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Abstract. The quantum mechanical problem for a spin 1/2 particle in
external Coulomb potential, reduced to a system of two first-order dif-
ferential equations, is reconsidered from the point of view of solving this
system by using the Heun function theory. It is shown that, besides the
standard approach of solving the problem in terms of confluent hypergeo-
metric functions, there are several other possibilities, which rely on using
the confluent Heun functions. We consider two new methods to construct
the solutions of the problem: the first implies that only one component of
the pair of relevant functions is expressed in terms of the Heun functions,
and in the second approach both functions of the system are expressed in
terms of the Heun functions. In this context, certain relations between
the two classes of involved functions are established. It is shown that all
the considered cases lead to the same energy spectrum, which validates
the correctness of the approaches.

M.S.C. 2010: 33E30, 34B30.

Key words: Quantum mechanics; Dirac equation; Coulomb problem; confluent Heun
functions; confluent hypergeometric functions.

1 Introduction

The general Heun equation is a second-order linear differential equation which has four
regular singularities and takes different confluent forms [28, 64, 67]. This equation
and all its confluent forms turn out to be of primary significance in physical applica-
tions, for instance, in quantum mechanics and in field theory on the background of
curved space-time models, and in optics (see the extensive reference list [1]–[74]). A
comprehensive list of references can be found on the the Heun Project website [75].

In this paper, the well-known quantum mechanical problem of a spin 1/2 parti-
cle in external Coulomb potential, reduced to a system of two first-order differential
equations, is studied using the Heun function theory for solving this system. We show
that, besides the standard way [5] of solving the problem in terms of confluent hy-
pergeometric functions, there exist several other possibilities, which rely on applying
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confluent Heun functions. We consider two new methods to construct the solutions of
the problem: in the first one, only one component of the pair of relevant functions is
expressed in terms of the Heun functions, while in the second approach both functions
of the system are expressed in terms of the Heun functions. Both approaches lead to
a unique energy spectrum, which confirms their correctness.

2 The Coulomb problem: solutions constructed by
both hypergeometric and Heun functions

In a spherical space endowed with the metric dS2 = dt2 − dr2 − r2(dθ2 + sin2 dϕ2),
a diagonal tetrad has the form [61, 53]

(2.1) eα(0) = (1, 0, 0, 0), eα(1) = (0, 0, r−1, 0), eα(2) = (0, 0, 0, r−1 sin−1 θ), eα(3) = (0, 1, 0, 0).

By using the substitution Ψ = 1
r Ψ̃, the covariant Dirac equation1[

iγc
(
eα(c)∂α +

1

2
jabγabc

)
−m

]
Ψ = 0

can equivalently be written as(
iγ0 ∂

∂t
+ iγ3 ∂

∂r
+

1

r
Σθϕ −m

)
Ψ̃ = 0, where Σθ,ϕ = iγ1∂θ + γ2 i∂ϕ + iσ12

sin θ
.

In order to diagonalize the operators i∂t, J⃗
2, and J3, one takes the wave function of

the form [61]

Ψ̃ = e−iEt

 f1(r) D−1/2

f2(r) D+1/2

f3(r) D−1/2

f4(r) D+1/2

 ,

where Dσ = Dj
−m.σ(ϕ, θ.0) are the Wigner functions [71]. The separation of variables

leads to four radial equations 2

(2.2)

{
Ef3 − i d

drf3 − i ν
sin rf4 −mf1 = 0, Ef4 + i d

drf4 + i ν
sin rf3 −mf2 = 0,

Ef1 + i d
drf1 + i ν

sin rf2 −mf3 = 0, Ef2 − i d
drf2 − i ν

sin rf1 −mf4 = 0.

In a spherical tetrad, the space reflection operator is given by [61]

Π̂sph =

( 0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0

)
⊗ P̂ .

The spectral equations Π̂sph Ψjm = Π Ψjm lead to

Π = δ (−1)j+1, where δ = ±1; f4 = δf1, f3 = δf2 ,

1We further use the terminology and notations from [61, 53].
2We consider here the case ν = j + 1/2.
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which brings (2.2) to the simplified form

(2.3)
( d

dr
+

ν

r

)
f + (E + δm) g = 0,

( d

dr
− ν

r

)
g − (E − δm) f = 0,

where we performed the change of variables {f1, f2} {f, g} given by

f = (f1 + f2)/
√
2, g = (f1 − f2)/i

√
2.

