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Abstract. In this article, the Stein-Chen method and the binomial w-
function are used to determine new uniform and non-uniform bounds on
two forms of the relative error of the binomial cumulative distribution
function with parameters n ∈ N and p ∈ (0, 1) and the Poisson cumulative
distribution function with mean λ = np. The bounds obtained in the
present study are sharper than those reported in Teerapabolarn [14, 15].
Finally, some numerical examples are provided to illustrate the goodness
of these bounds.

M.S.C. 2010: 62E17, 60F05.
Key words: binomial w-function; cumulative distribution function; Poisson approx-
imation; relative error; Stein-Chen method.

1 Introduction

Let a non-negative integer-valued random variable X have the binomial distribution
with parameters n ∈ N and p ∈ (0, 1). This distribution is a well-known discrete
distribution that can be applied in topics related to probability and statistics. The
probability mass function of X, or binomial probability function, is of the form

pX(x) =

(
n

x

)
pxqn−x, x = 0, 1, ..., n,(1.1)

where q = 1−p and the mean and variance ofX are µ = np and σ2 = npq, respectively.
In particular case, n = 1, the random variable is the Bernoulli random variable with
parameter p. In addition, from the experimental point of view, the random variable X
can be thought of as the number of successes in a sequence of n independent Bernoulli
trials, where each trial results in the success or the failure with probabilities p and q.
It is well-known that if the number of trials n → ∞ and the probability of success

p → 0 while λ = np remains a constant (0 < λ < ∞) then
(
n
x

)
pxqn−x → e−λλx

x!
for every x = 0, 1, ..., n, which is a Poisson limit theorem. Therefore the Poisson
distribution with mean λ = np can be used as an approximation of the binomial
distribution with parameters n and p when n is sufficiently large and p is sufficiently
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small. In the past, there have been a lot of studies related to Poisson approximation
of binomial distribution. For example, in the case of pointwise approximation was
examined by Anderson and Samuels [1], Feller [6] and Johnson et al. [8] also [3] and
[2]. In the case of cumulative probability approximation, Anderson and Samuels [1]
provided that

Pλ(x0)− Bn,p(x0)

> 0 if x0 ≤ λn

n+ 1
,

< 0 if x0 ≥ λ,
(1.2)

where Pλ(x0) =
∑x0

k=0
e−λλk

k! and Bn,p(x0) =
∑x0

k=0

(
n
k

)
pkqn−k are the Poisson and

binomial cumulative distribution functions at x0 ∈ {0, 1, ..., n}, respectively. Ivchenko
[7] gave the asymptotic relation on the ratio of the binomial and Poisson cumulative
distribution functions

Bn,p(x0)

Pλ(x0)
= 1 + o(1),(1.3)

which is fulfilled uniformly in x0 < λ. Very similar criteria for measuring the accuracy
of Poisson approximation were used by Teerapabolarn [12], who applying the Stein-
Chen method gave both non-uniform and uniform bounds for the relation error of the
considered distributions. His results presented in [12] are as follows:∣∣∣∣ Pλ(x0)

Bn,p(x0)
− 1

∣∣∣∣ ≤ p(eλ − 1)∆(x0)

x0 + 1
, x0 = 0, 1, ..., n,(1.4)

where

∆(x0) =

{
e−λq−n if x0 < λ,

1 if x0 ≥ λ,
(1.5)

and he also gave a non-uniform bound for the another form of the relative error of
two such cumulative distribution functions,∣∣∣∣Bn,p(x0)

Pλ(x0)
− 1

∣∣∣∣ ≤ (eλ − 1)p

x0 + 1
, x0 = 0, 1, ..., n.(1.6)

and those from [13] are of the form:

sup
0≤x0≤n

∣∣∣∣ Pλ(x0)

Bn,p(x0)
− 1

∣∣∣∣ ≤ (1− e−λ)(1− qn)

nqn
(1.7)

and

sup
0≤x0≤n

∣∣∣∣Bn,p(x0)

Pλ(x0)
− 1

∣∣∣∣ ≤ (eλ − 1)(1− qn)

n
.(1.8)

The bounds presented above were then improved by the same author in [14, 15]
to the sharper ones:

sup
0≤x0≤n

∣∣∣∣ Pλ(x0)

Bn,p(x0)
− 1

∣∣∣∣ ≤ max

{
e−λq−n − 1,

1− (1 + λ)e−λ

nqn
min

(
1,

2(1− qn)

