e−z
√
Aez

√
f(A).

Proof. First, note that D(
√
A) ∩ D(

√
f(A)) is a core for g(A), indeed, set

en = {λ ∈ [0,∞)/ |g(λ)| ≤ n}

and let En = E(en). Then if λ ∈ en, λ ≤ (n+ ω)2, so that en is a bounded Borel set,
and hence En is a bounded projection on H. Now, if x ∈ D(g(A)), then E(en)x ∈
D(

√
A) ∩ D(

√
f(A)), and E(en)x → x. In addition, g(A)E(en)x = E(en)g(A)x →

g(A)x, and so D(
√
A) ∩ D(

√
f(A)) is a core for g(A). Thus g(A) is essentially self-

adjoint on D(
√
A) ∩ D(

√
f(A)). Since the bounded operators e−z

√
A and ez

√
f(A)

commute, (4.4) is now a consequence of the version of the Trotter Product Formula
given in ([29], VIII.31). (Note: A shorter proof follows immediately from Property (c)
of the functional calculus for unbounded self-adjoint operators given in ([11], XII.2.7,
Corollary 7), and the fact that both sides of (4.4) are bounded operators.)

Once again using the Spectral Theorem, we note that for each n = 1, 2, ...,

{ez
√
AEn}z≥0 is a strongly continuous semigroup of bounded operators on H. In fact,

a consequence of the Spectral Theorem is that {eα
√
AEn}α∈C is an entire group of

bounded operators onH, in the sense of [9], as are {eα
√

f(A)En}α∈C and {eαg(A)En}α∈C.
Moreover, observe that (4.4) holds for all complex values of the parameter, when ap-
plied to En:

eαg(A)En = e−α
√
Aeα

√
f(A)En, α ∈ C, n = 1, 2, ...

Indeed, from (4.4), we have equality of these two entire functions for all values of
z ≥ 0.

We now prove the following:

Theorem 4.2. Let A be a positive self-adjoint operator acting on H, let f satisfy
Condition (A), and assume that there exists a constant γ independent of β and ω,
such that (g(A)ψ,ψ) ≤ γ(ψ,ψ), for all ψ ∈ H. If u(t) and v(t) are solutions of

(1.1) and (4.1), respectively, and ∥u(Z)∥ ≤ M̃ , then there exist constants C and M,
independent of β, such that for 0 ≤ z < Z,

∥u(z)− v(z)∥ ≤ Cβ1−z/ZMz/Z .

Proof. Let φn = E(en) = Enφ, and for h ∈ H we define

(4.5) ϕn(α) =
(
eα

2
[
cosh(α

√
A)− cosh(α

√
f(A))

]
φn, h

)
,
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Our aim is to show that ϕn(α) is bounded in the strip 0 ≤ Rα ≤ Z, so that we might
apply the Three Lines Theorem (cf. [30], p. 33). We set α = z+ iη, where 0 ≤ z ≤ Z,
and η ∈ R. Notice that because A and

√
f(A) are self-adjoint,

∥eiη
√
A∥ = ∥eiη

√
f(A)∥ = 1.

Then

(4.6) |ϕn(α)| ≤
1

2
e(z

2−η2)
(
∥B1φn∥+ ∥B2φn∥

)
∥h∥,

where

B1 = e(z+iη)
√
A − e(z+iη)

√
f(A), and B2 = e−(z+iη)

√
A − e−(z+iη)

√
f(A).

First we have

∥B1φn∥ = ∥e(z+iη)
√
Aφn − e(z+iη)

√
Ae(z+iη)g(A)φn∥(4.7)

≤
(
∥e(z+iη)

√
Aφn − e(z+iη)

√
Aeiηg(A)φn∥

+ ∥e(z+iη)
√
Aeiηg(A)φn − e(z+iη)

√
Ae(z+iη)g(A)φn∥

)
,

then

(4.8) ∥B1φn∥ ≤ ∥I1φn∥+ ∥I2φn∥,

where

∥I1φn∥ = ∥e(z+iη)
√
Aφn − e(z+iη)

√
Aeiηg(A)φn∥ ≤ ∥(I − eiηg(A))ez

√
Aφn∥.

We have repeatedly used (4.4) for complex values of the parameter, and by standard
properties of semigroups, if ψ ∈ D(g(A)) and η ∈ R, then

(4.9) I − eiηg(A)ψ = −i
∫ η

0

eisg(A)g(A)ψds,

so that
∥(I − eiηg(A))ψ∥ ≤ |η|∥g(A)ψ∥.

