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Abstract. In this paper a generalized kinetic model for the analysis of
population dynamics is given. Starting from the classical kinetic model, we
propose an integro-differential equation as suitable generalization of known
models, aiming to include, as special cases, the most popular models for
population dynamics such as the kinetic model for cells competition [2, 4,
5, 6, 7, 9], the master equations model [17, 3, 24, 27], the allergy-immune
system competition (CD8T) [25].
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1 Introduction

Competition models for population dynamics are typically represented by some non-
linear dynamical systems of Lotka-Volterra type and slightly modified versions thereof,
such as delay equations, discrete models [1, 2, 3, 4, 6, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20,
21, 22, 23, 26, 28]. Sometime the original Lotka-Volterra equations are modified by in-
troducing some additional parameters aiming to explain some continuously incoming
experimental observations and clinical trials. However, by comparing the experimen-
tal data with the resulting values of the mathematical models we are forced to notice
that there exists some bias between any theoretical model and the experimental data,
mostly due to the existence of some uncertainty in the population dynamics. So
that we are obliged to take into account also some uncertainty, in the dynamics of
populations, by adding some stochastic variables into the classical dynamical models.
Because of this, some recent approaches to the population dynamics were built on
probabilistic models with stochastic functions/equations. Some of them are simply
based on the computation of the distribution/probability function as the solution of
a suitable additional (constitutive) equation. Among the many available models and
equations it is worth to remind the stochastic type (Ito equation), the probability
evolution among discrete states (Master equation) [17, 3, 24, 27], and the hybrid
integro-differential kinetic equations [4, 5, 6, 7]. In this case the Boltzmann equations
for the computation of the population distribution function are coupled with a non-
linear dynamical system of population dynamics. The distribution functions for each
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competing population is obtained as solution, of some partial differential equations,
depending both on time and on the biological activity at a given macroscopic scale.
So that the concept of scale becomes the key point in modelling biological activity.

In the cell populations dynamics and with respect the multiscale approach there
exists, and has been deeply investigated [2, 4, 5, 6, 7, 9, 10, 13, 14, 16, 18, 26, 28], at
least the two scales model where:

1. The microscopic scale, is the scale where individual cells interact. It is char-
acterized by the evolution on time of the number of cells, and the density of
populations are obtained as solution of Volterra type ordinary (nonlinear) dif-
ferential equations.

2. The macroscopic scale, is the scale where variable sets of activated individuals
interact. It is characterized by the evolution of the activity from one state to
another. During the evolution the cardinality of the sets is changing, so that we
have a well defined distribution density function which describes the activity of
cells at a given time. The distribution function is defined as the probability to
find a given cell at a time t and at a specific biological state activity.

From this point of view the competition between populations can be seen both as
the transition of cells from one state to another, thus allowing the changing of the
distribution function (at a macroscopic state), and as the evolving number density
of cells at a microscopic state. With this two scale model, also called hybrid model
[4, 5, 6], two set of equations are needed: some suitable partial derivative equations
at the macroscopic scale for the computation of the distribution function, which is a
function of two variables (time and biological state), and a set of ordinary differential
equations at a microscopic scale for the computation of the density number of cell
population, which is a function of only one variable (time t). Sometimes the transition
of the state activity, at a macroscopic scale, is modeled as a stochastic discrete state
transition as described by the so-called master equation [17, 3, 27, 24]

In the hybrid system[6, 4, 5, 9] the link between the microscopic and the macro-
scopic scale is realized by means of a parameter defined by the solution of the partial
derivative equations and by the knowledge of the distribution function, to be included
as a known function of time into the ordinary Lotka-Volterra type differential equa-
tions. In this simple approach this parameter partially explains the uncertainty, due
to the evolution of the distribution function and it can be a-priori taken as a stochastic
parameter.

In this paper the two scale competition hybrid model [2, 4, 5, 6, 9] is proposed in
the framework of hybrid kinetic models. In particular, a model of biological interaction
based on scale transition (macro to micro) and transition on the biological states from
a stochastic behavior to a deterministic will be discussed. More generally, in order to
take into account some of the most popular methods in population dynamics, will be
also proposed some suitable generalization of the hybrid model aiming to include, as
special cases, the master equation and the immune response.
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2 Hybrid kinetic model for the tumor-immune
system competition

The hybrid kinetic model is based on a two scale approach to the analysis of com-
petition between two populations, such as cancer cells and immune system. In the
biological competition, we can roughly identify at least two scale at a macroscopic and
microscopic level respectively. In the microscopic scale single cells interact with the
remaining so that this scale is characterized by the evolution on time of the number of
cells modeled by some nonlinear ordinary differential equations (like Lotka-Volterra
equations).

