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Abstract. We apply L1 approximation to characterize existence of the
solutions of the multidimensional moment problems in terms of quadratic
mappings, similarly to the one-dimensional case. To this end, we approx-
imate any nonnegative continuous compactly supported function by sums
of tensor products of positive polynomials in each separate variable. On
the other hand, an application of an earlier result concerning Markov mo-
ment problems related to distanced convex subsets is discussed. Finally,
we deduce an application of an abstract moment problem to a concrete
Markov moment problem. The Hahn-Banach principle and its generaliza-
tions play an important role along this work.
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1 Introduction

Applying polynomial decomposition and approximation results in the moment prob-
lem is a well-known technique [1] - [7], [9] - [22]. Using Hahn-Banach principle in
existence of the solution is a powerful tool. Some of these extension results are con-
tained in [18]. In solving existence of the solutions of moment problems, upper L1

approximation is sufficient. On the contrary, uniqueness and construction of the so-
lution involve L2 norms [5], [14], [20]. As it is well known, in several dimensions
there are positive polynomials on Rn, n ≥ 2 which are not sum of squares of some
other polynomials. We solve this difficulty by approximating a positive continuous
function vanishing at infinity with sums of tensor products of positive polynomials in
one separate variable. Each of the factors of a term of this sum is represented as a
sum of squares [1]. Thus, one can solve multidimensional moment problems in terms
of quadratic forms. A similar approximation result is presented in [13], for a complex
moment problem. The proofs are different with respect to those of the present work,
the latter following the real analysis methods. Another aim of this work is to find new
applications of an earlier result that involves a distanced convex set with respect to
a subspace. For the background of this work, see [1], [8]. Uniqueness of the solutions
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is discussed in [5], [9], [10]. The paper is organized as follows. In Section 2, we recall
some basic polynomial approximation results. Section 3 contains an application of
one of these results to a Markov moment problem on an unbounded subset of R3.
Section 4 contains an application of an earlier extension result involving a distanced
vector subspace with respect to a convex bounded set. We deduce an application of
an abstract moment problem to a concrete one. Section 5 concludes the paper.

2 Approximation results on unbounded subsets

Theorem 2.1. (Lemma 1.4 [17]) Let A ⊂ Rn be a closed subset and ν a determinate
positive regular Borel measure on A with finite moments of all orders. Then for any
ψ ∈ (C0(A))+ there is a sequence (pm)m of polynomials on A, pm ≥ ψ, pm → ψ in
L1

ν(A). We have

lim
∫

A

pmdν =
∫

A

ψdν,

the cone P+ of positive polynomials is dense in (L1
ν(A))+ and P is dense in L1

ν(A).

We recall that a determinate measure is, by definition, uniquely determined by
its moments ([5], [9], [10]). We remind the next result on uniform approximation on
compact subsets. The approximation in usual L1 spaces holds too.

Theorem 2.2. (Lemma 1.3 (d) [17]) If x ∈ C0([0,∞)× [0,∞)) is a nonnegative con-
tinuous compactly supported function, then there exists a sequence (pm)m of positive
polynomials on [0,∞)× [0,∞), such that

pm(t) > x(t), ∀t ≥ 0, ∀m ∈ Z+, pm → x

uniformly on compact subsets of [0,∞)× [0,∞).

3 Solving Markov moment problems on
unbounded subsets

Let ν = ν1 × ν2 × ν3, where νj is a positive determinate regular Borel measure on R,
j = 1, 2, while ν3 is a regular Borel measure on [0, 1]. Let S3 = R2 × [0, 1], and Y be
an order complete Banach lattice, with solid norm:

|y1| ≤ |y2| ⇒ ||y1|| ≤ ||y2||, yj ∈ Y, j = 1, 2.

Denote ϕj,k,l(t1, t2, t3) = tj1t
k
2tl3, (j, k, l) ∈ N3, (t1, t2, t3) ∈ S3 and let {yj,k,l}(j,k,l) ⊂

Y .

