
Magnetic geometric dynamics around

one infinite rectilinear circuit
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Abstract. In this paper we compare the trajectories of particles described
by the Lorentz Law and the trajectories of geometric dynamics generated
by the magnetic flow around an infinite rectilinear circuit.
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1 Magnetic field around an electric circuit

We consider the space R3 endowed with the standard scalar product < ·, · >, the
induced Euclidean norm ||·|| and the vector product ×. An electric wire is represented
by a smooth curve α : [a, b] ⊂ R → α([a, b]) ⊂ R3 and a constant current intensity J .
Then magnetic field B created by the electric circuit (α, J), at the point q = (x, y, z) ∈
R3 \ α([a, b]), is given by the Biot-Savart law

B(q) =
µ0J

4π

∫ b

a

α̇(t)× (q − α(t))

||q − α(t)||3
dt,

where µ0 is the permeability constant. The magnetic vector field B does not depend
on the parametrization of the circuit. We take µ0

4π = 1 for simplicity.
Theory of magnetic fields generated around the piecewise rectilinear circuits is

developed in the papers and books of C. Udrişte [27-32]. Meanwhile the magnetic
flow theory around piecewise rectilinear circuits was taken in the works [1-26], not
mentioning the original versions in [27-32].

1.1 Magnetic field around Oz

Particularly, we consider the case when the electric circuit is rectilinear, and it is no
loss in generality supposing that the curve α is just the axis OZ : x = 0, y = 0, z = t.
Fixing the Cartesian frame {i, j, k}, we find the magnetic field

(1.1) B(q) =
2(−yi+ xj)

x2 + y2
.
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This magnetic vector field has the symmetries X1 = ∂
∂z (translation) and X2 =

−y ∂
∂x + x ∂

∂y (rotation), and its integral curves (field lines) are circles around the
Oz-axis.

2 Motion in the magnetic field of an infinite
rectilinear wire

The equations of motion of a (non-relativistic) unit-mass, unit-charge particle in the
presence of a magnetic field B are given by the Lorentz Law

q̈(t) = q̇(t)×B(q),

where the dot over q(t), as usual, is the time derivative. We remark that the previous
(magnetic) Lorentz force exerted on a charged particle by a magnetic field is always
perpendicular to its instantaneous direction of motion. Also, a trajectory in magnetic
dynamics has constant speed, i.e., ||q̇(t)|| = c. Hence, the curvature of a trajectory is

k =
||q̇ × q̈||
||q̇||3

=
|| < q̇,B > q̇ − c2B||

c3
.

Similarly, we can compute the torsion of a trajectory.
Generally, a charged particle placed in a magnetic field executes a circular orbit in

the plane perpendicular to the direction of the field. But this is not the most general
motion of a charged particle. Indeed, we can also add an arbitrary drift along the
direction of the magnetic field. This follows because the force acting on the particle
only depends on the component of the particle’s velocity which is perpendicular to
the direction of magnetic field. The combination of circular motion in the plane
perpendicular to the magnetic field, and uniform motion along the direction of the
field, gives rise to a spiral trajectory (a curve that turns around an axis at a constant or
continuously varying distance while moving parallel to the axis) of a charged particle
in a magnetic field, where the field forms the axis of the spiral (charged particles
spiral back and forth along field lines). This statement can be confirmed taking τ(t)
as a vector collinear to the velocity q̇(t); then < q̈(t), τ(t) >= 0.

The Lorentz Law is represented also by Euler-Lagrange ODEs associated to the
Lagrangian

L1 =
1

2
||q̇(t)||2+ < q̇(t), A(q(t)) >,

where A is the vector potential, i.e., rotA = B. This gives the Hamiltonian (first
integral of movement)

H1 =
1

2
||q̇(t)||2.

2.1 Lorenz law for the magnetic field around Oz

Suppose the magnetic field has the formula (1.1). Since q̇ = (ẋ, ẏ, ż) and q̈ = (ẍ, ÿ, z̈),
the Lorentz Law is transformed into the ODE system

ẍ(t) = − 2x(t)

x(t)2 + y(t)2
ż(t)
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ÿ(t) = − 2y(t)

x(t)2 + y(t)2
ż(t)

z̈(t) =
2x(t)

x(t)2 + y(t)2
ẋ(t) +

2y(t)

x(t)2 + y(t)2
ẏ(t).