λ

)}(1.9)
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and

sup
0≤x0≤n

∣∣∣∣Bn,p(x0)

Pλ(x0)
− 1

∣∣∣∣ ≤ max

{
1− eλqn,

eλ − λ− 1

n
min

(
1,

2(1− qn)

λ

)}
,(1.10)

for the uniform case and∣∣∣∣ Pλ(x0)

Bn,p(x0)
− 1

∣∣∣∣ ≤ 2(eλ − λ− 1)∆(x0)

n(x0 + 1)
, x0 = 0, 1, ..., n(1.11)

and ∣∣∣∣Bn,p(x0)

Pλ(x0)
− 1

∣∣∣∣ ≤ 2(eλ − λ− 1)

n(x0 + 1)
, x0 = 0, 1, ..., n(1.12)

in the non-uniform one.
The aim of this article is further improvement of the latter bounds. It will be

achieved by using the Stein-Chen method and the binomial w-function and the ob-
tained results presented in Sections 2 and 3. In Section 4, some numerical examples
are provided to show the goodness of new bounds. Concluding remarks are presented
in the last section.

2 The method

In this study, we use as our main tools the Stein-Chen method and the binomial
w-function.

2.1 The binomial w-function

The w-functions were studied by many authors, among others by Cacoullos and Pa-
pathanasiou [4], Papathanasiou and Utev [10], and Majsnerowska [9]. The following
lemma presents another form of the w-function associated with the binomial random
variable given in [9] and [10], which we are called the binomial w-function throughout
this study.

Lemma 2.1. Let w(X) be the w-function associated with the binomial random vari-
able X, then

w(x) =
(n− x)p

σ2
, x = 0, 1, ..., n,(2.1)

where σ2 = npq.
The next relation stated by Cacoullos and Papathanasiou [4] is crucial for obtain-

ing our main results.
If a non-negative integer-valued random variable Y has probability mass function

pY (y) > 0 for every y ∈ S(Y ), the support of Y , and σ2 = V ar(Y ) is finite, then

E[(Y − µ)f(Y )] = σ2E[w(Y )∆f(Y )],(2.2)

for any function f : N ∪ {0} → R for which E|w(Y )∆f(Y )| < ∞, where µ = E(Y )
and ∆f(y) = f(y + 1)− f(y).
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2.2 The Stein-Chen method

The classical Stein method introduced by Stein in [11] was developed for Poisson case
by Chen [5]. The resulted version is referred to as the Stein-Chen method. Following
Teerapabolarn [12], Stein’s equation of the Poisson cumulative distribution function
with parameter λ > 0 is of the form

hx0(x)− Pλ(x0) = λfx0(x+ 1)− xfx0(x),(2.3)

where x0, x ∈ N ∪ {0} and function hx0 : N ∪ {0} → R is defined by

hx0(x) =

{
1 if x ≤ x0,

0 if x > x0

and

fx0(x) =


(x− 1)!λ−xeλ[Pλ(x− 1)[1− Pλ(x0)]] if x ≤ x0,

(x− 1)!λ−xeλ[Pλ(x0)[1− Pλ(x− 1)]] if x > x0,

0 if x = 0.

(2.4)

Lemma 2.2. For x0, x ∈ N, let λ̌ =
⌊

nλ
n+1

⌋
+ 1 and λ̂ = ⌈λ⌉ , we have

1. For x0 > nλ
n+1 ,

sup
x≥1

|∆fx0(x)| ≤
(x0 + 2)Pλ(x0)

(x0 + 1)(x0 + 2− λ)
(2.5)

and

sup
x≥1

|∆fx0(x)| ≤
(λ̌+ 2)Pλ(x0)

λ̌+ 2− λ
min

{
1

λ̌+ 1
,
1

x

}
.(2.6)

2. For x0 ≥ λ,

sup
x≥1

|∆fx0(x)| ≤
(λ̂+ 2)Pλ(x0)

λ̂+ 2− λ
min

{
1

λ̂+ 1
,
1

x

}
.(2.7)

Proof. 1. For x ≤ x0, it follows from [15] that

∆fx0(x) ≤
Pλ(x0)

x0 + 1

{
1 +

λ

x0 + 2
+

λ2

(x0 + 2)(x0 + 3)
+ · · ·

}
≤ Pλ(x0)

x0 + 1

{
1 +

λ

x0 + 2
+

(
λ

x0 + 2

)2

+ · · ·

}

=
(x0 + 2)Pλ(x0)