For definiteness, in the particular case when δ = 1, the equations (2.3) become

(2.4)
( d

dr
+

ν

r

)
f + (E +m)g = 0,

( d

dr
− ν

r

)
g − (E −m)f = 0,

and we note that by performing the replacement m  −m, we obtain the equations
for δ = −1.

The presence of the external Coulomb field is taken into account in (2.4) by the
formal change ε ε+e/r. Thus, the quantum Coulomb problem for a Dirac particle
is described by the following radial system

(2.5)
( d

dr
+

ν

r

)
f +

(
E +

e

r
+m

)
g = 0,

( d

dr
− ν

r

)
g −

(
E +

e

r
−m

)
f = 0.

We further perform the following linear transformation3 of the functions {f(r), g(r)} 
{F (r), G(r)}

(2.6)

{
f(r) = aF (r) + cG(r),
g(r) = dF (r) + bG(r)

⇔
{

F (r) = bf(r)− cg(r),
G(r) = −df(r) + ag(r).

By linearly combining the equations (2.5) rewritten in terms of F and G with the
coefficients b,−c and then with −d, a, we get the system

(2.7)



[
d
dr

− b′a+ c′d+ ν
r
(ba+ cd) +

(
E + e

r
+m

)
bd+

(
E + e

r
−m

)
ca

]
F

=
[
b′c− bc′ − ν

r
2bc−

(
E + e

r
+m

)
b2 −

(
E + e

r
−m

)
c2

]
G[

d
dr

+ d′c− a′b− ν
r
(dc+ ab)−

(
E + e

r
+m

)
bd−

(
E + e

r
−m

)
ca

]
G

=
[
−d′a+ da′ + ν

r
2ad+

(
E + e

r
+m

)
d2 +

(
E + e

r
−m

)
a2

]
F .

To simplify their form, let us assume that the transformation (2.6) does not depend on r,
and that it is orthogonal, i.e., the coefficients of the linear combinations have the particular
form:

S :=

(
a c
d b

)
=

(
cosA/2 sinA/2
− sinA/2 cosA/2

)
,

Then (2.7) become

(2.8)

{ (
d
dr

+ ν
r
cosA−m sinA

)
F =

(
− ν

r
sinA− e

r
− E −m cosA

)
G,(

d
dr

− ν
r
cosA+m sinA

)
G =

(
− ν

r
sinA+ e

r
+ E −m cosA

)
F.

3The coefficients of this transformation may depend on the radial variable; we assume that its
determinant satisfies the identity a(r)b(r)− c(r)d(r) = 1.
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There exist four possibilities (of which only two are distinct):

1) − ν
r
sinA+ e

r
= 0 ⇒

{
sinA = e

ν
, cosA =

√
1− e2/ν2 ,

cos A
2
=

√
ν+

√
ν2−e2

2ν
, sin A

2
=

√
ν−

√
ν2−e2

2ν
.

1′) − ν
r
sinA− e

r
= 0 ⇒

{
sinA = − e

ν
, cosA =

√
1− e2/ν2,

cos A
2
=

√
ν−

√
ν2−e2

2ν
, sin A

2
=

√
ν+

√
ν2−e2

2ν
.

2) E −m cosA = 0 ⇒

{
cosA = + E

m
, sinA =

√
1− E2/m2,

cos A
2
=

√
m+E
2m

, sin A
2
=

√
m−E
2m

.

2′) −E −m cosA = 0 ⇒

{
cosA = −E

m
, sinA =

√
1− E2/m2,

cos A
2
=

√
m−E
2m

, sin A
2
=

√
m+E
2m

.

We first consider the case 1); then the system (2.8) takes the form

(2.9)

{ (
d
dr

+ ν
r
cosA−m sinA

)
F =

(
− 2e

r
− E −m cosA

)
G,(

d
dr

− ν
r
cosA+m sinA

)
G = (E −m cosA)F.

After eliminating the function F , we get the following second order equation for G(
d2

dr2
+ E2 −m2 +

ν cosA− ν2 cos2 A

r2
+

2eE − 2em cosA+ 2mν sinA cosA

r

)
G = 0.