Theorem 3.1. Let F2 : L1
ν(S3) → Y be a positive linear bounded operator. The

following statements are equivalent:
(a) there exists a unique linear operator F : L1

ν(S3) → Y , such that

F (ϕj,k,l) = yj,k,l, ∀(j, k, l) ∈ N3, 0 ≤ F (ψ) ≤ F2(ψ), ψ ∈ (L1
ν(S3))+, ||F || ≤ ||F2||;

(b) for any finite subsets J1, J2 ⊂ N, any {αj}j∈J1 ⊂ R, {βk}k∈J2 ⊂ R, and all
p, q ∈ N, we have:



Approximation on unbounded subsets and the moment problem 101

0 ≤
∑

i,j∈J1
k,l∈J2

αiαjβkβl

(
q∑

r=0

(−1)r

(
q
r

)
y(i+j,k+l,p+r)

)

≤
∑

i,j∈J1
k,l∈J2

αiαjβkβl

(
q∑

r=0

(−1)r

(
q
r

)
F2(ϕ(i+j,k+l,p+r))

)
.

Proof. We define F0 on the space of polynomials, such that the moment conditions
are accomplished. Condition (b) says that

0 ≤ F0(p1 ⊗ p2 ⊗ p3) ≤ F2(p1 ⊗ p2 ⊗ p3), ∀p1, p2 ∈ (R[X])+, p3(t3) > 0, t3 ∈ [0, 1],

since pj , j = 1, 2 are sums of squares of some other polynomials with real coefficients
[1], while p3 is a linear combination with positive coefficients of special polynomials

tp3(1− t3)q, t3 ∈ [0, 1],

following [6]. Hence, the implication (a) ⇒ (b) is obvious. For the converse, let ψ
be a continuous nonnegative function with compact support contained in S3. One
considers a parallelepiped K3 = [a1, b1]× [a2, b2]× [0, 1] containing

pr1(support(ψ))× pr2(support(ψ))× [0, 1].

Extend ψ to K3 with zero values outside its support and approximate this function
by means of Luzin’s Theorem and the corresponding Bernstein polynomials in three
variables. Each term of such a polynomial is a tensor product of positive polynomials
on the corresponding compact interval. Extend each of these factors with zero value
outside the compact interval and apply Luzin’s Theorem in each of the first two
variables. Next one approximates these continuous functions with compact support
by means of Theorem 2.1, applied to n = 1, A = R. The conclusion is that ψ can be
approximated by sums of tensor products of positive polynomials on R, respectively
on [0,1]:

k(m)∑

j=0

pm,1,j ⊗ pm,2,j ⊗mm,3,j → ψ, m →∞,

in the space L1
ν(S3). On the other hand, the linear positive operator F0 has a linear

positive extension F to the space of all integrable functions with their absolute value
dominated on S3 by a polynomial (following [8, p. 160]). This space contains the space
of continuous functions with compact support. Hence h ◦ F can be represented by a
regular positive Radon measure, for any linear positive functional h on Y . Moreover,
using (b) and applying Fatou’s lemma, one obtains:

0 ≤ h(F (ψ)) ≤ lim inf
m

(h ◦ F )




k(m)∑

j=0

pm,1,j ⊗ pm,2,j ⊗mm,3,j


 ≤ (1)

≤ lim
m

(h ◦ F2)




k(m)∑

j=0

pm,1,j ⊗ pm,2,j ⊗mm,3,j


 = h(F2(ψ)), ψ ∈ (Cc(S3))+, h ∈ Y ∗

+ .
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Assume that
F2(ψ)− F (ψ) /∈ Y+ .

Using a separation theorem, it should exist a positive linear continuous functional
h ∈ Y ∗

+ such that
h(F2(ψ)) < h(F (ψ)).

This relation contradicts (1). Hence we must have

F (ψ) ≤ F2(ψ), ψ ∈ (Cc(S3))+ .

