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Abstract. The aim of this paper is to relate particular second order
ordinary differential equations, associated with quantum mechanics of spin
1 particle in Coulomb field, to certain natural jet geometrical objects, such
as a nonlinear connection, a distinguished (d-) torsion or a geometrical
Yang-Mills stress-like construction. In its critical points the Yang-Mills
entity has the value 1/4. This is intimately connected with the turning
points of the quantity P 2

x , which is meaningful both in the context of
classical mechanics and quantum mechanics.
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1 Jet geometrical objects produced by
a homogeneous linear ODE of second order

Starting from a given homogeneous linear ODE of superior order (generally of order
n), in the monograph [1] it was constructed a natural collection of jet geometrical
objects which geometrically characterize the initial ODE. More precisely, if we have
the initial second order homogeneous linear ODE

(1.1)
d2Φ
dr2

+ a1(r)
dΦ
dr

+ a2(r)Φ = 0,

via the canonical ODEs system




dx1

dr
= x2 := X

(1)
(1) (x

1, x2)

dx2

dr
= −a2(r)x1 − a1(r)x2 := X

(2)
(1) (x

1, x2),

where x1 = Φ and x2 = dΦ/dr, we can associate it with the following geometri-
cal objects on the 1-jet space J1([0,∞),R2), whose coordinates are (r, x1, x2, y1

1 :=
dx1/dr, y2

1 := dx2/dr) (for more details, please see [1, p. 175] or [4]):
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1. a jet nonlinear connection Γ =
(
0, N

(i)
(1)j

)
, where

N(1) =
(
N

(i)
(1)j

)
i,j=1,2

=
1
2

(
0 −1− a2(r)

1 + a2(r) 0

)
;

2. a jet torsion d-tensor

R
(1)
(1)12 = −R

(2)
(1)11 =

1
2

da2

dr
;

3. a jet energetic distinguished 2-form:

E = E(1)
(i)jδy

i
1 ∧ dxi,

where δyi
1 = dyi

1 + N
(i)
(1)mdxm and E(1)

(i)j = −N
(i)
(1)j .

4. a jet geometrical Yang-Mills stress-like construction (helicoidal energy, in terms
of the terminology from Udrişte [9])

EYM(r) =
[1 + a2(r)]

2

4
.

Remark 1.1. Using the Jacobian matrix

J(X(1)) =




∂X
(1)
(1)

∂x1

∂X
(1)
(1)

∂x2

∂X
(2)
(1)

∂x1

∂X
(2)
(1)

∂x2


 =

(
0 1

−a2(r) −a1(r)

)
,

the following matrix relations hold true:

• the nonlinear connection matrix is given by

N(1) = −1
2

[
J(X(1))− T J(X(1))

]
;

• the torsion d-tensor matrix is given by

R(1)1 :=




R
(1)
(1)11 = 0 R

(1)
(1)12 =

1
2

da2

dr

R
(2)
(1)11 = −R

(1)
(1)12 R

(2)
(1)12 = 0


 = −∂N(1)

∂r
;

• the energetic skew-symmetric matrix is given by

E(1) :=
(
E(1)

(i)j

)
i,j=1,2

= −N(1) =
1
2

(
0 1 + a2(r)

−1− a2(r) 0

)
;

• the jet geometrical Yang-Mills stress-like entity is given by

EYM(r) =
1
2
Trace

[
E(1) · TE(1)

]
=

[1 + a2(r)]
2

4
.
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Remark 1.2. It is important to note that all above constructed jet geometrical
objects are independent of the first coefficient a1(r), instead they depend only on the
second coefficient a2(r) of the initial SODE. Seemingly, it is because the term with
df/dr can be excluded from the initial ODE by a simple substitution of the form
f(r) = ϕ(r)f(r). So the term α1(r) cannot play any substantial role in the initial
ODE.

2 Spin 1 particle in Coulomb field, radial equations

Recently, a special treatment [2] of the quantum-mechanical system, spin 1 particle
in the external Coulomb field, was given on the base of tetrad based formalism in the
matrix Duffin - Kemmer - Petiau approach with the use spherical metric in Minkowski
space

dS2 = dt2 − dr2 − r2
(
dθ2 + sin2 θdφ2

)
, r ≥ 0.