3 Magnetic geometric dynamics around
a rectilinear infinite circuit

The Geometric Dynamics, the dynamics generated by a flow and a Riemannian metric,
was introduced and studied by C. Udriste ([27-28], [32]). The key findings on magnetic
geometric dynamics are included in [29-31].

Let A be the vector potential of the magnetic field B, i.e., rotA = B. The magnetic
flow of the vector field −A, i.e.,

q̇(t) = −A(q(t))

and the Euclidean norm determine the associated least squares Lagrangian

L2 =
1

2
||q̇(t) +A(q(t))||2.

Let f = 1
2 ||A||

2 be the magnetic energy density. Then the vector Euler-Lagrange
equation is

(3.1) q̈(t) = q̇(t)× rotA(q(t)) +∇f(q(t))

or
q̈(t) = q̇(t)×B(q(t)) +∇f(q(t)).

Proposition Along each trajectory in magnetic geometric dynamics, we have

||q̇(t)||2 = f(q(t)) + c.

Proof Multiplying the relation (3.1), in the scalar sense, by q̇, we find

< q̈, q̇ >=< ∇f, q̇ > .

Consequently,
d

dt
||q̇(t)||2 =

d

dt
f(q(t)).

The relation from previous Proposition can be written in three ways

||q̇(t)||2 = ||A(q(t))||2,

||q̇(t)||2 = ||A(q(t))||2 + k2, ||q̇(t)||2 = ||A(q(t))||2 − ℓ2,

which reflect either collinearity, or orthogonality (Pythagora’s Theorem).
The associated Hamiltonian (first integral of the movement)

H2(q, q̇) =
1

2
||q̇(t)||2 − f(q(t))

shows that the trajectories in geometric dynamics splits in three categories: (i) mag-
netic field lines H2(q, q̇) = 0; (ii) trajectories for which H2(q, q̇) > 0 (transversal to
field lines); (iii) trajectories for which H2(q, q̇) < 0 (transversal to field lines).
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3.1 Magnetic geometric dynamics of the magnetic field around
the Oz axis

Suppose the vector potential A has the components (0, 0,− ln(x2+y2)) and the mag-
netic vector field is given by the formula (2). Then fA = 1

2 ln
2(x2 + y2) and the

magnetic geometric dynamics is described by the ODE system

ẍ(t) = − 2x(t)

x(t)2 + y(t)2
(
ż(t)− ln(x(t)2 + y(t)2)

)
ÿ(t) = − 2y(t)

x(t)2 + y(t)2
(
ż(t)− ln(x(t)2 + y(t)2)

)
z̈(t) =

2x(t)

x(t)2 + y(t)2
ẋ(t) +

2y(t)

x(t)2 + y(t)2
ẏ(t).
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[10] A. Bossavit, Diferential Geometry for the Student of Numerical Methods in
Elctromagnetism, Electricite de France, Etudes et Recherches, 1991.

[11] M. Brawn, Particle motions in a magnetic field, J. Differential Equations 8(1970),
294-332.

[12] L. S. Brown, G. Gabrielse, Geonium theory: physics of a single electron or ion
in a Penning trap, Rev. Mod. Phys. 58(1986), 233-311.

[13] K. Burns, G. P. Paternain, Anosov magnetic flows, critical values and topological
entropy, Nonlinearity 15 (2002), 281-314.

[14] P. Cardirolli, M. Guida, Helicoidal trajectories of a charge in a nonconstant
magnetic field, Adv. Diff. Eqs. 12 (2007), 601-622.

[15] C. Castilho, The motion of charged particle on Riemmanian surfaces under a
non-zero magnetic field, J. Differential Equations 171 (2001), 110-131.
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[25] S. Ştefănescu, C. Udrişte, Magnetic field lines around filiform electrical circuits
of right angle type, Sci. Bull. P.U.B. Series A : Appl. Math Phys., 55, (1993),
3-18.

[26] F. Truc, Trajectories bornees d’une particle soumise a un champ magnetique
symetrique lineare, Ann. Ins. Henri Poincare A, 64 (1996), 127-154.



Magnetic geometric dynamics around one infinite rectilinear circuit 45
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[32] C. Udrişte, Tools of geometric dynamics, Buletinul Institului de Geodinamică,
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