Then for arbitrary g ∈ Cc(S3) one writes

|F (g)| ≤ F2(g+) + F2(g−) = F2(|g|) ⇒ ||F (g)|| ≤ ||F2|| · ||g||1 .

The conclusion is that the operator F is positive and continuous, of norm dominated
by ||F2||, on a dense subspace of L1

ν(S3). It has a unique linear extension preserving
these properties. This concludes the proof. ¤

4 Extension of linear operators and
the moment problem

The next theorem has a significant geometric meaning and leads to interesting results
concerning the extension of linear functionals and operators.

If V is a convex neighborhood of the origin in a locally convex space, we denote
by pV the gauge attached to V .

Theorem 4.1. Let X be a locally convex space, Y an order complete vector lattice
with strong order unit u0 and S ⊂ X a vector subspace. Let A ⊂ X be a convex subset
with the following properties:

(a) there exists a neighborhood V of the origin such that (S + V )∩A = Φ (A and
S are distanced);

(b) A is bounded.
Then for any equicontinuous family of linear operators {fj}j∈J ⊂ L(S, Y ) and for
any ỹ ∈ Y+ \ {0}, there exists an equicontinuous family {Fj}j∈J ⊂ L(X, Y ) such that

Fj |S = fj and Fj |A ≥ ỹ, ∀j ∈ J.

Moreover, if V is a neighborhood of the origin such that

fj(V ∩ S) ⊂ [−u0, u0], (S + V ) ∩A = Φ,

0 < α ∈ R s.t. pV |A ≤ α, α1 > 0 s.t. ỹ ≤ α1u0,

then the following relations hold

Fj(x) ≤ (1 + α + α1)pV (x) · u0, x ∈ X, j ∈ J.
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We denote by X the space of all power series in n variables with real coefficients,
centered at (0, . . . , 0), that are absolutely convergent in Cn. Let

ϕj(z1, . . . , zn) = zj1
1 . . . zjn

n , j = (jk)n
k=1, |j| =

n∑

k=1

jk ≥ 1.

On the other hand, consider a complex Hilbert space H, Ak ∈ A(H), k = 1, . . . , n
commuting positive selfadjoint operators acting on H. Endow X with the norm

||ϕ||∞ = sup{|ϕ(z1, . . . , zn)|; |zk| ≤ 1, k = 1, . . . , n}.
Denote

Y1 = {U ∈ A(H); UAk = AkU, k = 1, . . . , n},
Y = {U ∈ Y1; UV = V U, ∀V ∈ Y1},
Y+ = {U ∈ Y ; 〈U(h), h〉 ≥ 0, ∀h ∈ H}.

Here A(H) is the real vector space of all selfadjoint operators acting on H. Obviously,
Y is a commutative algebra of selfadjoint operators. Moreover, Y is an order complete
vector lattice (see [8], [12]), and the operatorial norm is solid on Y :

|U | ≤ |V | ⇒ ||U || ≤ ||V ||, U, V ∈ Y.

Theorem 4.2. Let (Bj)j∈Nn ,
n∑

k=1

jk ≥ 1 be a sequence in Y , 0 < ε < 1, such that

there exists a real constant M with the qualities

|Bj | ≤ M · Aj1
1

j1!
. . .

Ajn
n

jn!
∀j = (j1, . . . , jn) ∈ Nn, |j| ≥ 1.

Let {ψk}k∈Nn be a sequence in X, such that ψk(0, . . . , 0) = 1, ||ψk|| ≤ 1, ∀k ∈ Nn.
Let B̃ ∈ Y+. Then there is a linear operator applying X into Y such that:

F (ϕj) = Bj , j ∈ Nn,

n∑

k=1

jk ≥ 1, F (ψk) ≥ B̃,

F (ϕ) ≤
(

2 + ||B̃|| ·M−1 exp

(
n∑

k=1

||Ak||
))

· ||ϕ||∞u0, u0 := M · exp

(
n∑

k=1

Ak

)
.