In [2], three classes of solutions were pointed out; with each of them a special second
order differential equation for a main (radial) function is associated (for more details,
see [2]).

The main function of the first type obeys the known scalar particle radial equation
in Coulomb potential (see Tamm’s paper [8]):

(2.1)
d2f(r)

dr2
+

2
r

df(r)
dr

+

[(
ε

~c
+

e2

~c
1
r

)2

−
(mc

~

)2

− j(j + 1)
r2

]
f(r) = 0,

below e2/ (c~) = α = 1/137, M = mc/~, and j is the quantum number: j = 1, 2, 3, ...
By introducing special units for length and for energy, such as

(2.2) λ =
~

mc
, x =

r

λ
, E =

ε

mc2
,

the above equation reads

(2.3)
d2f

dx2
+

2
x

df

dx
+

[(
E +

α

x

)2

− 1− j(j + 1)
x2

]
f(x) = 0,

where all quantities are dimensionless. Note that by means of a special substitution
one can eliminate the term with the first derivative:

(2.4) f =
1
x

F,
d2F

dx2
+

[(
E +

α

x

)2

− 1− j(j + 1)
x2

]
F (x) = 0,

which is equivalent to

(2.5)
[

d2

dx2
+ P 2(x)

]
F (x) = 0,

where

P 2(x) : =
(
E +

α

x

)2

− 1− j(j + 1)
x2

=

=
(E2 − 1)x2 + 2αEx− [j(j + 1)− α2]

x2
.(2.6)

The sign of the entity P 2
x := P 2 has substantial physical sense:
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• in the region when P 2 > 0, classical motion is possible;

• in the region when P 2 < 0, classical motion is impossible;

• if P 2(x) = 0, we have turning points.

From physical point of view, the turning points are important characteristics of
P 2:

P 2(x) = 0 =⇒ x1,2 = +
Eα

1− E2
±

√(
Eα

1− E2

)2

− j(j + 1)− α2

1− E2
.

These two (different) real values exist and are positive, when the following inequalities
are true:

0 < E < 1,

(
Eα

1− E2

)2

− j(j + 1)− α2

1− E2
> 0 =⇒ E2 >

j(j + 1)− α2

j(j + 1)
,

(2.7) E2 > 1− α2

j(j + 1)
, α =

1
137

, j = 1, 2, ...

If

(2.8) E2 < 1− α2

j(j + 1)
, α =

1
137

, j = 1, 2, ...

we will have two complex conjugate roots.
If E > 1, we always will have one negative and one positive roots:

(2.9) x1,2 = − Eα

E2 − 1
±

√(
Eα

1− E2

)2

+
j(j + 1)− α2

E2 − 1
.

For this first case we have the following conclusions:

1. When E is subunitary, then the equation of second degree has two complex
roots. In that case there aren’t turning points, see figure 1. But in the neigh-
borhood of 1, we obtain two turning points. The numerical analysis is based on

the following values: j = 1, α = 1
137 that implies E =

√
37537.5
37538 . In this case the

turning points are: 160.5017447 and 935.4939099.

2. When E is greater than 1, then there are two turning points (one positive and
one negative) which are approximately symmetric from the origin, see figure 2.

3. When E = 1 then there is just one positive turning point, see figure 3.

4. When E = 0 then there exist no turning points, all roots of equation P 2(x) = 0
are complex. The graphic is the same like in the case of E subunitary.
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Figure 1:

Figure 2:
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Figure 3:

The main function of the second type is (it can be related to the confluent Heun
equation [2])

(2.10)

d2f

dx2
+

1
x

(
3− E

E + α/x

)
df

dx
+

+
(

E2 − α2

x2
− 3 + 2

E

E + α/x
− j(j + 1)

x2

)
f = 0.

The equation can be presented in the form

d2

dx2
f(x) +

(
3
x
− E

Ex + α

)
d

dx
f + P 2(x)f(x) = 0,

where (the notation µ = j(j + 1) + α2 is used)

(2.11) P 2(x) =
x3E(E2 − 1) + x2(E2 − 3)α− xEµ− αµ

x2(Ex + α)
,

x → ±0 P 2(x) ∼ − µ
x2 < 0 ∼ −∞,

x → ±∞ P 2(x) ∼ (E2 − 1),

x → − α
E ± 0 P 2(x) ∼ −2α

Ex+α ∼ ∓∞.

