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Abstract. The present authors, in [3], classified the composite functions
of the form f = F (h1 (x1)× ...× hn (xn)) via the Allen determinants used
to calculate the Allen’s elasticity of substitution of production functions
in microeconomics. In this paper, we adapt this classification to the ho-
mothetical hypersurfaces in the Euclidean spaces. An application for the
homothetical hypersurfaces is also given.
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1 Introduction

Let A be a real n × n symmetric matrix and a ∈Rn column vector, a ̸= 0. The real
(n+ 1)× (n+ 1) symmetric matrix given by

AB =

(
0 aᵀ

a A

)
is referred to as a bordered matrix [17]. Further, let f : Rn −→ R, f = f (x1, ..., xn) ,
be a twice differentiable function. Denote by (fxi) and

(
fxixj

)
the column vector of

first-order partial derivatives of f and the Hessian matrix of f , respectively. Thus,
the bordered Hessian matrix of the function f is defined as

(1.1) HB (f) =

(
0 (fxi)

ᵀ

(fxi)
(
fxixj

)) ,

where fxi =
∂f
∂xi

, fxixj = ∂2f
∂xi∂xj

for 1 ≤ i, j ≤ n.

In the theory of constrained optimization, the bordered Hessian determinantal
criterion is used to test whether an objective function has an extremun at a critical
point [21]. In addition, the bordered Hessian matrices are used to analyze quasi-
convexity of the functions. If the signs of the bordered principal diagonal determinants
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of the bordered Hessian matrix of a function are alternate (resp. negative), then the
function is quasi-concave (resp. quasi-convex), see [5,16,17,23].

Another example is the application of the bordered Hessian matrices to elas-
ticity of substitutions of production functions in microeconomics. Explicitly, let
f = f (x1, ..., xn) be a production function. Then the Allen’s elasticity of substi-
tution of the i−th production variable with respect to the j−th production variable
is defined by

Aij (x) = −x1fx1 + x2fx2 + ...+ xnfxn

xixj

(
HB (f)

)
ij

det (HB (f))

for x = (x1, ..., xn)∈Rn
+, i, j = 1, ..., n, i ̸= j. Here

(
HB (f)

)
ij

is the co-factor of the

element fxixj
in the determinant of HB (f) [25,29].

The bordered Hessian matrix HB (f) given by (1.1) is also called Allen’s matrix
and det

(
HB (f)

)
Allen determinant [2,3].

On the other hand, a homothetical hypersurface Mn in the (n+ 1)−dimensional
Euclidean space Rn+1 is the graph of a function of the form:

f (x1, ..., xn) =

n∏
j=1

hj (xj) ,

where h1, ..., hn are one variable functions of class C∞. We call h1, ..., hn by the
components of f and denote the homothetical hypersurface Mn by a pair (Mn, f) .

Homothetical hypersurfaces have been studied by many authors as focusing on
minimality property [19,22,27,28,30].

In this paper, we give a classification for the homothetical hypersurfaces by using
Allen’s matrices. An application for the homothetical hypersurfaces is also given.

Throughout the present article, we assume that h1, ..., hn : R −→ R are thrice
differentiable functions and F : I ⊂ R −→ R is a twice differentiable function with
F ′ (u) ̸= 0 such that I ⊂ R is an interval of positive length.

2 Basics on hypersurfaces in Euclidean spaces

Let Mn be a hypersurface of the Euclidean space Rn+1. For general references on the
geometry of hypersurfaces, see [7,18,20].

The Gauss map ν : Mn −→ Sn+1 maps Mn to the unit hypersphere Sn of Rn+1.
The differential dν of the Gauss map ν is known as shape operator or Weingarten
map. Denote by TpM

n the tangent space of Mn at the point p ∈ Mn. Then, for
v, w ∈ TpM

n, the shape operator Ap at the point p ∈ Mn is defined by

g (Ap (v) , w) = g (dν (v) , w) ,

where g is the induced metric tensor on Mn from the Euclidean metric on Rn+1.
The determinant of the shape operator Ap is called the Gauss-Kronocker curvature.
A hypersurface having zero Gauss-Kronecker curvature is said to be developable. In
this case the hypersurface can be flattened onto a hyperplane without distortion. We
remark that cylinders and cones are examples of developable surfaces, but the spheres
are not under any metric.
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For a given function f = f (x1, ..., xn) , the graph of f is the non-parametric
hypersurface of Rn+1 defined by

(2.1) φ (x) = (x1, ..., xn, f (x))

for x =(x1, ..., xn) ∈ Rn.
Let us put

(2.2) ω =

√√√√1 +
n∑

i=1

(
∂f

∂xi

)2

.

