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Abstract. In [3] the author studied the conformal change of Finsler met-
rics and related geometrics objects by considering invariant Ehresmann
connections on Finsler manifolds. In this paper, we investigate the be-
havior of the Finsler-Ehresmann connection under conformal change of
Finsler metrics. Then we study, the conformal change of related geomet-
rics objects like Chern connection and associated curvatures.
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1 Introduction

Finsler geometry is a generalization of the Riemannian geometry, in the sense that
the geometrical data in Finsler geometry consists of a smoothly varying family of
Minkowski norms (one on each tangent space), rather than a family of inner products
as in Riemannian case [1]. Studying Finsler geometry, one encounters substantial
difficulties by trying to seek analogues of classical global, or sometimes even local,
results of Riemannian geometry. These difficulties arise mainly from the fact that in
Finsler geometry all geometric objects depend not only on positional coordinates, as
in Riemannian geometry, but also on directional arguments.

An Ehresmann connection on the slit tangent bundle of Finsler manifold plays
an important role in Finsler geometry. By adopting an intrinsic approach of Finsler
geometry via the Koszul methods used in [3], the goal of this paper is to study the
behavior of an Ehresmann connection under a conformal change of the Finsler metric.

In [3], the conformal change of Chern connection with respect to an invariant
Ehresmann connection was investigated, and some characterizations on geometric
objects associated were established. In this paper, we consider the case where the
Ehresmann connection is not invariant and we obtain some characterizations of the
Chern connection, and associated curvature with respect to the conformal change of
Finsler-Ehresmann connection. Moreover we give a necessary and sufficient condition
for an Ehresmann connection to be invariant. Under this condition, we find the results
gived in [3].

In the next section, we give a brief account of the basic concepts necessary for
this work. And in the third section, we give the study of the conformal change of
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Ehresmann connection with respect to the change of metric. The main results of
this part are the characterizations of the evolution of the Chern connection and the
associated curvatures with respect to the conformal change of Ehresmann connection.
It should be noted that, the obtained results of conformal change of Ricci and scalar
curvatures yields to the formulation of the Yamabe-type problem in Finsler geometry,
which we plan to solve in future paper.

2 Preliminaries

2.1 Finsler-Ehresmann connection and Chern connection

Let π : TM → M be a tangent bundle of connected smooth manifold M of dimension
m. We denote by v = (x, y) the points in TM if y ∈ π−1(x) = TxM . We denote by
O(M) the zero section of TM , and by TM0 the slit tangent bundle TM \O(M). We
introduce a coordinate system on TM as follows. Let U ⊂ M be an open set with
local coordinate (x1, ..., xn). By setting v = yi ∂

∂xi for every v ∈ π−1(U), we introduce
a local coordinate (x, y) = (x1, ..., xn, y1, ..., yn) on π−1(U).

Definition 2.1. A function F : TM → [0, +∞[ is called a Finsler structure or Finsler
metric on M if:

(i) F ∈ C∞(TM0)

(ii) F (x, λy) = λF (x, y), for all λ > 0.

(iii) The m ×m Hessian matrix (gij), where gij := 1
2 (F 2)yiyj is positive-definite at

every point of TM0.

The pair (M, F ) is called Finsler manifold. For the differential π∗ of the submer-
sion π : TM0 → M , the vertical subbundle V of TTM0 is defined by V = ker π∗, and
V is locally spanned by {F ∂

∂y1 , ..., F ∂
∂yn } on each π−1(U). Then, it induces the exact

sequence

(2.1) 0 −→ V i−→ TTM0
π∗−→ π∗TM −→ 0,

where π∗TM := {(x, y, v) ∈ TM0 × TM : v ∈ Tπ(x,y)M} is the pull-back bundle. So,
the vertical subbundle is defined by V = kerπ∗, while the horizontal subbundle H is
defined by a subbundle H ⊂ TTM0, which is complementary to V. These subbundles
give a smooth splitting

(2.2) TTM0 = H⊕ V.

Although the vertical subbundle V is uniquely determined, the horizontal subbundle is
not canonically determined. An Ehresmann connection of the submersion π : TM0 →
M is a selection of horizontal subbundles.