By using the identity sinA = e/ν, this equation reduces to(
d2

dr2
+ E2 −m2 +

ν cosA− ν2 cos2 A

r2
+

2eE

r

)
G = 0,

and after changing the variable, r  x = 2
√
m2 − E2 r, it becomes

d2G

dx2
+

(
−1

4
− ν cosA (ν cosA− 1)

x2
+

eE√
m2 − E2 x

)
G = 0 .

Further, by the use of the substitution G(x) = xaebxḠ(x), for Ḡ we get

x
d2Ḡ

dx2
+ (2 a+ 2 b x)

dḠ

dx
+

[(
b2 − 1

4

)
x+ σ + 2ab+

eE√
m2 − E2

]
Ḡ = 0 .

where σ = a2−a−ν cosA (ν cosA−1)
x

. For a = +ν cosA =
√
ν2 − e2 and b = − 1

2
, this equation

reduces to

(2.10) x
d2Ḡ

dx2
+ (2 a− x)

dḠ

dx
−

(
a− eE√

m2 − E2

)
Ḡ = 0 ,

which is a confluent hypergeometric equation of the form

(2.11) xF ′′(x) + (γ − x)1F
′(x)− αF (x) = 0 , where α = a− eE√

m2 − E2
, γ = 2a .

The known condition for (2.11) to have polynomial solutions, α = −n with n = 0, 1, 2, ...,
gives the energy quantization rule

(2.12) E =
m√

1 + e2/(n+
√
ν2 − e2)2

.
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Moreover, from (2.9) it follows a second-order equation for F[
d2

dr2
+

(
1

r
− 1

r −R

)
d

dr
+ E2 −m2 +

2eE

r
+

e2 − ν2

r2
+

mR sinA− ν cosA

r (r −R)

]
F = 0,

where we denoted − 2e
E+m cosA

= R. After changing the variable r  y = r/R, the equation
reads

d2F
dy2 +

(
1
y
− 1

y−1

)
dF
dy

+
(
(E2 −m2)R2 − ν2−e2

y2

+−ν cosA+mR sinA
y−1

+ 2eRE−mR sinA+ν cosA
y

)
F = 0 .

We further search for solutions of the form F = ya eby F̄ (y). Then the function F̄ obeys

d2F̄
dy2 +

(
2a+1

y
+ 2b− 1

y−1

)
dF̄
dy

+
[
b2 + (E2 −m2)R2 + a2−ν2+e2

y2 − a+b+ν cosA−mR sinA
y−1

+a+b+2ab+R(2eE−m sinA)+ν cosA
y

]
F̄ = 0 .

For a, b chosen 4 as: a ∈ {+
√
ν2 − e2,−

√
ν2 − e2}, b ∈ {+

√
m2 − E2 R ,−

√
m2 − E2 R},

the above equation becomes simpler,

d2F̄
dy2 +

(
2b+ 2a+1

y
− 1

y−1

)
dF̄
dy

+
(

a+b+2ab+2eRE−mR sinA+ν cosA
y

−a+b+ν cosA−mR sinA
y−1

)
F̄ = 0 .

This can be easily recognized as a confluent Heun equation for H(α, β, γ, δ, η, z),

H ′′ +
(
α+ 1+β

z
+ 1+γ

z−1

)
H ′ +

(
1
2

α+αβ−β−βγ−γ−2η
z

+ 1
2

α+αγ+β+βγ+γ+2δ+2η
z−1

)
H = 0

with the parameters

α = 2b, β = 2a, γ = −2, δ = 2 eER, η = 1 +mR sinA− 2 eER− ν cosA .

We note that the known condition [64] determining the so called transcendental confluent
Heun functions:

δ = −
(
n+

β + γ + 2

2

)
α , n = 0, 1, 2, . . . ,

leads to the energy quantization rule

a = +
√

ν2 − e2 , b = −
√

m2 − E2 R , eER = (n+
√

ν2 − e2)
√

m2 − E2 R ,

whence we infer
E =

m√
1 + e2/(n+

√
ν2 − e2)2

,

which coincides with the known formula for energy levels (2.12).
It should be emphasized that, as follows from (2.9), the function F (being constructed

in terms of the confluent Heun functions) can be related to the function G (which is deter-
mined in terms of confluent hypergeometric functions) by means of the following differential
operators:

G =

(
−2e

r
− E −m cosA

)−1 (
d

dr
+

ν

r
cosA−m sinA

)
F,

4We shall select and further use the underlined values.
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and

F =
1

(E −m cosA)

(
d

dr
− ν

r
cosA+m sinA

)
G.