Proof. Due to the behavior at (0, . . . , 0) of the functions ϕj , |j| :=
n∑

k=1

jk ≥ 1 and ψk,

k ∈ Nn, we have

||s− a||∞ ≥ |s(0)− a(0)| ≥ 1, ∀s ∈ S := Sp{ϕj ; |j| ≥ 1},
∀a ∈ A := conv {ψk; k ∈ Nn} ⇒ (S + B(0, 1)) ∩A = Φ.

Using also the hypothesis on the norms of the functions ψk, k ∈ Nn, we can take in
Theorem 4.1 V = B(0, 1), || · |||A ≤ 1 := α. Now let s =

∑

j∈J0

λjϕj ∈ S ∩ B(0, 1) and
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define the linear operator F0 on the subspace S, such that the moment conditions
F0(ϕj) = Bj , |j| ≥ 1 to be accomplished. In the above relations, B(0, 1) is the unit
ball in X. Cauchy’s inequalities yield

|λj | ≤ ||s||∞ ≤ 1, j ∈ J0 ⇒ f(s) =
∑

j∈J0

λjBj ≤
∑

j∈J0

|λj | · |Bj | ≤

∑

j∈J0

|Bj | ≤ M ·

∑

j1∈N

Aj1
1

j1!


 . . .


 ∑

jn∈N

Ajn
n

jn!


 = M · exp

(
n∑

k=1

Ak

)
= u0.

It is easy to see that u0 is strong order unit in Y . On the other hand, we have:

B̃ ≤ ||B̃|| · I = ||B̃|| ·M−1 exp

(
−

(
n∑

k=1

Ak

))
· u0 ≤

≤ ||B̃|| ·M−1 exp

(
n∑

k=1

||Ak||
)
· u0 = α1u0.

Application of Theorem 4.1 leads to the conclusion. ¤

We recall the following result [18] on the abstract Markov moment problem, as
an extension with two constraints theorem for linear operators. It is a constrained
interpolation problem.

Theorem 4.3. Let X be an ordered vector space, Y an order complete vector lattice,
{xj}j∈J ⊂ X, {yj}j∈J ⊂ Y given families and F1, F2 ∈ L(X, Y ) two linear operators.
The following statements are equivalent:

(a) there is a linear operator F ∈ L(X, Y ) such that

F1(x) ≤ F (x) ≤ F2(x), ∀x ∈ X+, F (xj) = yj , ∀j ∈ J ;

(b) for any finite subset J0 ⊂ J and any {λj}j∈J0 ⊂ R, we have:

∑

j∈J0

λjxj = ψ2 − ψ1, ψ1, ψ2 ∈ X+


 ⇒

∑

j∈J0

λjyj ≤ F2(ψ2)− F1(ψ2).

From Theorem 4.3 we deduce the following result. Let Y be a commutative real
Banach algebra, which is also an order complete Banach lattice, with solid norm. Let

ak, bk ∈ Y+, ||ak|| < 1, ||bk|| < 1, k = 1, . . . , n.

Let (yj)j∈Nn be a sequence in Y+. Consider the space X of all continuous functions in
the unit closed polydisc, which can be represented by sums of absolutely convergent
power series with real coefficients in the open polydisc. The order relation on X is
given by the coefficients of the power series. Namely,

X+ =





∑

j∈Nn

cjz
j ; cj ≥ 0, ∀j ∈ Nn



 .

Let

ϕj(z1, . . . , zn) = zj1
1 . . . zjn

n , j = (j1, . . . , jn) ∈ Nn, |zk| ≤ 1, k = 1, . . . , n.
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Theorem 4.4. With these notations, the following statements are equivalent:
(a) there exists F ∈ B(X, Y ) such that

F (ϕj) = yj , j ∈ Nn, ψ(a1, . . . , an)− ε · ψ(b1, . . . , bn) ≤ F (ψ) ≤

≤ ψ(a1, . . . , an) + ε · ψ(b1, . . . , bn), ψ ∈ X+, ||F || ≤ 1 + ε;

(b) we have

aj1
1 . . . ajn

n − ε · bj1
1 . . . bjn

n ≤ yj ≤ aj1
1 . . . ajn

n + ε · bj1
1 . . . bjn

n , j = (j1, . . . , jn) ∈ Nn.