We conclude that the graphics of P 2(x) will have three asymptotes (one horizontal
and two vertical). The turning points will be determined by the cubic equation

(2.12) x3E(E2 − 1) + x2(E2 − 3)α− xEµ− αµ = 0.

Remark 2.1. From physical ground, when 0 < E < 1, we may expect possibilities to
get two positive and one negative roots; this situation corresponds to possible finite
classical motion of a particle and can lead to bound states in quantum-mechanical
description.
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With the brief notations

(2.13) a = −E(1− E2), b = −(3− E2)α, c = −Eµ, d = −αµ,

the above equation reads

(2.14) ax3 + bx2 + cx + d = 0.

Some of the properties of the roots can be understood from the classical identity

ax3 + bx2 + cx + d = a(x− x1)(x− x2)(x− x3),

which implies the Viéte relations:

b = −a (x1 + x2 + x3) =⇒ x1 + x2 + x3 = − (E2 − 3)α
E(E2 − 1)

,

c = a(x1x2 + x1x3 + x2x3) =⇒ x1x2 + x1x3 + x2x3 =
µ

(1− E2)
,

(2.15) d = −ax1x2x3 =⇒ x1x2x3 = +
αµ

E(E2 − 1)
.

The third equation in (2.15) says that when 0 < E < 1, the following inequality
holds true

(2.16) x1x2x3 < 0;

if all roots are real, in turn it means that we could have two positive (let they be x1,
x2) and one negative x3 real valued roots. In this case, using the first and second
equations in (2.15)

(2.17) − (E2 − 3)α
E(E2 − 1)

− x3 = (x1 + x2) > 0, x1x2 + (x1 + x2)x3 =
µ

(1− E2)
,

one expresses x3 through x1x2:

x1x2 + x3

[
− (E2 − 3)α

E(E2 − 1)
− x3

]
=

µ

(1− E2)
,

so that

x3 = − (3− E2)
(1− E2)

· α

2E
±

√[
(3− E2)
(1− E2)

· α

2E

]2

+ x1x2 − µ

1−E2
.

Allowing the condition x3 < 0, we conclude that the first root is good one, that is we
have

(2.18) x3 = − (3− E2)
(1− E2)

· α

2E
+

√[
(3− E2)
(1− E2)

· α

2E

]2

+ x1x2 − µ

1− E2
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if we additionally assume

(2.19) x1x2 − µ

1− E2
> 0.

After changing the variable

(2.20) x = y − b

3a
= y − 3− E2

1− E2
· α

3E
;

we get the reduced cubic equation

(2.21) y3 + py + q = 0,

where

p = − b2

3a2
+

c

a
= − (3− E2)2

(1− E2)2
· α2

3E2
+

µ

1− E2
,

(2.22) q =
2b3

27a3
− bc

3a2
+

d

a
=

(3− E2)3

(1− E2)3
· 2α3

27E3
+

2αµE

3(1− E2)2
> 0.

The discriminant of equation (2.21) is

D =
(p

3

)3

+
(q

2

)2

,

or

(2.23) D =
(−b2 + 3ac

9a2

)3

+
(

2b3 − 9abc + 27a2d

54a3

)2

.

We must assume D be negative in order to have real value for our three roots.
This will be reached when

(2.24) p < 0,
(
−p

3

)3

>
(q

2

)2

With the notation

(2.25) ρ =
(
−p

3

)3/2

=⇒ ρ2 >
(q

2

)2

,

and allowing the condition (2.22), the relation (2.24) is equivalent to

(2.26)
[
(3− E2)2

(1− E2)2
· α2

9E2
− µ

3(1− E2)

]3

>

[
(3− E2)3

(1− E2)3
· α3

27E3
+

αµE

3(1− E2)2

]2

.

With notation 1− E2 = A, the last inequality can be led to the form,

(4α2µ2 − 32α4µ) + A2(8µ3 − 48α2µ2 − 24α4µ) >

> A3(4µ3 + 4α4µ− 8α2µ2) + A(4µ3 + 48α4µ− 36α2µ2).
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By using

α =
1

137
, µ = α2 + j(j + 1) >> α >> α2, (j = 1, 2, 3, ...),

the last inequality can be approximated by

4α2µ2 + A28µ3 >> A34µ3 + A4µ3 =⇒ α2

µ
+ 2A2 > A(A2 + 1).