Since ez
√
Aφn ∈ D(

√
A) ∩ D(

√
f(A)) ⊆ D(g(A)) for all z ≥ 0, and ez

√
Aφn ∈

D(A(1+δ)/2), we have from Condition (A) and the above inequality that

(4.10) ∥I1φn∥ = ∥(I − eiηg(A))ez
√
Aφn∥ ≤ β|η|∥A(1+δ)/2ez

√
Aφn∥.

Similarly,

(4.11) (I − ezg(A))ez
√
Aφn = −

∫ z

0

esg(A)g(A)ez
√
Aφnds,

so that

(4.12) ∥I2φn∥ = ∥(I − ezg(A))ez
√
Aφn∥ ≤ βzeγz∥A(1+δ)/2ez

√
Aφn∥,
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using (4.10) and (4.12) the inequality (4.8) becomes

(4.13) ∥B1φn∥ ≤ β(|η|+ zeγz)∥A(1+δ)/2ez
√
Aφn∥ ≤ β(1 + TeγT )∥A(1+δ)/2ez

√
Aφn∥.

On the other hand, we have

∥B2φn∥ = ∥e−(z+iη)
√
Aφn − e−(z+iη)

√
Ae−(z+iη)g(A)φn∥

≤
(
∥e−(z+iη)

√
Aφn − e−(z+iη)

√
Ae−iηg(A)φn∥

+ ∥e−(z+iη)
√
Ae−iηg(A)φn − e(z+iη)

√
Ae−(z+iη)g(A)φn∥

)
= ∥J1φn∥+ ∥J2φn∥,

where

∥J1φn∥ = ∥e−(z+iη)
√
Aφn − e−(z+iη)

√
Ae−iηg(A)φn∥

≤ ∥(I − e−iηg(A))ez
√
Aφn∥.

If ψ ∈ D(g(A)), and η ∈ R, then

I − e−iηg(A)ψ = i

∫ η

0

e−isg(A)g(A)ψds,

so that

(4.14) ∥J1φn∥ = ∥(I − e−iηg(A))φn∥ ≤ β|η|∥A(1+δ)/2φn∥.

Similarly,

(I − e−zg(A))φn =

∫ z

0

e−sg(A)g(A)φnds,

so that

(4.15) ∥J2φn∥ = ∥(I − e−zg(A))φn∥ ≤ βz∥A(1+δ)/2φn∥.

Thus

(4.16) ∥B2φn∥ ≤ β(|η|+ z)∥A(1+δ)/2φn∥ ≤ β(1 + Z)∥A(1+δ)/2φn∥,

according to (4.13) and (4.16) the inequality (4.6) becomes

|ϕn(α)| ≤ 1

2
e(z

2−η2)
(
(|η|+ z)∥A(1+δ)/2φn∥+ β(|η|+ zeγz)∥A(1+δ)/2ez

√
Aφn∥

)
∥h∥

≤ 1

2
eZ

2

β
(
(1 + Z)∥A(1+δ)/2φn∥+ (1 + ZeγZ)∥A(1+δ)/2ez

√
Aφn∥

)
∥h∥

≤ 1

2
eZ

2

βmax
(
1 + Z, 1 + ZeγZ

)
∥A(1+δ)/2ez

√
Aφn∥∥h∥,

and so, using strong continuity of the semigroup
(
ez

√
AEn

)
, it follows that ϕn is

bounded in the strip 0 ≤ z ≤ Z. By the Three Lines Theorem,

(4.17) |ϕn(z)| ≤M(0)1−z/ZM(Z)z/Z , for 0 ≤ z ≤ Z,
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where

(4.18) M(z) = max
α=z+iη, η∈R

|ϕn(α)|.

Since M(0) ≤ 1
2β∥A

(1+δ)/2φn∥∥h∥, we have

|ϕn(z)| ≤
(
1

2
β∥A(1+δ)/2φn∥∥h∥

)1−z/Z

M(Z)z/Z , for 0 ≤ z ≤ Z.