The Gauss-Kronecker curvature of the graph hypersurface, given by (2.1) , of f is

(2.3) G =
det (H (f))

ωn+2
,

where H (f) is the Hessian matrix of f.

3 Production functions in microeconomics

In microeconomics, a production function is a mathematical expression which denotes
the physical relations between the output generated of a firm, an industry or an
economy and inputs that have been used. Explicitly, a production function is a map
which has non-vanishing first derivatives defined by

f : Rn
+ −→ R+, f = f (x1, x2, ..., xn) ,

where f is the quantity of output, n are the number of inputs and x1, x2, ..., xn are
the inputs. The production functions satisfy the following conditions:

1. f is equivalently zero in absence of an input.
2. ∂f

∂xi
> 0, for i = 1, ..., n, which means that the production function is strictly

increasing with respect to any factor of production.

3. ∂2f
∂x2

i
< 0, for i = 1, ..., n, i.e., the production has decrasing efficiency with

respect to any factor of production.
4. f (x+ y) = f (x) + f (y) , ∀x,y ∈Rn

+, which implies that the production has
non-decreasing global efficiency, see [10,11,26,32].

A production function f (x1, x2, ..., xn) is said to be homogeneous of degree p or
p−homogenous if

(3.1) f (tx1, tx2, ..., txn) = tpf (x1, x2, ..., xn)

holds for each t ∈ R+ for which (3.1) is defined. A homogeneous function of degree
one is called linearly homogeneous. If h > 1, the function exhibits increasing return
to scale, and it exhibits decreasing return to scale if h < 1. If it is homogeneous of
degree 1, it exhibits constant return to scale [8].

Important properties of homogeneous production functions in microeconomics
were interpreted in terms of the geometry of their graph hypersurfaces by [6,13,14,33].
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A homothetic function is a production function of the form:

f (x1, ..., xn) = F (h (x1, ..., xn)) ,

where h (x1, ..., xn) is homogeneous function of arbitrary given degree and F is a
monotonically increasing function. Homothetic functions are production functions
whose marginal technical rate of substitution is homogeneous of degree zero [11,14,24].

In 1928, C. W. Cobb and P. H. Douglas introduced [15] a famous two-factor
production function

Y = bLkC1−k,

where b presents the total factor productivity, Y the total production, L the labor
input and C the capital input. This function is nowadays called Cobb-Douglas pro-
duction function. In its generalized form the Cobb-Douglas production function may
be expressed as

f (x) = γ
n∏

j=1

x
αj

j ,

where γ, α1, ..., αn are positive constants.
A homothetic production function of form:

f (x) = F

 n∏
j=1

x
αj

j


is called a homothetic generalized Cobb-Douglas production function [10].

4 An application for composite functions

Next completely classifies the composite functions in the form:

(4.1) f = F

 n∏
j=1

hj (xj)


which have singular Allen’s matrices [3].

Theorem 4.1. Let f be a composite function given by (4.1) . Then the Allen’s matrix
HB (f) of f is singular if and only if f is one the following:

(i)

f (x) = F

γeα1x1+α2x2

n∏
j=3

hj (xj)

 ,

where γ, α1, α2 are nonzero constants;
(ii)

f (x) = F

γ
n∏

j=1

(xj + βj)
αj

 ,

where γ, αi are nonzero constants satisfying α1 + ...+αn = 0 and βi some constants.
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Now, let F be a monotonically increasing function and g (x) =
n∏

j=1

(xj + βj)
αj ,

for nonzero constants γ, αi with α1 + ...+αn = 0 and some constants βi . Because of∑n
i=1 αi = 0, g (x) is a homogeneous function of degree zero, which implies F (g (x))

is a homothetic function. Thus we have the following result:

Corollary 4.2. Let F (u) be a twice differentiable, positive and monotonically in-
creasing function and let f be a composite function given by

f = F

 n∏
j=1

hj (xj)

 ,

where h1, ..., hn are thrice differentiable functions such that hi (xi) ̸= eαixi , xi > 0,
for all i ∈ {1, ..., n} . Then the Allen’s matrix HB (f) of f is singular if and only if,
up to suitable translations of x1, ..., xn, f is a homothetic production function given
by

f (x) = F

 n∏
j=1

x
αj

j

 ,

where αi are nonzero constants with α1 + ...+ αn = 0.