At a macroscopic scale the competition between two populations is studied by
analizing the time variation of some probability density distributions. This function
defines the probability to find at a time t a cell with a given biological state. The state
transition is due to the encounters with other cells. These functions can be obtained
by solving a set of nonlinear partial differential equations when the state transition
is continuously depending on time or by ordinary equations when the time steps are
sampled, as in the so-called master equations.

In the first case, one of the most popular model for cells competition is the kinetic
model which is shortly summarized as follows.

Let us consider a physical system of two interacting populations each one made

by a large number of active particles with sizes: for i = 1, 2 and R+
def
= [0, +∞).

Particles are homogeneously distributed in space, while each population is char-
acterized by a microscopic state, called activity, denoted by the variable u. The
physical meaning of the microscopic state may differ for each population. We assume
that the competition model depends on the activity through a function of the overall
distribution:

(2.1) µ = µ[fi(t, u)] , (µ[fi(t, u)] : R+ → R+).

Definition 2.1 (Density distribution function). The description of the overall dis-
tribution over the microscopic state within each populations is given by the density
distribution function:

(2.2) fi = fi(t, u) , (fi(t, u) : [0, T ]×Du → R+ , Du ⊆ R)

for i = 1, 2, such that fi(t, u) du denotes the probability that the activity u of particles
of the i-th population, at the time t, is in the interval [u, u+ du]:

(2.3) dµ = fi(t, u)du .

Moreover, it is

(2.4) ∀ i, ∀ t ≥ 0 : fi(t, u) ≥ 0 ,

∫
Du

fi(t, u) du = 1 .

In this section we consider the competition between two cell populations. The
first one with uncontrolled proliferating ability and with hiding ability; the second
one with higher destructive ability, but with the need of learning about the presence
of the first population. The analysis developed in what follows is referred to a specific
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case where the second population attempts to learn about a first population which
escapes by modifying its appearance. Specifically, the hybrid evolution equations can
be formally written as follows [4, 5, 6];

(2.5)


dni

dt
= Gi(n1, n2;µ[f ]) ,

∂fi
∂t

= Ai[f ],

where Gi, for i = 1, 2, is a function of n = {n1, n2} and µ, acts over f = {f1, f2};
while A̧i, for i = 1, 2, is a nonlinear operator acting on f , and µ[f ] is a functional
(0 ≤ µ ≤ 1), which describes the ability of the second population to identify the first
one. Then, (2.5) denotes an hybrid system of a deterministic system coupled with
a microscopic system statistically described by the kinetic theory approach. In the
following the evolution of density distribution will be taken within the kinetic theory
(Boltzmann-like equations).

The derivation of (2.5)2 can be obtained by starting from a detailed analysis of
microscopic interactions. Specifically, let us consider binary interactions between a
test, or candidate, particle with state u∗ belonging to the ith population, and field
particle with state u∗ belonging to the jth population. The modeling of microscopic
interactions is supposed to lead to the following quantities:

Definition 2.2 (Encounter rate). The encounter rate is a parameter which depends
for each pair of interacting populations on a suitable average of the relative velocity
ηij , with i, j = 1, 2.

Definition 2.3 (Transition density function). The transition density function is the
function φij(u∗, u

∗, u) such that φij(·;u) denotes the probability density that a can-
didate particle with activity u∗ belonging to the ith population, falls into the state
u ∈ Du, of the test particle, after an interaction with a field entity, belonging to the
jth population, with state u∗.

The transition density φij(u∗, u
∗, u) fulfills the condition

(2.6) ∀ i , j, ∀u∗ , u∗ :

∫
Du

φij(u∗, u
∗, u)du = 1 , φij(u∗, u

∗, u) > 0

when φij(u∗, u
∗, u) ̸= 0, and

(2.7) ∀u∗ , u∗ :

∫
Du

φij(u∗, u
∗, u)du = 0 ⇐⇒ φij(u∗, u

∗, u) = 0.

The state transition

u∗
u∗

−→ u

follows from the mutual action of the field particle (F) of the i-th population on the
test particle (T) of the j-th population and vice-versa, so that

u∗(F )
u∗(T )−→ u ⇔ u∗(T )

u∗(F )−→ u .

With respect to this mutual action we can assume that, this function depends on the
biological model, as follows
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1) Competition within the first group and with others: Particles of the i-th popu-
lation interact with any other particle both from its own i-th population and
from the j-th population so that

φij(u∗, u
∗, u) ̸= 0 , (i fixed, ∀ j) .