Let us examine now the case 2) described on page 12. The equations (2.8) take the form

(2.13)

{ (
d
dr

+ ν
r

cosA−m sinA
)
F =

(
− ν sinA+e

r
− 2m cosA

)
G ,(

d
dr

− ν
r

cosA+m sinA
)
G = e−ν sinA

r
F .

Taking into account the identity cosA = E/m, we obtain the following second-order equation
for G(r): (

d2

dr2
+

1

r

d

dr
+ E2 −m2 +

e2 − ν2

r2
+

2eE

r
+

√
m2 − E2

r

)
G = 0 .

and after performing the change of variables r  x = 2
√
m2 − E2 r, we get

d2G

dx2
+

1

x

dG

dx
+

(
−1

4
− ν2 − e2

x2
+

1

2

m2 − E2 + 2Ee
√
m2 − E2

(m2 − E2)x

)
G = 0 .

Let G(x) = xaebxḠ(x); then the function Ḡ satisfies

x d2Ḡ
dx2 + (2 a+ 1 + 2 b x) dḠ

dx
+

[(
b2 − 1

4

)
x+ a2−ν2+e2

x

+2ab+ b+ 1
2

m2−E2+2Ee
√

m2−E2

m2−E2

]
Ḡ = 0 .

For a =
√
ν2 − e2 and b = − 1

2
, we get

x
d2φ

dx2
+ (2 a+ 1− x)

dφ

dx
−

(
a− Ee√

m2 − E2

)
φ = 0 ,

which is a confluent hypergeometric equation

(2.14) xF ′′ + (γ − x)F ′ − αF = 0 , with α = a− Ee√
m2 − E2

, γ = 2a+ 1 .

The equation admits polynomial solutions if α = −n, n = 0, 1, 2, ...; this provides the energy
spectrum (2.12). Moreover, (2.13) leads to a second-order equation for F (r),[

d2

dr2
+

(
1
r
− 1

r−D

)
d
dr

+ m sinA
r−D

− ν cosA
D

(
1

r−D
− 1

r

)
+E2 −m2 + e2−ν2

r2
+ 2eE−m sinA

r

]
F = 0 ,

where D = − e+ν sinA
2m cosA

. Relative to the variable y = r/D, the equation looks simpler,

d2F
dy2 +

[
1
y
− 1

y−1

]
dF
dy

+
[
(E2 −m2)D2 − ν2−e2

y2

+−ν cosA+mD sinA
y−1

+ D(2eE−m sinA)+ν cosA
y

]
F = 0 .

Let F = ya eby F̄ (y); the function F̄ satisfies

d2F̄
dy2 +

(
2a+1

y
+ 2b− 1

y−1

)
dF̄
dy

+
[
b2 + (E2 −m2)D2 + a2−ν2+e2

y2 − a+b+ν cosA−mD sinA
y−1

+a+b+2ab+D(2eE−m sinA)+ν cosA
y

]
F̄ = 0 .
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For a, b chosen 5 as: a ∈ {+
√
ν2 − e2,−

√
ν2 − e2}, b ∈ {+

√
m2 − E2 D ,−

√
m2 − E2 D},

the equation becomes

d2F̄
dy2 +

(
2b+ 2a+1

y
− 1

y−1

)
dF̄
dy

+
(

a+b+2ab+D(2eE−m sinA)+ν cosA
y

− a+b+ν cosA−mD sinA
y−1

)
F̄ = 0 ,

which is a confluent Heun equation for H(α, β, γ, δ, η, y)

H ′′ +
(
α+ 1+β

y
+ 1+γ

y−1

)
H ′

+
(

1
2

α+αβ−β−βγ−γ−2η
y

+ 1
2

α+αγ+β+βγ+γ+2δ+2η
y−1

)
G = 0 ,

with the parameters

α = 2b, β = 2a, γ = −2, δ = 2 eED, η = 1 +mD sinA− 2eED − ν cosA .