It follows that

(2.27)
α2

j(j + 1)
> A(A− 1)2.

We remind that the first necessary condition p < 0 reads in the variable A as
follows

− (2 + A)2

A2

α2

3(1−A)
+

µ

A
< 0 =⇒ α2

µ
<

3A(1−A)
(2 + A)2

.

Consequently, its approximate form is

(2.28)
α2

j(j + 1)
>

3A(1−A)
(2 + A)2

.

To analytically describe the roots, we should use the notations

ρ =

√
−p3

27
, cosφ = − q

2ρ
.

In this case, the roots are given by

B1 = 2ρ1/3 cos
φ

3
= 2

√
−p

3
cos

φ

3
,

B2 = 2ρ1/3 cos
(

φ

3
+

2π

3

)
= 2

√
−p

3
cos

(
φ

3
+

2π

3

)
,

B3 = 2ρ1/3 cos
(

φ

3
+

4π

3

)
= 2

√
−p

3
cos

(
φ

3
− 2π

3

)
.

In idea that the roots B1, B2, B3 had to be real, we must require

p < 0,
q2

4ρ2
< 1;

these conditions coincide with the above conditions (2.24) and (2.25).
For the second case we have the following conclusions:

1. When the energy is subunitary, then there is one negative turning point, see
figure 5. The computation is made for E = 1

3 and the final form of the function
P 2 is

P 2(x) = − 1
168921

· 20570824 · x3 + 1463982 · x2 + 46285587 · x + 1013553
x2(137 · x + 3)

;
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Figure 4:

the zeros of the equation P 2(x) = 0 are one negative and the other two complex
conjugated:

x1 = −0.02190831764, x2,3 = −0.02462978264± 1.499457942 · i.

But in the region 0 < E < 1, like for E = 0.9999998, we can obtain three
negative turning points as well:

−0.007299660466,−137.5144626,−36358.84321

The graphic for this case see in figure 4 The computation is made also for
a smaller subunit value of E, like for E = 1

3000 . In this case we obtain the
simplified form of P 2(x):

P 2(x) = −23142174428647x3 + 1520288943693000x2

168921000000x2(137x + 3000)
−

−46285587 · 106x + 1013553 · 109

168921000000x2(137x + 3000)
,
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Figure 5:

with the roots:

x1 = −6.567313556, x2,3 = −0.01014998± 0.8165705745 · i.

2. When E is greater than 1, then there are three turning points: two negative

and one positive. The numerical analysis is made for a value of E =
√

37539
37538 .

The turning points are:

661.4857055− 1.0 · 10(−7) · i, −113.4930041− 5.562177830 · 10(−7) · i,
−0.00729950 + 6.562177830 · 10(−7) · i.

Because the imaginary parts are very small (and moreover, the corresponding
roots are not complex conjugate), we must neglect these parts. The graphics
for this case are presented in the figure 6.

Remark 2.2. Taking into account the previous different analytical and numerical
results, we infer that, apparently, the analytical case presented as a possible physical
situation in the Remark 2.1 cannot be reached ever. This would be because in the
analytical case we have (in the situation 0 < E < 1) for P 2(x) three real roots (two
positive and one negative), while, because of the Rolle’s array associated with P 2(x),
in the numerical case we have three negative real roots or a negative real root and
two complex conjugated roots. Although this seems to be a contradiction, however,
in fact we have the same alternative situations. This is because the function P 2(x) is
invariant under the simultaneous transformation of the energy E and the coordinate
x, given by

(E, x)−−−− > (−E,−x),

which is specific for Coulomb interaction. Moreover, taking into account that we are
in a relativistic case, the sign of the energy parameter is the conventional one (plus
or minus).
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Figure 6:

Remark 2.3. Note that with the help of substitution

f(x) = ϕ(x)F (x), ϕ =

√
Ex + α

x3

we can eliminate the term with the first derivative from equation

d2

dx2
f(x) +

(
3
x
− E

Ex + α

)
d

dx
f + P 2(x)f(x) = 0.

Consequently, we will obtain then the similar (but not identical) form

d2

dx2
f(x) +

[
ϕ′′

ϕ
+

ϕ′

ϕ

(
3
x
− E

Ex + α

)
+ P 2(x)

]
f(x) = 0,

which will modify explicitly the form of P 2 as P 2 Ã P
′2. Obviously, the factor ϕ(x)

is quite trivial and cannot substantially influence the problem of the initial ODE.