In this case each particle of the i-th population can change its state not only due
to the competition with the j-th population but also by interacting with other
particles of its own population. Instead, the individuals of the j-th population
change its state only due to the interaction with the other i-th population. They
do not interfere each other within their i-th group.

2) Competition within the second group and with others: Particles of the j-th pop-
ulation interact with any other particle both from its own j-th population and
from the i-th population so that

φij(u∗, u
∗, u) ̸= 0 , (j fixed, ∀ i)

3) Full competition within a group and with others: Particles of each population
interact with any other particle both from its own population and from the
other population so that

φij(u∗, u
∗, u) ̸= 0 , (∀ i , ∀ j)

4) Competition of two groups: Particles of each population interact only with parti-
cles from the other population so that

(2.8) φij(u∗, u
∗, u) = 0 , (i = j) .

We can assume that this kind of competition arises when the dynamics in each
population are stable and each population behaves as a unique individual.

Then, by using the mathematical approach, developed in [4, 5, 6, 7, 9], it yields the
following class of evolution equations:

(2.9)

∂fi
∂t

(t, u) =

2∑
j=1

∫
Du×Du

ηij φij(u∗, u
∗, u)fi(t, u∗)fj(t, u

∗) du∗ du
∗

−fi(t, u)
2∑

j=1

∫
Du

ηijfj(t, u
∗) du∗ ,

(i = 1, 2)

which can be formally written as (2.5)2.

2.1 Coupling with ordinary differential equations for
cells competition

From the solution of this system one can define a parameter (or a set of parameters)
which define the time evolving distance between the distributions. These parameters
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characterize the microscopic scale, typically represented by a nonlinear ordinary dif-
ferential system for the competition of two populations (Lotka-Volterra and similar
ones).

In the case of tumor cells immune system it has been considered only one pa-
rameter which has been taken as representative of [6, 4, 5] a stochastic process. The
probability density distribution is modeled by the hiding-learning dynamics referred
to biological events where tumor cells attempt to escape from immune cells which,
conversely, attempt to learn about their presence.

Therefore when the coupling parameter is obtained by solving the kinetic equations
for the distribution functions, then it will be included in the classical Lotka-Volterra
competition equations or similar more realistic competition models (see e.g. [1, 14,
11, 12, 15, 16, 18, 19, 20, 21, 22, 23, 28, 26, 8])

(2.10)


dni

dt
= Gi(n1, n2;µ[f ]) ,

∂fi
∂t

= Ai[f ],

For the Volterra equations we have

(2.11)



dN

dt
= aN − µ(f)NP

dP

dt
= bP − cNP

∂fi
∂t

= Ai[f ] , (i = 1, 2) .

3 Allergy-immune system competition: primary CD8T
cell immune response

Another example of biological competition and population dynamics can be found in
the immune response to a pathogen encounter. The primary CD8 T -cell response is
biologically modeled by an initial increasing of cells followed by a relaxation. From
mathematical point of view the immune response can be modeled by an hybrid sys-
tem of three nonlinear ordinary differential equations coupled with a linear partial
differential equation [25], as follows.

Let f(t, u) be the number of effector cells at time t and age u, ρ(u) the cell division
rate and d(u) the death rate of effector cells at the age u, the partial differential
equation for f(t, u) is [25]

(3.1)
∂

∂t
f(t, u) +

∂

∂u
f(t, u) = [d(u)− ρ(u)] f(t, u)

In the immune response the density f(t, u) is coupled with a set of nonlinear ordinary
differential equations for the number N(t) of T -cells at time t and the number of
pathogens P (t). However, it should be noticed from Eq. (3.1) that also in this case
likewise the kinetic equations the macroscopic behavior is described by a density
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distribution function f(t, u) which is a solution of a linear equation. When f(t, u)
is independent on the activity variable u, then from (3.1) we re-obtain the simplest
equation for modeling population dynamics which is the Malthus equation. From
this we can assume, and it will be shown in the following sections, that population
dynamics, at a macroscopic scale should be based on the same model which describes
the evolving density distribution. In other words the equation from where to obtain
the density distribution function must be the same for almost all kind of population
dynamics models.

4 Master equation

As another example of population dynamics, let us consider in this section another
equation which is used for discrete population dynamics and in presence of some
stochastic behavior. Let us a consider a biological system which is characterized by
a discrete finite set of phenomenological states σi, i = 1, . . . , n < ∞. Each state is
characterized by the probability fi that the system falls into that state, at a given time
t. The transition from one state into another is given a-priori and is characterized by
a given transition matrix wik, i, k = 1, . . . , n < ∞. So that the master equations can
be written as follows [3, 17, 27]

(4.1)
d

dt
fi(t) =

∑
k=1,...,n

wikfk(t) , i = 1, . . . , n

with ∑
k=1,...,n

wik = 0 ∀ i .