By imposing restriction [64] defining the transcendental confluent Heun functions:
δ = −

(
n+ β+γ+2

2

)
α, for n = 0, 1, 2, . . . , we produce the energy quantization rule

a = +
√

ν2 − e2 , b = −
√

m2 − E2 D , eED = (n+
√

ν2 − e2)
√

m2 − E2 D ,

whence the energy E given by (2.12) is immediately inferred.

It should be noted that though the confluent Heun equations from the cases 1) and 2)
formally coincide, their parameters still essentially differ, namely:

1) α = 2b, β = 2a, γ = −2, δ = 2 eER, η = 1 +mR sinA− 2 eER− ν cosA;

2) α = 2b, β = 2a, γ = −2, δ = 2 eED, η = 1 +mD sinA− 2 eED − ν cosA,

where

1) R = − 2e
E+m cosA

, sinA = e
ν
, cosA =

√
1− e2

ν2 ;

2) D = − e+ν sinA
2E

, cosA = E
m
, sinA =

√
1− E2

m2 .

3 The standard approach to the Coulomb problem

It should be emphasized that the two proposed approaches to the Coulomb problem for the
Dirac equation differ from the well known, established one6. We briefly recall this standard
approach. To this end, in the original radial system (2.5){ (

d
dr

+ ν
r

)
f +

(
E + e

r
+m

)
g = 0,(

d
dr

− ν
r

)
g −

(
E + e

r
−m

)
f = 0 .

one should introduce the new functions (f, g) (F1, F2), via

f =
√
m+ E (F1 + F2) , g =

√
m− E (F1 − F2).

This change leads to the equivalent system r
(

d
dr

+ ν
r

)
(F1 + F2) + r

√
m2 − E2(F1 − F2) + e

√
m−E√
m+E

(F1 − F2) = 0,

r
(

d
dr

− ν
r

)
(F1 − F2) + r

√
m2 − E2(F1 + F2)− e

√
m+E√
m−E

(F1 + F2) = 0.

5We shall use below the underlined values.
6This was firstly given by G. Darvin and W. Gordon (1928), cf. [5].
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By summing and subtracting the equations, we obtain, respectively
r d
dr
F1 + νF2 + r

√
m2 − E2F1 − eE√

m2−E2
F1 − em√

m2−E2
F2 = 0,

r d
dr
F2 + νF1 − r

√
m2 − E2F2 +

em√
m2−E2

F1 +
eE√

m2−E2
F2 = 0.

By changing the variable r  x = λr, where λ =
√
m2 − E2 and using the notations

em
λ

= µ, eE
λ

= ε, these equations considerably simplify,

(3.1)

(
x

d

dx
+ x− ε

)
F1 + (ν − µ)F2 = 0,

(
x

d

dx
− x+ ε

)
F2 + (ν + µ)F1 = 0 .

The system (3.1) can be solved in terms of hypergeometric functions [5]. To detail this
technique, we write (3.1) in terms of the new variable y = 2x:(

y
d

dy
+

y

2
− ε

)
F1 + (ν − µ)F2 = 0,

(
y
d

dy
− y

2
+ ε

)
F2 + (ν + µ)F1 = 0 .

This leads to the second-order differential equations for F1 and F2:(
y
d2

dy2
+

d

dy
+ ε+

1

2
− y

4
+

µ2 − ν2 − ε2

y

)
F1 = 0 ,(3.2) (

y
d2

dy2
+

d

dy
+ ε− 1

2
− y

4
+

µ2 − ν2 − ε2

y

)
F2 = 0 .(3.3)

Let us study the first equation (3.2). The substitution F1 = yAeByf1 gives[
y
d2

dy2
+ (2A+ 1 + 2By)

d

dy
+ ε+

1

2
+B (1 + 2A)

−y

(
1

4
−B2

)
+

A2 + µ2 − ν2 − ε2

y

]
f1 = 0 .(3.4)

The choice of parameters A = +
√

ε2 − µ2 + ν2 and B = − 1
2
allows us to write (3.4) as a

confluent hypergeometric type ODE[
y
d2

dy2
+ (2A+ 1− y)

d

dy
+ ε−A

]
f1 = 0

with the parameters α1 = A − ε and γ1 = 2A + 1. By imposing the polynomial condition
α1 = −n1, we obtain for ε the quantization rule: −n1 = −ε +

√
ε2 − µ2 + ν2, and taking

into account that λ =
√
m2 − E2, em

λ
= µ, eE

λ
= ε, and

√
ε2 − µ2 + ν2 =

√
ν2 − e2, we

further derive a formula for the energy levels,

(3.5)
eE√

m2 − E2
=

√
ν2 − e2 + n1 ≡ N1 ⇒ E =

m√
1 + e2/N2

1

,

which coincides with (2.12).