(x0 + 1)(x0 + 2− λ)
,(2.8)

which also implies that

∆fx0(x) ≤
(λ̌+ 2)Pλ(x0)

λ̌+ 2− λ
min

{
1

λ̌+ 1
,
1

x

}
.(2.9)
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For x > x0, by following [15],

0 < −∆fx0(x)

≤ Pλ(x0)

x

{
1

x+ 1
+

2λ

(x+ 1)(x+ 2)
+

3λ2

(x+ 1)(x+ 2)(x+ 3)
+ · · ·

}
(2.10)

≤ Pλ(x0)

x0 + 1

{
1

x0 + 2
+

2λ

(x0 + 2)(x0 + 3)
+

3λ2

(x0 + 2)(x0 + 3)(x0 + 4)
+ · · ·

}
≤ Pλ(x0)

x0 + 1

{
1 +

λ

x0 + 2
+

(
λ

x0 + 2

)2

+ · · ·

}

=
(x0 + 2)Pλ(x0)

(x0 + 1)(x0 + 2− λ)
,(2.11)

and by (2.10) and (2.11), we can obtain

−∆fx0(x) ≤
(λ̌+ 2)Pλ(x0)

λ̌+ 2− λ
min

{
1

λ̌+ 1
,
1

x

}
.

(2.12)

Hence, the inequality (2.5) is obtained from (2.8) and (2.11) and the inequality (2.6)
follows from (2.9) and (2.12).

2. The arguments derived in the proof of (2.6) lead also to the result in (2.7). �
The next lemma is obtained from Teerapabolarn [12].

Lemma 2.3. For x0 ∈ {0, 1, ..., n}, the following relation holds:

Pλ(x0)

Bn,p(x0)
≤ e−λq−n.(2.13)

3 Main results

We now present the main results of the study, i.e. new new non-uniform and uniform
bounds on two forms of the relative error of the binomial and Poisson cumulative
distribution functions.

Theorem 3.1. For x0 ∈ {0, ..., n}, the following inequality holds:∣∣∣∣ Pλ(x0)

Bn,p(x0)
− 1

∣∣∣∣ ≤
e−λq−n min

{
1− eλqn, 2(eλ−λ−1)

n(x0+1)

}
if x0 ≤ nλ

n+1 ,

∆(x0)
x0+1 min

{
(x0+2)λp
x0+2−λ , 2(eλ−λ−1)

n

}
if x0 > nλ

n+1 ,
(3.1)

where ∆(x0) is defined in (1.5).
Proof. For x0 ≤ nλ

n+1 , by combining the inequalities in (1.2) and (2.13), we have that

0 < Pλ(x0)
Bn,p(x0)

− 1 ≤ e−λq−n − 1 or
∣∣∣ Pλ(x0)
Bn,p(x0)

− 1
∣∣∣ ≤ e−λq−n − 1, which yields the first

bound. For the second one, not that it is the result in (1.11) applied to considered
x0. Therefore, we obtain we obtain the first inequality of (3.1).∣∣∣∣ Pλ(x0)

Bn,p(x0)
− 1

∣∣∣∣ ≤ e−λq−n min

{
1− eλqn,

2(eλ − λ− 1)

n(x0 + 1)

}
.(3.2)
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For x0 > nλ
n+1 , substituting x by X and taking expectation in (2.3) yields

Bn,p(x0)− Pλ(x0) = E[λf(X + 1)−Xf(X)]

= λE[f(X + 1)]− E[(X − µ)f(X)]− µE[f(X)]

= λE[∆f(X)]− E[(X − µ)f(X)],

where f = fx0 is defined in (2.4). Because E|w(X)∆f(X)| = E[w(X)|∆f(X)|] < ∞,
we have by (2.2),

|Bn,p(x0)− Pλ(x0)| = |λE[∆f(X)]− σ2E[w(X)∆f(X)]|
≤ E{|λ− σ2w(X)||∆f(X)|}
= E{|λ− (n−X)p||∆f(X)|} (by Lemma 2.1)(3.3)

≤ sup
x≥1

|∆f(x)|E(X)p

≤ (x0 + 2)Pλ(x0)λp

(x0 + 1)(x0 + 2− λ)
(by (2.5))(3.4)

and dividing the inequality (3.4) by Bn,p(x0), we obtain∣∣∣∣ Pλ(x0)

Bn,p(x0)
− 1

∣∣∣∣ ≤ (x0 + 2)Pλ(x0)λp

(x0 + 1)(x0 + 2− λ)Bn,p(x0)