Thus we get the more familiar form of the master equations

(4.2)
d

dt
fi(t) =

∑
k=1,...,n

k ̸=i

wikfk(t)− wkifi(t) i = 1, . . . , n

The master equation is a system of first order differential equations for the probability
distribution of state transition. The transition matrix wik is a constant matrix, but
in the more general not stationary case we can assume that it is time depending. This
equation has been successfully applied to the investigation of granular media and cells
transition [3]. The simplest stationary case is described by a set of linear differential
equations which can be easily solved.

5 Generalized model

In order to extend the previously considered models to a more general set of equa-
tions we will focus only on the macroscopic scale. In fact, at the microscopic scale
the competition of single individuals can be still considered within the framework of
Volterra equations and its generalization. Instead at the macroscopic scale we will
try to take into account some uncertainty of the evolving distribution functions which
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lead us to consider some stochastic equations. This generalization is done in a such a
way that the above models can be obtained from the general scheme by some simpli-
fying hypotheses. In particular, it is expected that the master equations representing
transition from discrete phases, the competition of immune system and pathogene
agents, and the kinetic equations for continuous transition of states will be recovered
from the general equations.

By modeling the competition of populations we should start again from the idea
that this can be modeled at different scales. Cells of different populations are charac-
terized by biological functions heterogeneously distributed and they are represented
by some probability distribution.

The interacting system is still characterized at a macroscopic scale by a density
distribution functions fi(t, u) which describes the cells activity during the interaction-
proliferation.

At this level the distribution of cells fulfill some partial differential equations taken
from the classical kinetic theory. In this case we have the following theorem.

Theorem 5.1 (Generalized equations for the density distribution function). The
more general model of n interacting populations, each one represented by a density
distribution function consists in a nonlinear system of partial differential equations:
(5.1)

∂fi
∂t

(t, u) + k(t, u)
∂fi
∂u

(t, u) = λ

n∑
j=1

∫
Du×Du

ηij φij(u∗, u
∗, u)fi(t, u∗)fj(t, u

∗) du∗ du
∗

−fk(t, u)

[
n∑

i=1

wik − δki

n∑
j=1

∫
Du

ηijfj(t, u
∗) du∗

]
,

with i = 1, .., n.

Proof. In the special case k(t, u) = 0, wik = 0 and λ = 1, n = 2 we have the
classical kinetic system, already studied in [2, 4, 5, 6, 7, 9] for the tumor-immune
system competition (5.1)

(5.2)

∂fi
∂t

(t, u) =

2∑
j=1

∫
Du×Du

ηij φij(u∗, u
∗, u)fi(t, u∗)fj(t, u

∗) du∗ du
∗

−fi(t, u)

2∑
j=1

∫
Du

ηijfj(t, u
∗) du∗ ,

(i = 1, 2)

While for k(t, u) = 1, λ = 0 and the
2∑

j=1

∫
Du

ηijfj(t, u
∗) du∗ = 0 and w11 =

ρ(u), w22 = −d(u), w12 = w21 = 0 we obtain the equation proposed by Terry et Al.
[25] for the primary CD8T cell immune response (3.1)

(5.3)
∂fi
∂t

(t, u) +
∂fi
∂u

(t, u) = fi(t, u)[d(u)− ρ(u)] , (i = 1, 2)
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It should be noticed that as independent parameters Terry et Al. proposed τ , i.e.
the age, instead of the activity parameter u.

When the distribution depends on time only, we can have from the above system
the master equations [3, 17, 27]: for k(t, u) = 0, λ = 0,∂fi∂u = 0 and

2∑
j=1

∫
Du

ηijfj(t, u
∗) du∗ = 0,

we have

(5.4)
dfi
dt

=
n∑

i=1

wikfk(t) , (i = 1, ..., n)

so that the above equations are also a natural generalization of the master equations
(4.1) as time evolution of probability. �

There follows that the equations (5.1) should be considered as the more general
set of equations describing the population dynamics at a macroscopics scale. From
these equations we can obtain the density distribution function, in the more general
case.

Conclusions

In this paper a generalized kinetic model for the investigation of population dynamics
at the macroscopic scale has been given. It has been also shown that some of the
most popular classical models of cells competition such as the master equation and
the immune response can be easily obtained from the generalized equations.
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