Proof. The implication (a) ⇒ (b) is obvious, because of the relations

ϕj ∈ X+ ⇒ yj = F (ϕj) ∈
∈ [ϕj(a1, . . . , an)− ε · ϕj(b1, . . . , bn), ϕj(a1, . . . , an) + ε · ϕj(b1, . . . , bn)] =

= [aj1
1 . . . ajn

n − ε · bj1
1 . . . bjn

n , aj1
1 . . . ajn

n + ε · bj1
1 . . . bjn

n ], j ∈ Nn.

Conversely, assume that (b) holds. We verify the implication in (b), Theorem 4.3.
Namely, we have:
∑

j∈J0

λjϕj = ψ2 − ψ1 =
∑

m∈Nn

αmϕm −
∑

m∈Nn

βmϕm, αm, βm ≥ 0, m ∈ Nn ⇒

∑

j∈J0

λjyj =
∑

j∈J+
0

λjyj +
∑

j∈J−0

λjyj ≤
∑

j∈J+
0

λj(a
j1
1 . . . ajn

n + ε · bj1
1 . . . bjn

n )+

+
∑

j∈J−0

λj(a
j1
1 . . . ajn

n − ε · bj1
1 . . . bjn

n ) ≤
∑

j∈J0

λja
j1
1 . . . ajn

n + ε

( ∑

m∈Nn

αjb
j1
1 . . . bjn

n

)
+

+ε

( ∑

m∈Nn

βjb
j1
1 . . . bjn

n

)
= (ψ2 − ψ1)(a1, . . . , an) + εψ2(b1, . . . , bn) + εψ1(b1, . . . , bn) =

= ψ2(a1, . . . , an) + ε · ψ2(b1, . . . , bn)− [ψ1(a1, . . . , an)− εψ1(b1, . . . , bn)] =

= F2(ψ2)− F1(ψ1), J+
0 = {j ∈ J0;λj ≥ 0}, J−0 = {j ∈ J0; λj < 0}.

A direct application of Theorem 4.3 leads to the existence of a linear operator
F ∈ L(X,Y ) such that

ψ(a1, . . . , an)−ε·ψ(b1, . . . , bn) ≤ F (ψ) ≤ ψ(a1, . . . , an)+ε·ψ(b1, . . . , bn), ∀ψ ∈ X+ ⇒

|F (ψ)| ≤ ψ(a1, . . . , an) + ε · ψ(b1, . . . , bn), ∀ψ ∈ X+ .

For an arbitrary ϕ ∈ X, one obtains:

|F (ϕ)| ≤ |F (ϕ+)|+ |F (ϕ−)| ≤ |ϕ|(a1, . . . , an) + ε · |ϕ|(b1, . . . , bn) ⇒

||F (ϕ)|| ≤ (1 + ε) · ||ϕ||∞, ∀ϕ ∈ X ⇒ ||F || ≤ 1 + ε.

This concludes the proof. ¤
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5 Conclusions

The present work starts by recalling two polynomial approximation results on un-
bounded subsets. Next, we deduce an application to a Markov moment problem of
one of these approximation theorems. One uses decomposition of positive polynomi-
als on [0,1] into sums of special generating polynomials too. Next, we apply a general
extension result involving a subspace distanced with respect to a convex subset, to
an operator valued moment problem. The last result is an application of an abstract
moment problem to a concrete Markov moment problem. The results of Sections 3
and 4 are interpolating theorems with two constraints.
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l’Analyse”, Institut H. Poincaré, Paris, 1962.
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