≤ (x0 + 2)λp∆(x0)

(x0 + 1)(x0 + 2− λ)
(by (1.2)),(3.5)

which gives the first bound. The second one follows immediately from (1.11), that is,∣∣∣ Pλ(x0)
Bn,p(x0)

− 1
∣∣∣ ≤ 2(eλ−λ−1)∆(x0)

n(x0+1) . Thus, we also obtain

∣∣∣∣ Pλ(x0)

Bn,p(x0)
− 1

∣∣∣∣ ≤ ∆(x0)

x0 + 1
min

{
(x0 + 2)λp

x0 + 2− λ
,
2(eλ − λ− 1)

n

}
.(3.6)

Hence, by (3.2) and (3.6), the inequality (3.1) holds. �

Corollary 3.1. For x0 ∈ {0, ..., n}, then

∣∣∣∣Bn,p(x0)

Pλ(x0)
− 1

∣∣∣∣ ≤
min

{
1− eλqn, 2(eλ−λ−1)

n(x0+1)

}
if x0 ≤ nλ

n+1 ,

1
x0+1 min

{
(x0+2)λp
x0+2−λ , 2(eλ−λ−1)

n

}
if x0 > nλ

n+1 .
(3.7)

Proof. If x0 ≤ nλ
n+1 , using the same inequalities in (1.2) and (2.13), we have that

0 < 1− Bn,p(x0)
Pλ(x0)

≤ 1−eλqn or
∣∣∣Bn,p(x0)

Pλ(x0)
− 1

∣∣∣ ≤ 1−eλqn. For
∣∣∣Bn,p(x0)

Pλ(x0)
− 1

∣∣∣ ≤ 2(eλ−λ−1)
n(x0+1) ,

which together with (1.12) gives the bounds in the first case of (3.7).∣∣∣∣Bn,p(x0)

Pλ(x0)
− 1

∣∣∣∣ ≤ min

{
1− eλqn,

2(eλ − λ− 1)

n(x0 + 1)

}
.(3.8)
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For x0 > nλ
n+1 , i.e. for the second case of (3.7), the inequality follows from dividing

the inequality (3.4) by Pλ(x0) and using (1.12).∣∣∣∣Bn,p(x0)

Pλ(x0)
− 1

∣∣∣∣ ≤ 1

x0 + 1
min

{
(x0 + 2)λp

x0 + 2− λ
,
2(eλ − λ− 1)

n

}
.(3.9)

Hence, the result in is obtained from (3.8) and (3.9). �

The following corollary is an immediately consequence of the Theorem 3.1 and
Corollary 3.1.

Corollary 3.2. We have the following relation:

sup
0≤x0≤ nλ

n+1

∣∣∣∣ Pλ(x0)

Bn,p(x0)
− 1

∣∣∣∣ ≤ e−λq−n − 1(3.10)

and

sup
0≤x0≤ nλ

n+1

∣∣∣∣Bn,p(x0)

Pλ(x0)
− 1

∣∣∣∣ ≤ 1− eλqn.(3.11)

Corollary 3.3. The following inequalities hold:

sup
λ≤x0≤n

∣∣∣∣ Pλ(x0)

Bn,p(x0)
− 1

∣∣∣∣ ≤


eλ−λ−1
n min

{
1, 2(1−qn)

λ

}
if λ ≤ 1,

(λ̂+2)p

λ̂+2−λ
min

{
λ

λ̂+1
, 1− qn

}
if λ > 1,

(3.12)

and

sup
λ≤x0≤n

∣∣∣∣Bn,p(x0)

Pλ(x0)
− 1

∣∣∣∣ ≤


eλ−λ−1
n min

{
1, 2(1−qn)

λ

}
if λ ≤ 1,

(λ̂+2)p

λ̂+2−λ
min

{
λ

λ̂+1
, 1− qn

}
if λ > 1.