The main function of the third type is verified by the more complicated equation

(2.29)

d2f(x)
dx2

+
1
x

[
6 +

α

x (E + α/x)

]
df(x)
dx

+

+
[
E2 − 1 +

2E2α

Ex + α
− αν2

x4 (Ex + α)
−

−1
2

α
(−15 + 4ν2 − 2α2

)

x2 (Ex + α)
− E

(−5 + 2ν2 − 3α2
)

r (Ex + α)

]
f(x) = 0.

Obviously, the equation (2.29) can be rewritten in the general form (2.5), correspond-
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ing to

(2.30)

P 2(x) = E2 − 1 +
2E2α

Ex + α
− αν2

x4 (Ex + α)
−

−1
2

α
(−15 + 4ν2 − 2α2

)

x2 (Ex + α)
− E

(−5 + 2ν2 − 3α2
)

r (Ex + α)
.

The behavior near singular point is given by

(2.31) x → 0 , P 2(x) → −ν2

x4
;

(2.32) x →∞, P 2(x) → E2 − 1;

x → − α

E
, P 2(x) → 1

Ex + α
×

×
[
2αE2 − αν2 E4

α4
− 1

2
E2

α
(−15 + 4ν2 − 2α2) +

E2

α
(−5 + 2ν2 − 3α2)

]
=

(2.33) =
1

Ex + α

[
2αE2 − ν2 E4

α3
+

E2

α
(+

5
2
− 2α2)

]
=

5α2 − E2j(j + 1)
Ex + α

E2

2α3
.

We conclude that its graphics will have three (one horizontal and two vertical) asymp-
totes. The expression for P 2(x) may be rewritten as

P 2(x) =
1

x4(Ex + α)
·
[

E(E2 − 1)x5 + α(3E2 − 1)x4+

(2.34) +E[5− j(j + 1) + 3α2]x3 + α

[
15
2

+ α2 − j(j + 1)
]

x2 − αj(j + 1)
2

]
.

If E = 0, we have the much simpler variant:

(2.35) P 2(x) =
1
x4

{
−x4 +

[
15
2

+ α2 − j(j + 1)
]

x2 − j(j + 1)
2

}
.

If E = 1, we also have a much simpler variant:

P 2(x) =
1

x4(x + α)

{
2αx4+

(2.36) +[5− j(j + 1) + 3α2]x3 + α

[
15
2

+ α2 − j(j + 1)
]

x2 − αj(j + 1)
2

}
.

Let us turn to (2.36) with the notations

a = E(E2 − 1), b = α(3E2 − 1),
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c = E · [5− j(j + 1) + 3α2],

(2.37) d = α

[
15
2

+ α2 − j(j + 1)
]

, f = −αj(j + 1)
2

.

It reads

(2.38) P 2(x) =
ax5 + bx4 + cx3 + dx2 + f

x4(Ex + α)
.

An equation determining possible turning points is

(2.39) ax5 + bx4 + cx3 + dx2 + f = a(x− x1)(x− x2)(x− x3)(x− x4)(x− x5)

In particular, we derive that

(2.40) x1x2x3x4x5 = −f

a
= − αj(j + 1)

2E(1− E2)

When 0 < E < 1, then there exist only four possible variants

+, +, +, +, −(2.41)
+, +, −, −, −(2.42)

+, +, +i,−i, −(2.43)
+i,−i + i,−i −(2.44)

When E > 1, then there exist four possible variants

+, +, +, +, +(2.45)
+, +, −, −, +(2.46)

+, +, +i,−i, +(2.47)
+i,−i + i,−i +(2.48)

For the third case we have the following conclusions:

1. When 1
675 ≤ E < 1 then there are three real valued turning points: two positive

and one negative; and also we have two complex conjugate roots. The compu-
tation is made for E = 1

3 . The behavior of the graphics is the same also for the

value
√

37537,5
37538 . The roots of the numerator of P 2 are:

x1 = 0.0965757069792165, x2 = 2.25862816372310,

x3 = −2.24122563678588,

x4,5 = −0.652007957903348± 0.913600827087149 · i.