Also, returning to (4.6) and using (4.10), (4.12), (4.14) and (4.15) we have

|ϕn(Z + iη)| ≤
(
∥(I − eiηg(A))eZ

√
Aφn∥+ ∥(I − eZg(A))eZ

√
Aφn∥

+ ∥(I − e−iηg(A))φn∥+ ∥(I − e−Zg(A))φn∥
)
∥h∥

≤ 2∥eZ
√
Aφn∥∥h∥+ (1 + eγZ)∥eZ

√
Aφn∥∥h∥+ 4∥φn∥∥h∥

≤ (7 + eγZ)∥eZ
√
Aφn∥∥h∥,

we have used the fact that ∥eZg(A)∥ ≤ eγZ . Thus

(4.19) |ϕn(z)| ≤
(
β∥A(1+δ)/2φn∥

)1−z/Z(
C1∥eZ

√
Aφn∥

)z/Z

∥h∥.

for a suitable constant C1 that is independent of β
We now assume that ∥ cosh(Z

√
A)φ∥ ≤ M̃ (which serves to stabilize the problem),

from which it follows that ∥A(1+δ)/2φ∥ ≤ M̃ for a possibly different value of M̃. If we
let n→ ∞ in (4.19), we obtain

|ϕ(z)| ≤ Cβ1−z/ZMz/Z∥h∥,

where C and M are computable constants which are independent of β, and

ϕ(z) = ez
2
( [

cosh(z
√
A)− cosh(z

√
f(A))

]
φ, h

)
.

Taking the supremum over all h ∈ H, with ∥h∥ ≤ 1, we obtain

ez
2

∥u(z)− v(z)∥ ≤ Cβ1−z/ZMz/Z ,

and the proof is complete. �

4.1 Example

let D be a bounded domain in Rn, with smooth boundary ∂D, and we consider the
following ill-posed problem

uzz +∆u = 0, in D × [0, Z),

u(x, 0) = φ(x), in D

u′(x, 0) = 0, in D

u = 0, in ∂D × [0, Z),

(E)
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where φ(x) is a prescribed function and A = −∆.

For ϵ > 0, we consider the approximate well-posed problem

vzz +∆v + ϵ∆vzz = 0, in D × [0, Z),

v(x, 0) = φ(x), in D

v′(x, 0) = 0, in D

v = 0, in ∂D × [0, Z).

(Eϵ)

Let f(λ) = λ(1+ϵλ)−1, for ϵ > 0. Then f is a bounded Borel function, and clearly
satisfies the Condition (A), with ω = 1

ϵ , β = ϵ, and δ = 1, since

∥(
√
(I + ϵA)−1 − I)

√
Aψ∥ ≤ β∥A 3

2ψ∥,

for all ψ ∈ D(A
3
2 ). Moreover, g(A) = −

√
A+

√
A(I + ϵA)−1, generates a semigroup

of contractions, so that γ ≤ 0. In both cases, Theorem (4.2) yields the result

∥u(z)− v(z)∥ ≤ Cβ1−z/ZMz/Z .

Definition 4.2. A family {Rβ(z), β > 0, z ∈ [0, Z]} ⊂ L(H) is called a family of
regularizing operators for the problem (1.1) if for each solution u(z), 0 ≤ z ≤ Z of
(1.1) with initial element φ, and for any δ > 0, there exists β(δ) > 0, such that

β(δ) −→ 0, δ −→ 0, (R1)

∥Rβ(δ)(z)φδ − u(z)∥ −→ 0, δ −→ 0, (R2)

for each z ∈ [0, Z] provided that φδ satisfies ∥φδ − φ∥ ≤ δ.

Define

(4.20) Rβ(δ)(z) = cosh
(
z
√
f(A)

)
, z ≥ 0, β > 0.

It is clear that Rβ(δ)(z) ∈ L(H). In the following we will show that Rβ(δ)(z) is a
family of regularizing operators for (1.1).

Theorem 4.3. Assuming that φ ∈ C1(A), then (R2) holds.

Proof. At first, we have
(4.21)
∥Rβ(δ)(z)φδ − u(z)∥ ≤ ∥Rβ(δ)(z)(φδ − φ)∥+ ∥Rβ(δ)(z)φ− u(z)∥ = ∆1(z) + ∆2(z).

By choosing ω ≤ Z/ ln(M ′/δ), we have

∆1(z) = ∥Rβ(δ)(z)(φδ − φ)∥ ≤ eωzδ

≤ (M ′/δ)z/Zδ

= (M ′)z/Zδ1−z/Z −→ 0, as δ −→ 0(4.22)
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and

(4.23) ∆2(z) = ∥Rβ(δ)(z)φ− u(z)∥.

Now, by virtue of theorem 4.2 we have

(4.24) ∆2(z) = ∥Rβ(δ)(z)φ− u(z)∥ ≤ Cβ1−z/ZMz/Z −→ 0, as δ −→ 0,

uniformly in z. Combining (4.22) and (4.24) we obtain

(4.25) sup
0≤z≤Z

∥Rβ(δ)(z)φδ − u(z)∥ −→ 0, as δ −→ 0.

This shows that Rβ(δ)(z) is a family of regularizing operators for (1.1). �
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