Now, let us consider the second equation (3.3). With the use of the substitution F2 =
yaebyf2, this becomes:[

y d2

dy2 + (2a+ 1 + 2by) d
dy

+ ε− 1
2
+ b (1 + 2a)

−y
(
1
4
− b2

)
+ a2+µ2−ν2−ε2

y

]
f2 = 0.
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For a = ±
√

ε2 − µ2 + ν2 and b = − 1
2
, we obtain an equation of the confluent hypergeometric

type, [
y
d2

dy2
+ (2a+ 1− y)

d

dy
+ ε− a− 1

]
f2 = 0

with the parameters α2 = a+1−ε and γ2 = 2a+1. By imposing the polynomial restriction
α2 = −n2, we get for ε the quantization rule: −n2 = −ε+1+

√
ε2 − µ2 + ν2, and so we get

the formula for energy levels:

eE√
m2 − E2

= 1 +
√

ν2 − e2 + n2 ≡ N2 ⇒ E =
m√

1 + e2/N2
2

.

We further find the relative coefficient between two solutions of the system

(3.6)

(
y
d

dy
+

y

2
− ε

)
F1 + (ν − µ)F2 = 0,

(
y
d

dy
− y

2
+ ε

)
F2 + (ν + µ)F1 = 0.

by considering the relations

(3.7) F1 = C1y
Ae−y/2F (−n1, γ, y), F2 = C2y

Ae−y/2F (−n2, γ, y),

where A = +
√

ε2 − µ2 + ν2, γ = 2A = 1, and −n2 = −n1+1. We substitute the expressions
for the functions F1, F2 into the first equation of the system (3.6),

y C1
d

dy
F (−n1, γ, y) + C1 (A− ε)F (−n1, γ, y) + (ν − µ)C2 F (−n1 + 1, γ, y) = 0,

and by applying the rule of differentiation of the confluent hypergeometric function

d

dy
F (−n1, γ, y) = −n1

y
F (−n1 + 1, γ, y) +

n1

y
F (−n1, γ, y),

we get the relation

−C1 n1F (−n1 + 1, γ, y) + C1 n1F (−n1, γ, y) + C1(A− ε)F (−n1, γ, y)

+ (ν − µ)C2 F (−n1 + 1, γ, y) = 0.

Taking into account the relation −n1 = A− ε, we obtain

(3.8)
C1

C2
=

ν − µ

n1
= − ν − µ

A− ε
.

Now, we substitute the expressions for the functions F1, F2 from (3.7) into the second equa-
tion of the system (3.6), and infer

y C2
d
dy

F (−n1 + 1, γ, y) + C2 (A+ ε)F (−n1 + 1, γ, y)−

−y C2 F (−n1 + 1, γ, y) + (ν + µ)C1 F (−n1, γ, y) = 0.

Then, we apply the rule of differentiation of the confluent hypergeometric functions

d

dy
F (−n1 + 1, γ, y) =

(
−n1 + 1

γ
− 1

)
F (−n1 + 1, γ + 1, y) + F (−n1 + 1, γ, y) ,

and use the formula for contiguous confluent hypergeometric functions

y F (−n1 + 1, γ + 1, y) = γF (−n1 + 1, γ, y)− γF (−n1, γ, y),



18 V. Balan, A.M. Manukyan, E.M. Ovsiyuk, V.M. Red’kov and O.V. Veko

which finally yields

C2 (−n1 + 1− γ)F (−n1 + 1, γ, y) + C2 (A+ ε)F (−n1 + 1, γ, y)−

−C2 (−n1 + 1− γ)F (−n1, γ, y) + (ν + µ)C1 F (−n1, γ, y) = 0 .

Taking into account that −n1 = A− ε, we obtain

(3.9)
C1

C2
=

−n1 − 2A

ν + µ
= −A+ ε

ν + µ
.