(3.13)

Proof. For x0 ≥ λ, the bound in (3.12) and (3.13) are the same bound. Then it
suffices to show that (3.12) holds. For λ ≤ 1, Teerapabolarn [14] showed that

sup
λ≤x0≤n

∣∣∣∣ Pλ(x0)

Bn,p(x0)
− 1

∣∣∣∣ ≤ eλ − λ− 1

n
min

{
1,

2(1− qn)

λ

}
.(3.14)

For λ > 1, from (3.3), we have

|Bn,p(x0)− Pλ(x0)| ≤
n∑

x=1

xp|∆f(x)|pX(x)

≤
n∑

x=1

(λ̂+ 2)Pλ(x0)xpX(x)p

λ̂+ 2− λ
min

{
1

λ̂+ 1
,
1

x

}
(by (2.7))

=
(λ̂+ 2)Pλ(x0)p

λ̂+ 2− λ

n∑
x=1

xpX(x)min

{
1

λ̂+ 1
,
1

x

}

=
(λ̂+ 2)Pλ(x0)p

λ̂+ 2− λ
min

{
λ

λ̂+ 1
, 1− qn

}
.
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Dividing the last inequality by Bn,p(x0), we obtain

sup
λ≤x0≤n

∣∣∣∣ Pλ(x0)

Bn,p(x0)
− 1

∣∣∣∣ ≤ (λ̂+ 2)p

λ̂+ 2− λ
min

{
λ

λ̂+ 1
, 1− qn

}
.(3.15)

Therefore, from (3.14) and (3.15), the inequality (3.12) holds. �

Theorem 3.2. For δ(λ) =

{
e−λq−n if λ̌ < λ̂,

1 if λ̌ = λ̂.
, we have

1. If λ̌ = 1, then

sup
0≤x0≤n

∣∣∣∣ Pλ(x0)

Bn,p(x0)
− 1

∣∣∣∣ ≤ max

{
e−λq−n − 1,

(eλ − λ− 1)δ(λ)

n

×min

{
1,

2(1− qn)

λ

}}
.(3.16)

2. If λ̌ > 1, then

sup
0≤x0≤n

∣∣∣∣ Pλ(x0)

Bn,p(x0)
− 1

∣∣∣∣ ≤ max

{
e−λq−n − 1,

(λ̌+ 2)pδ(λ)

λ̌+ 2− λ

×min

{
λ

λ̌+ 1
, 1− qn

}}
.(3.17)

Proof. 1. The inequality (3.16) directly follows from the result in [14].
2. For x0 > nλ

n+1 , using (2.6) and the arguments derived in the proof of (3.12), we
have

|Bn,p(x0)− Pλ(x0)| ≤
(λ̌+ 2)Pλ(x0)p

λ̌+ 2− λ
min

{
λ

λ̌+ 1
, 1− qn

}
.

Dividing the inequality by Bn,p(x0), we get∣∣∣∣ Pλ(x0)

Bn,p(x0)
− 1

∣∣∣∣ ≤ (λ̌+ 2)pPλ(x0)

(λ̌+ 2− λ)Bn,p(x0)
min

{
λ

λ̌+ 1
, 1− qn

}
≤ (λ̌+ 2)pδ(λ)

λ̌+ 2− λ
min

{
λ

λ̌+ 1
, 1− qn

}
which gives

sup
nλ
n+1<x0≤n

∣∣∣∣ Pλ(x0)

Bn,p(x0)
− 1

∣∣∣∣ ≤ (λ̌+ 2)pδ(λ)

λ̌+ 2− λ
min

{
λ

λ̌+ 1
, 1− qn

}
.(3.18)

Therefore, by combining (3.10) and (3.18), we have (3.17). �
The following corollary is a consequence of the Theorem 3.2.

Corollary 3.4. We have the following inequalities.
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1. If λ̌ = 1, then

sup
0≤x0≤n

∣∣∣∣Bn,p(x0)

Pλ(x0)
− 1

∣∣∣∣ ≤ max

{
1− eλqn,

eλ − λ− 1

n
min

{
1,

2(1− qn)

λ

}}
.(3.19)

2. If λ̌ > 1, then

sup
0≤x0≤n

∣∣∣∣Bn,p(x0)

Pλ(x0)
− 1

∣∣∣∣ ≤ max

{
1− eλqn,

(λ̌+ 2)p

λ̌+ 2− λ
min

{
λ

λ̌+ 1
, 1− qn

}}
.(3.20)

Remark. 1. Let us consider the results in Theorem 3.1, Corollary 3.1, Theorem
3.2 and Corollary 3.4. Note that, if p or λ is small, then all bounds presented in
the study approach zero. It indicates that the results in approximating the binomial
cumulative distribution function by the Poisson cumulative distribution function are
more accurate when p or λ is small.