The graphic of the P 2 function in presented below, but for a good accuracy we
display a zooming area, see figure7:
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Figure 7:

Figure 8:
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Figure 9:

2. When 0 < E < 1
675 then there are five real valued turning points: two positive

and the remaining ones are negative. The computation is made for E = 1
700 ,

see figure 8:

x1 = 0.187269398191001, x2 = 2.48105347521760,

x3 = −0.191801644086821, x4 = −3.56288445168428, x5 = −4.02310497363248

3. When the energy is greater than 1 than there is one real-valued turning point.
The computation is made for E = 5, see figure 9

x1 = 0.0423972349255576,

x2,3 = −0.000898895225515174± 0.433012949098657 · i,
x4,5 = −0.0225503305097697± 0.0374753724335642 · i

4. When E = 1, then for respective fourth order polynomial there are two real-
valued turning points: one positive and one negative; these are

x1 = 0.0704143, x2 = −288.2495945,

x3,4 = −0.04088438± 0.06390341202 · i
For a good accuracy we represent the zooming area around the negative root,
see 10

5. When E = 0 then there are four real-valued turning points symmetric with
respect to the origin, see figure 11:

x1,2 = ±0.189467962, x2,3 = ±2.638968580
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Figure 10:

Figure 11:
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Figure 12:

3 Jet d-torsions and the Yang-Mills-like entity

Obviously, the equations (2.1), (2.10) and (2.29) are particular cases of the second or-
der homogenous linear differential equation (1.1). Consequently, we can apply to them
the discussed jet geometrical objects (the corresponding d-torsions and geometrical
Yang-Mills stress-like construction).

3.1 A first type main function

In the equation (2.1) we have

a1(x) =
2
x

, a2(x) =
(
E +

α

x

)2

− 1− j(j + 1)
x2

.

It follows that the corresponding jet distinguished torsion has the expression

R
(1)
(1)12 = −R

(2)
(1)11 = −αE

x2
+

j(j + 1)− α2

x3
,

and the corresponding geometrical Yang-Mills stress-like entity is

EYM(x) =
1
4

[
1 +

(
E +

α

x

)2

− 1− j(j + 1)
x2

]2

.

Note that in the case when E = 1
3 then the energy Yang Mills has the graph

similar to the one from the figure 12. Here the horizontal asymptote is y = 1
36 .

In the case when E = 3 then the energy Yang Mills has the graph similar to the
one from the figure 13. Here the horizontal asymptote is y = 81

4 . When E = 10000
then the graph is represented in the figure 14
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Figure 13:

Figure 14:
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Figure 15:

3.2 A second type main function

In the equation (2.10) we find

a1(x) =
1
x

(
3− E

E + α/x

)
, a2(x) = E2 − α2

x2
− 3 + 2

E

E + α/x
− 2ν2

x2
.

It follows that the corresponding jet distinguished torsion is

R
(1)
(1)12 = −R

(2)
(1)11 =

α2 + 2ν2

x3
+

αE

(Ex + α)2
,

and the corresponding geometrical Yang-Mills stress-like entity has the form

EYM(x) =
1
4

[
1 + E2 − α2

x2
− 3 + 2

E

E + α/x
− 2ν2

x2

]2

.

The behavior of EYM(x) for E = 1
3 is given in the figure 15

The graph for EYM(x) when E = 0.9999998 is presented in the figure 16
The graph for EYM(x), when E = 5 is presented in the figure 17

3.3 A third type main function

In the Proca equation (2.29) we get

a1(x) =
1
x

[
6 +

α

x (E + α/x)

]
,

a2(x) =
[
E2 − 1 +

2E2α

Ex + α
− αν2

x4 (Ex + α)
−

−1
2

α
(−15 + 4ν2 − 2α2

)

x2 (Ex + α)
− E

(−5 + 2ν2 − 3α2
)

x (Ex + α)

]
.
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Figure 16:

Figure 17:
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Figure 18:

It follows that the corresponding jet distinguished torsion is given by the formula

R
(1)
(1)12 = −R

(2)
(1)11 = − ε3α

(Ex + α)2
+

αν2

2

(
5Ex4 + 4αx3

)

x8 (Ex + α)2
+

+
α

(−15 + 4ν2 − 2α2
)

4

(
3Ex2 + 2αx

)

x4 (Ex + α)2
+

E
(−5 + 2ν2 − 3α2

)

2
(2Ex + α)

x2 (Ex + α)2
.

and the corresponding geometrical Yang-Mills stress-like entity becomes

EYM(x) =
1
4

[
1 + E2 − 1 +

2E2α

Ex + α
− αν2

x4 (Ex + α)
−

−1
2

α
(−15 + 4ν2 − 2α2

)

x2 (Ex + α)
− E

(−5 + 2ν2 − 3α2
)

x (Ex + α)

]2

.