Then the two expressions for relative coefficients, (3.8) and (3.9), coincide7.

4 The spin 1/2 particle in Coulomb field. Solutions
completely constructed by using Heun functions

The promising idea of constructing spectra within the framework of Heun equation theory
can be accomplished by considering the known problem of a spin 1/2 particle in the presence
of an external Coulomb field. To this end, we turn back to the equations (2.5) which assume
the presence of the Coulomb potential, for δ = +1:( d

dr
+

ν

r

)
f +

(
E +

e

r
+m

)
g = 0 ,

( d

dr
− ν

r

)
g −

(
E +

e

r
−m

)
f = 0 .

After eliminating the function g, one gets the second order ODE

(4.1)

d2f
dr2

+ e
r(Er+e+mr)

df
dr

+
[

e(e2−ν2)

r2(Er+e+mr)
+ E (3e2−ν2)−ν (m+E)+m (e2−ν2)

r (Er+e+mr)

+ e (E+m) (3E−m)
Er+e+mr

+ r(E−m)(E+m)2

Er+e+mr

]
f = 0 .

After changing the variable r  x = − (E+m) r
e

, this equation takes the form

x
d2f

dx2
− 1

x− 1

df

dx
+

[
e2(Ex−mx− 2E)

E +m
+

e2 − ν2

x
− ν

x− 1

]
f = 0 .

We separate the two factors by means of the replacement f(x) = xAeCxF (x) , and derive
for F the ODE

(4.2)

d2F
dx2 +

(
2C + 2A+1

x
− 1

x−1

)
dF
dx

+
[
C2 + e2(E−m)

E+m

+A2+e2−ν2

x2 + A+C+2AC−2Ee2/(E+m)+ν
x

− A+C+ν
x−1

]
F =0 .

Since the bound states are of primary interest, we fix A,C as follows:

C2 + e2(E−m)
E+m

= 0 ⇒ C = +e
√

m−E
m+E

,

A2 + e2 − ν2 = 0 ⇒ A = +
√
ν2 − e2 ,

and then equation (4.2) becomes simpler,

d2F

dx2
+

(
2C +

2A+ 1

x
− 1

x− 1

)
dF

dx
+

[
A+ C + ν + 2AC − 2Ee2/(E +m)

x
− A+ C + ν

x− 1

]
F = 0 ,

7Indeed, one can easily check that C1
C2

= − ν−µ
A−ε

= −A+ε
ν+µ

⇔ ν2 − µ2 = A2 − ε2, which infers the

identity e2 ≡ e2.
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which is a confluent Heun equation for F (α, β, γ, δ, η;x)

d2

dx2F +
(
a+ β+1

x
+ γ+1

x−1

)
dF
dx

+
(
1
2

a+aγ+β+βγ+γ+2δ+2η
x−1

+ 1
2

aβ+a−βγ−β−γ−2η
x

)
F =0,

with the parameters a = 2C = +2e
√

m−E
m+E

, β = 2A = +2
√
ν2 − e2, γ = −2, δ =

− 2Ee2

E+m
, and η = 1 − ν + 2Ee2

E+m
. The known quantization condition (which determines the

transcendental confluent Heun functions) is δ = −a
(
n+ γ+β+2

2

)
, which can be written as

Ee√
m2−E2

= N , where N = n +
√
ν2 − e2, which lead to E = m√

1+e2/N2
, the exact energy

spectrum for the hydrogen atom in Dirac theory.
Due to the symmetry between the functions f(r) and g(r), the second function g(r) will

be expressed in terms of confluent Heun functions as well.

5 Conclusions

In the paper, the well-known quantum mechanical problem of a spin 1/2 particle in external
Coulomb potential, reduced to a system of two first-order differential equations, is studied
by using the Heun function theory to solve the system. It is shown that, in addition to the
standard approach which solves the problem in terms of confluent hypergeometric functions,
there exist several other opportunities, which rely on applying confluent Heun functions.
Namely, in the paper there are elaborated two combined possibilities to construct solutions:
the first applies when one equation of the pair of relevant functions is expressed trough
hypergeometric functions, and the other function is constructed in terms of confluent Heun
functions. In the second case, both functions of the system may be expressed in terms of
confluent Heun functions only. All the applied methods lead to a single energy spectrum,
which validates their correctness.
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