2. Because

min

{
1− eλqn,

2(eλ − λ− 1)

n(x0 + 1)

}
≤ 2(eλ − λ− 1)

n(x0 + 1)
for x0 ≤ nλ

n+ 1

and

min

{
(x0 + 2)λp

x0 + 2− λ
,
2(eλ − λ− 1)

n

}
≤ 2(eλ − λ− 1)

n
for x0 >

nλ

n+ 1

and

max

{
1− eλqn,

(λ̌+ 2)p

λ̌+ 2− λ
min

{
λ

λ̌+ 1
, 1− qn

}}
≤ max

{
1− eλqn,

eλ − λ− 1

n
min

{
1,

2(1− qn)

λ

}}
forλ̌ > 1,

hence the bounds given in Theorem 3.1 and Corollary 3.1 are sharper than those in
(1.11) and (1.12), and for λ̌ > 1, the bounds in Theorem 3.2 and Corollary 3.4 are
sharper than the bounds in (1.9) and (1.10).

4 Numerical examples

This section presents some numerical examples of each result in approximating the bi-
nomial cumulative distribution function by a Poisson cumulative distribution function
using Theorems 3.1 and Corollary 3.1 for non-uniform bounds and using Theorems
3.2 and Corollaries 3.2−3.4 for uniform bounds.

Example 4.1. Let n = 100 and p = 0.01, then λ = 1.0 and the numerical results are
as follows.
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• For non-uniform bounds, the numerical result of Theorem 3.1 is of the form

∣∣∣∣ P1.0(x0)

B100,0.01(x0)
− 1

∣∣∣∣ ≤

0.00504628 if x0 = 0,

0.00718282 if x0 = 1,
0.01(x0+2)
(x0+1)2 if x0 = 2, ..., 100,

which is better than the numerical result obtained from (1.11),∣∣∣∣ P1.0(x0)

B100,0.01(x0)
− 1

∣∣∣∣ ≤
{
0.01443813 if x0 = 0,
0.01436564

x0+1 if x0 = 1, ..., 100.

The numerical result of Corollary 3.1 is of the form

∣∣∣∣B100,0.01(x0)

P1.0(x0)
− 1

∣∣∣∣ ≤

0.00504628 if x0 = 0,

0.00718282 if x0 = 1,
0.01(x0+2)
(x0+1)2 if x0 = 2, ..., 100,

which is also better than the numerical result obtained from (1.12),∣∣∣∣B100,0.01(x0)

P1.0(x0)
− 1

∣∣∣∣ ≤ 0.01436564

x0 + 1
, x0 = 0, 1, ..., 100.

• For uniform bounds, the numerical results of Corollaries 3.2 and 3.3 are the
following

sup
0≤x0≤0.99009901

∣∣∣∣ P1.0(x0)

B100,0.01(x0)
− 1

∣∣∣∣ ≤ 0.00504628,

sup
0≤x0≤0.99009901

∣∣∣∣B100,0.01(x0)

P1.0(x0)
− 1

∣∣∣∣ ≤ 0.00502094,

sup
1.0≤x0≤100

∣∣∣∣ P1.0(x0)

B100,0.01(x0)
− 1

∣∣∣∣ ≤ 0.00718282

and

sup
1.0≤x0≤100

∣∣∣∣B100,0.01(x0)

P1.0(x0)
− 1

∣∣∣∣ ≤ 0.00718282.

The numerical results of Theorem 3.2 and Corollary 3.4 are the following

sup
0≤x0≤100

∣∣∣∣ P1.0(x0)

B100,0.01(x0)
− 1

∣∣∣∣ ≤ 0.00718282,

which is the same numerical results obtained from (1.9) and (1.10).

Example 4.2. Let n = 250 and p = 0.01, then λ = 2.5 and the numerical results are
as follows.
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• For non-uniform bounds, the numerical result of Theorem 3.1 is of the form∣∣∣∣ P2.5(x0)

B250,0.01(x0)
− 1

∣∣∣∣ ≤
{
0.01266347 if x0 = 0, 1, 2,

0.025(x0+2)
(x0−0.5)(x0+1) if x0 = 3, ..., 250,

which is better than the numerical result obtained from (1.11),∣∣∣∣ P2.5(x0)

B250,0.01(x0)
− 1

∣∣∣∣ ≤
{

0.07033956
x0+1 if x0 = 0, 1, 2,

0.06945995
x0+1 if x0 = 3, ..., 250.

The numerical result of Corollary 3.1 is of the form∣∣∣∣B250,0.01(x0)

P2.5(x0)
− 1

∣∣∣∣ ≤
{
0.01250512 if x0 = 0, 1, 2,

0.025(x0+2)
(x0−0.5)(x0+1) if x0 = 3, ..., 250,

which is also better than the numerical result obtained from (1.12),∣∣∣∣B250,0.01(x0)

P2.5(x0)
− 1

∣∣∣∣ ≤ 0.06945995

x0 + 1
, x0 = 0, 1, ..., 250.