5 Classification of homothetical hypersurfaces

A homothetical hypersurface (Mn, f) in Rn+1 is parametrized by

φ (x) =

x1, ..., xn,

n∏
j=1

hj (xj)


for x = (x1, ..., xn)∈Rn. The geometric representation of the generalized Cobb-
Douglas production which is also a kind of homothetical hypersurface is given by

φ : Rn
+ −→ Rn+1

+ , φ (x) =

x1, ..., xn, γ
n∏

j=1

x
αj

j

 .

Such a hypersurface is called the Cobb-Douglas hypersurface [31]. Thus, Theorem 4.1
can be adapted to the homothetical hypersurfaces in Rn+1 as follows:

Theorem 5.1. Let (Mn, f) be a homothetical hypersurface in Rn+1. Then Allen’s
matrix HB (f) of f is singular if and only if (Mn, f) is parametrized by one of the
following

(a)

φ (x) =

x1, ..., xn, γe
α1x1+α2x2

n∏
j=3

hj (xj)

 ,

where γ, α1, α2 are nonzero constants and h3, ..., hn are functions of class C∞;
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(b) up to suitable translations of x1, ..., xn,

φ (x) =

x1, ..., xn, γ
n∏

j=1

x
αj

j

 ,

where γ, αj are nonzero constants satisfying α1 + ...+ αn = 0.

Remark 5.1. We have that for a generalized Cobb-douglas production function the
values of α1, ..., αn are positive constants. Hence, in reality the homothetical hyper-
surface (Mn, f) given by the statement (b) of Theorem 5.1 is not a Cobb-Douglas
hypersurface, while it is correct in mathematical perspective

As a consequence of Theorem 5.1, we have the following:

Corollary 5.2. Let (Mn, f) be a homothetical hypersurface in Rn+1 such that f is
a non-vanishing function on an open domain D ⊂ Rn, n ≥ 2, and hj (xj) ̸= γje

αjxj

for all j ∈ {1, ..., n} . If the Allen’s matrix HB (f) of f is singular, then (Mn, f) is
always non-developable.

Proof. Let (Mn, f) be a homothetical hypersurface in Rn+1. Assume that the Allen’s
matrix HB (f) of f is singular. Thus, by Theorem 5.1, (Mn, f) is parametrized by

φ (x) =

x1, ..., xn, γ
n∏

j=1

x
αj

j


for x =(x1, ..., xn) ∈ D and nonzero constants γ, αj with α1 + ... + αn = 0. From
(2.2) , we have

(5.1) ω =

1 + f2 (x)

 n∑
j=1

(
αj

xj

)2
1/2

,

where f (x) = γxα1
1 ...xαn

n .
On the other hand, the determinant of the Hessian matrix of the function f is

(5.2) det (H (f)) = fn (x)

∣∣∣∣∣∣∣∣∣∣∣

α1(α1−1)
x2
1

α1

x1

α2

x2
... α1

x1

αn

xn

α1

x1

α2

x2

α2(α2−1)
x2
2

... α2

x2

αn

xn

...
... ...

...
α1

x1

αn

xn

α2

x2

αn

xn
... αn(αn−1)

x2
n

∣∣∣∣∣∣∣∣∣∣∣
.

After calculating for the determinant from the formula (5.2) , we deduce

(5.3) det (H (f)) = (−1)
n
(fn (x))

n∏
k=1

(
αk

x2
k

)
.

By substituting (5.1) and (5.3) in (2.3) , we obtain

(5.4) G (x) =
(−1)

n
fn (x)

ωn+2

n∏
k=1

(
αk

x2
k

)
.

Under the hypothesis of the theorem, (5.4) completes the proof. �
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