In this paper, we shall consider the choice of Ehresmann connection which arises
from the Finsler structure F , constructed as follows. Recall that every Finslerian
structure F induces a spray (see [6], [4])

G = yi ∂

∂xi
− 2Gi(x, y)

∂

∂yi
,
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which the spray coefficients Gi are defined by

(2.3) Gi(x, y) :=
1
4
gil

[
2
∂gjl

∂xk
(x, y)− ∂gjk

∂xl
(x, y)

]
yjyk,

where the matrix (gij) means the inverse of (gij).
With the functions N i

j(x, y) := ∂Gi

∂yj (x, y), we define a π∗TM -valued smooth form
on TM0 by

(2.4) θ =
∂

∂xi
⊗ 1

F
(dyi + N i

jdxj).

This π∗TM -valued smooth form θ is globally well defined on TM0 [3].
By the form θ, defined in (2.4) which is called Finsler-Ehresmann form, we can

define a Finsler-Ehresmann connection as follow.

Definition 2.2. A Finsler-Ehresmann connection of the submersion π : TM0 → M
is the subbundle H of TTM0 given by H = ker θ, where θ : TTM0 → π∗TM is
the bundle morphism defined in (2.4), and which is complementary to the vertical
subbundle V.

Note that π∗TM can be naturally identified with the horizontal subbundle H [5],
and thus, any section ξ of π∗TM is considered as a section of H. We denote by ξH

the section of H corresponding to ξ ∈ Γ(π∗TM):

(2.5) ξ =
∂

∂xi
⊗ ξi ∈ π∗TM ⇐⇒ ξH =

δ

δxi
⊗ ξi ∈ Γ(H),

where

(2.6) { δ

δxi
:=

∂

∂xi
−N i

j

∂

∂yi
= (

∂

∂xi
)H}i=1,...,m

denotes the horizontal lift of natural local frame field { ∂
∂x1 , ..., ∂

∂xm } with respect to
the Finsler-Ehresmann connection H. The set {dx1, ..., dxm} is the dual basis of H∗.
For the two bundle morphisms π∗ and θ from TTM0 onto π∗TM , we have

Proposition 2.1. [5] The bundle morphism π∗ and θ satisfy

(2.7) π∗(ξH) = ξ, π∗(ξV ) = 0,

and

(2.8) θ(ξH) = 0 θ(ξV ) = ξ,

for every ξ ∈ Γ(π∗TM).

From (2.1) the existence of the Chern connection on the pullback bundle is given
by the following result.

Theorem 2.2. [3] Let (M, F ) be a Finsler manifold, g a fundamental tensor of F and
θ the vector form give by (2.4). There exist a unique linear connection ∇ on π∗TM
such that, for all X, Y ∈ Γ(TTM0) and ξ, η ∈ Γ(π∗TM), we have the following:
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(a) Symmetry

(2.9) ∇Xπ∗Y −∇Y π∗X = π∗[X, Y ],

(b) Almost g-compatibility

(2.10) (∇Xg)(ξ, η) = 2A(θ(X), ξ, η),

where A is the Cartan tensor.

Remark 2.3. A local version of the above theorem is given in [1]

2.2 Tensor formalism on curvatures of Chern connection

2.2.1 Tensor formalism in Finsler geometry

If Ξ is vector bundle on TM0 or SM , then we note Γp(Ξ) the C∞(TM0)-module of
differentiable sections of Ξp, where Ξp = Ξ ×Ξ × ...×Ξ︸ ︷︷ ︸

p-times

. By convention Γ0(Ξ) =

C∞(TM0) or (C∞(SM)). The tensors that we will consider are defined as follows.

Definition 2.4. Let (M, F ) be a Finsler manifold. A tensor field T of type (p1, p2; q)
on (M,F ) is a map:

T : Γp1(π∗TM)× Γp2(TTM0) −→ Γq(π∗TM),

which is C∞(TM0) or C∞(SM)-linear in each arguments.

Note that, we only focus on tensors for which q ∈ {0, 1}.
Example 2.5.

1. The fundamental tensor g is of type (2, 0; 0),

2. The Cartan tensor A is of type (3, 0; 0),

3. The vector form θ is of type (0, 1; 1),

4. The distinguished section l is of type (0, 0; 1),

Remark 2.6.

(i) The function F and the sections of TTM0 are not the Finslerian tensors in our
case.