• For uniform bounds, the numerical results of Corollaries 3.2 and 3.3 are the
following

sup
0≤x0≤2.49003984

∣∣∣∣ P2.5(x0)

B250,0.01(x0)
− 1

∣∣∣∣ ≤ 0.01266347,

sup
0≤x0≤2.49003984

∣∣∣∣B250,0.01(x0)

P2.5(x0)
− 1

∣∣∣∣ ≤ 0.01250512,

sup
2.5≤x0≤250

∣∣∣∣ P2.5(x0)

B250,0.01(x0)
− 1

∣∣∣∣ ≤ 0.01250000

and

sup
2.5≤x0≤250

∣∣∣∣B250,0.01(x0)

P2.5(x0)
− 1

∣∣∣∣ ≤ 0.01250000.

The numerical result of Theorem 3.2 is of the form

sup
0≤x0≤250

∣∣∣∣ P2.5(x0)

B250,0.01(x0)
− 1

∣∣∣∣ ≤ 0.01266347,

which is better than the numerical result obtained from (1.9),

sup
0≤x0≤250

∣∣∣∣ P2.5(x0)

B250,0.01(x0)
− 1

∣∣∣∣ ≤ 0.02585517.

The numerical result of Corollary 3.4 is of the form

sup
0≤x0≤250

∣∣∣∣B250,0.01(x0)

P2.5(x0)
− 1

∣∣∣∣ ≤ 0.01250512,
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which is also better than the numerical result obtained from (1.10),

sup
0≤x0≤250

∣∣∣∣B250,0.01(x0)

P2.5(x0)
− 1

∣∣∣∣ ≤ 0.02553185.

Example 4.3. Let n = 1000 and p = 0.005, then λ = 5.0 and the numerical results
are as follows.

• For non-uniform bounds, the numerical result of Theorem 3.1 is of the form∣∣∣∣ P5.0(x0)

B1000,0.005(x0)
− 1

∣∣∣∣ ≤
{
0.01262080 if x0 = 0, 1, 2, 3, 4,
0.025(x0+2)
(x0−3)(x0+1) if x0 = 5, ..., 1000,

which is better than the numerical result obtained from (1.11),∣∣∣∣ P5.0(x0)

B1000,0.005(x0)
− 1

∣∣∣∣ ≤
{

0.28842105
x0+1 if x0 = 0, 1, 2, 3, 4,

0.28482632
x0+1 if x0 = 5, ..., 1000.

The numerical result of Corollary 3.1 is of the form∣∣∣∣B1000,0.005(x0)

P5.0(x0)
− 1

∣∣∣∣ ≤
{
0.01246350 if x0 = 0, 1, 2, 3, 4,
0.025(x0+2)
(x0−3)(x0+1) if x0 = 5, ..., 1000,

which is also better than the numerical result obtained from (1.12),∣∣∣∣B1000,0.005(x0)

P5.0(x0)
− 1

∣∣∣∣ ≤ 0.28482632

x0 + 1
, x0 = 0, 1, ..., 1000.

• For uniform bounds, the numerical results of Corollaries 3.2 and 3.3 are the
following

sup
0≤x0≤4.99500500

∣∣∣∣ P5.0(x0)

B1000,0.005(x0)
− 1

∣∣∣∣ ≤ 0.01262080,

sup
0≤x0≤4.99500500

∣∣∣∣B1000,0.005(x0)

P5.0(x0)
− 1

∣∣∣∣ ≤ 0.01246350,

sup
5.0≤x0≤1000

∣∣∣∣ P5.0(x0)

B1000,0.005(x0)
− 1

∣∣∣∣ ≤ 0.01458333

and

sup
5.0≤x0≤1000

∣∣∣∣B1000,0.005(x0)

P5.0(x0)
− 1

∣∣∣∣ ≤ 0.01458333.

The numerical result of Theorem 3.2 is of the form

sup
0≤x0≤1000

∣∣∣∣ P5.0(x0)

B1000,0.005(x0)
− 1

∣∣∣∣ ≤ 0.01458333,
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which is better than the numerical result obtained from (1.9),

sup
0≤x0≤1000

∣∣∣∣ P5.0(x0)

B1000,0.005(x0)
− 1

∣∣∣∣ ≤ 0.05730038.