When E is very closed to 1, like E =
√

37537.5
1/37538 , then we have the graph of EYM(x)

from the figure 18 When E = 1
700 , then we have the graph of EYM(x) from the figure

19 When E = 5, then we have the graph of EYM(x) from the figure 20 When E = 1,
then we have the graph of EYM(x) from the figure 21 When E = 0, then we have
the graph of EYM(x) from the figure 22

4 Comments and conclusions related to the entities
EYM(x) and P 2(x)

In all above three cases, we have the ”geometric-physical relation”

(4.1) EYM(x) =
1
4

(
1 + P 2

x

)2 ⇔ P 2(x) = 2
√
EYM(x)− 1, x ∈ R,
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Figure 19:

Figure 20:
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Figure 21:

Figure 22:
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where the quantity P 2
x is meaningful both in the context of classical mechanics and

quantum mechanics.
It is important to note the following geometric-physical facts that could lead to

possible physical interpretations:

1. for 0 < EYM <1/4 there do not exist any positive root P 2 satisfying the equa-
tion (4.1), so the motion is impossible;

2. EYM =1/4 - we have critical (turning) points;

3. for EYM >1/4 there exists at least a positive root P 2 satisfying the equation
(4.1), so the motion is possible.

Moreover, the following relations between asymptotes are true:

• if x = x0 is a vertical asymptote for P 2, then it is also a vertical asymptote for
EYM;

• if y = y0 is a horizontal asymptote for P 2, then y = (1/4) (1+y0)2 is a horizontal
asymptote for EYM.

Quantum dynamics of a spin 1 particle in natural way has led us to three classes
of ODEs, related to some corresponding functions P 2(x):

P 2
I (x) =

a2x
2 + a1x + a0

x2
,P 2

II(x) =
a3x

3 + a2x
2 + a1x + a0

x2(Ax + B)
,

P 2
III(x) =

a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0

x4(Ax + B)
.

The singular point determined by equation Ax + B ≡ Ex + α = 0 is not physical,
but is very substantial mathematically. For instance, in the case of spin 1/2 Dirac
particle such a singularity arises as well, and it can be eliminated by means of special
trick in the solving procedure – see for instance [10].

Note that the type I is referred to class of hypergeometric differential equations,
the type II is associated with the Heun equation with four singular points, and the
type III is a more complicated class of ODEs. Obviously, the above series I, II, III
can be continued from a mathematical point of view.

In accordance with to possibilities I, II, III, there arise three sorts of geometrical
structures within the following relation:

(4.2) EYM(x) =
1
4

[
1 + P 2(x)

]2
, ∀ x ∈ R.

All three functions P 2(x) behave at infinity (x → ±∞) the same manner:

P 2(x → ±∞) ∼ E2 − 1.

This leads to
2
√
EYM(x → ±∞) ∼ E2.
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Thus, the quantity 2
√EYM effectively behaves at infinity as the entity P 2 for a

massless field. Indeed, this is because, in usual units, we have that:

E2 − 1 reads
( ε

~c

)2

−
(mc

~

)2

.

From a physical point of view, the value E2 = 1 is critical. Namely, we may
expect bound states in quantum-mechanical background when | E |< 1, and when
| E |> 1 we may expect unbound state of scattering particle with spin 1 on the
Coulomb potential field.

Similarly, the critical value E = 0 is very interesting from mathematical point of
view, but hardly to understand from physical standpoint.

All three types of ODEs and the corresponding functions P 2(x) are invariant under
the simultaneous transformation of the energy E and the coordinate x:

(E, x)−−−−− > (−E,−x).

Obviously, this is not an occasional fact and it is specific for Coulomb interaction.
Moreover, in the relativistic case (which is taken under consideration in this paper),
the sign of the energy parameter is the conventional one (plus or minus).
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