The numerical result of Corollary 3.4 is of the form

sup
0≤x0≤1000

∣∣∣∣B1000,0.005(x0)

P5.0(x0)
− 1

∣∣∣∣ ≤ 0.01458333,

which is also better than the numerical result obtained from (1.10),

sup
0≤x0≤1000

∣∣∣∣B1000,0.005(x0)

P5.0(x0)
− 1

∣∣∣∣ ≤ 0.05658622.

Example 4.4. Let n = 2000 and p = 0.005, then λ = 10.0 and the numerical results
are as follows.

• For non-uniform bounds, the numerical result of Theorem 3.1 is of the form∣∣∣∣ P10.0(x0)

B2000,0.005(x0)
− 1

∣∣∣∣ ≤
{
0.02540089 if x0 = 0, 1, ..., 9,
0.05(x0+2)

(x0−8)(x0+1) if x0 = 10, ..., 2000,

which is better than the numerical result obtained from (1.11),∣∣∣∣ P10.0(x0)

B2000,0.005(x0)
− 1

∣∣∣∣ ≤
{

22.57467819
x0+1 if x0 = 0, 1, ..., 9,

22.01546579
x0+1 if x0 = 10, ..., 2000.

The numerical result of Corollary 3.1 is of the form∣∣∣∣B2000,0.005(x0)

P10.0(x0)
− 1

∣∣∣∣ ≤
{
0.02477167 if x0 = 0, 1, ..., 9,
0.05(x0+2)

(x0−8)(x0+1) if x0 = 10, ..., 2000,

which is also better than the numerical result obtained from (1.12),∣∣∣∣B2000,0.005(x0)

P10.0(x0)
− 1

∣∣∣∣ ≤ 22.01546579

x0 + 1
, x0 = 0, 1, ..., 2000.

• For uniform bounds, the numerical results of Corollaries 3.2 and 3.3 are the
following

sup
0≤x0≤9.99500250

∣∣∣∣ P10.0(x0)

B2000,0.005(x0)
− 1

∣∣∣∣ ≤ 0.02540089,

sup
0≤x0≤9.99500250

∣∣∣∣B2000,0.005(x0)

P10.0(x0)
− 1

∣∣∣∣ ≤ 0.02477167,

sup
10.0≤x0≤2000

∣∣∣∣ P10.0(x0)

B2000,0.005(x0)
− 1

∣∣∣∣ ≤ 0.02727273
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and

sup
10.0≤x0≤2000

∣∣∣∣B2000,0.005(x0)

P10.0(x0)
− 1

∣∣∣∣ ≤ 0.02727273.

The numerical result of Theorem 3.2 is of the form

sup
0≤x0≤2000

∣∣∣∣ P10.0(x0)

B2000,0.005(x0)
− 1

∣∣∣∣ ≤ 0.02727273,

which is better than the numerical result obtained from (1.9),

sup
0≤x0≤2000

∣∣∣∣ P10.0(x0)

B2000,0.005(x0)
− 1

∣∣∣∣ ≤ 2.25736787.

The numerical result of Corollary 3.4 is of the form

sup
0≤x0≤2000

∣∣∣∣B2000,0.005(x0)

P10.0(x0)
− 1

∣∣∣∣ ≤ 0.02727273,

which is also better than the numerical result obtained from (1.10),

sup
0≤x0≤2000

∣∣∣∣B2000,0.005(x0)

P10.0(x0)
− 1

∣∣∣∣ ≤ 2.20144911.

Considering the Examples 4.1−4.4, we see that the numerical results in Poisson
approximation to binomial cumulative distribution are more accurate if p is small even
with λ is relatively large. In addition, numerical comparison shows that the bounds
in Theorem 3.1, Corollary 3.1, Theorem 3.2 and Corollary 3.4 are sharper than the
corresponding bounds in (1.9), (1.10), (1.11) and (1.12).

5 Conclusion

In this study, the uniform and non-uniform bounds in Theorems 3.1 and 3.2 and
Corollaries 3.1 and 3.4 provide new general criteria for measuring the accuracy in
approximating a binomial cumulative distribution with parameter n and p by the
Poisson cumulative distribution with mean λ = np. With the bounds, it is pointed out
that each result in the theorems and corollaries gives a good Poisson approximation
when p is small, and all bounds obtained in this study are sharper than those reported
in Teerapabolarn [14, 15], including both theoretical and numerical results.
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