(ii) Any tensor of type (p1, p2, q) with p2 ≥ 1 admits a decomposition in tensors
of the same type according to the horizontal and vertical components of its p2

arguments. For example If the tensor T is of the type (p, 1; q), then we have the
following decomposition: T = TH + TV , where TH(ξ1...ξp, X) = T (ξ1...ξp, X

H)
and TV (ξ1...ξp, X) = T (ξ1...ξp, X

V ).



36 Joseph Salomon Mbatakou, Leonard Todjihounde

(iii) If T is (1, p; q)-tensor, then we can associate to T two tensors T̂ and Ť of
type (0, p+1; q) which are horizontal and vertical, respectively, according to the
(p+1)-th variable added, i.e., if T (ξ, X1, ..., Xp) ∈ Γq(π∗TM) with ξ ∈ Γ(π∗TM)
then we we can define two (0, p + 1; q)-tensors T̂ and Ť as follows.

(2.11)
{

T̂ (X,X1, ..., Xp) = T (π∗X, X1, ..., Xp)
Ť (X,X1, ..., Xp) = T (θ(X), X1, ..., Xp)

2.2.2 Associated curvatures of Chern connection

In this paragraph, we give an intrinsic formulation of the Chern curvatures necessary
for this work.

Definition 2.7. The full curvature φ of Chern connection ∇ is defined by:

(2.12) φ(X, Y )ξ = ∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ,

where X, Y ∈ Γ(TTM0) and ξ ∈ Γ(π∗TM).

Using the decomposition ∇X = ∇XH +∇XV , we can write the full curvature in
the following way:

(2.13) φ(X, Y )ξ = φHH(X, Y )ξ + φHV (X,Y )ξ + φV H(X, Y )ξ + φV V (X, Y )ξ,

where, φHH(X, Y )ξ = φ(XH , Y H), φHV (X, Y )ξ = φ(XH , Y V ), etc.
Let R, P and Q respectively the hh-, hv- and vv-curvature tensors of Chern

connection, we have:

(2.14)





R(X, Y )ξ = φHH(X, Y )ξ,
P (X, Y )ξ = φHV (X, Y )ξ + φV H(X,Y )ξ,
Q(X, Y )ξ = φV V (X, Y )ξ.

By integrabilty of V, we have, for all X, Y ∈ Γ(TTM0) and ξ ∈ Γ(π∗TM),

Q(X, Y )ξ = 0.

Hence, the surviving part of φ are the horizontal part R and the mixed part P and
we have:

(2.15) φ(X, Y )ξ = R(X, Y )ξ + P (X, Y )ξ.

Remark 2.8. The full curvature φ is the tensor of type (1, 2; 1) and as in the Rie-
mannian case, we can define a (2, 2; 0) version of this tensor by the following formula:

Φ(ξ, η, X, Y ) = g(φ(X, Y )ξ, η)
= g(R(X,Y )ξ, η) + g(P (X, Y )ξ, η)
= R(ξ, η, X, Y ) + P (ξ, η, X, Y ).(2.16)

Note that the hh-curvature tensor R is a generalization of the usual Riemannian
curvature. Thus, by an appropriate contractions of the tensor R, we can obtain some
avatars of Ricci tensor and scalar curvature which generalize the usual one.
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Definition 2.9. Let (M,F ) be a Finsler manifold, R the horizontal part of the
full curvature tensor associated with the Chern connection and {ea}a=1,...,m an g-
orthonormal basis sections of π∗TM . We define

1. The horizontal Ricci tensor RicH of Finsler manifold (M,F ) by:

(2.17) RicH(ξ, X) := traceg(η 7→ R(X, ηH)ξ)),

for every, X ∈ Γ(TTM0) and ξ, η ∈ Γ(π∗TM). In g-orthonormal basis sections
{ea}a=1,...,m of π∗TM , we have

(2.18) RicH(ξ, X) :=
m∑

a=1

R(ea, ξ,X, eH
a ).

2. The horizontal scalar curvature ScalH of the Finsler manifold (M, F ) is the
trace of horizontal Ricci curvature. We get a function on TM0 or SM . In
g−orthonormal basis sections {ea}a=1,...,m, we have

ScalH :=
m∑

a=1

RicH(ea, eH
a ) =

m∑

a,b=1

R(eb, ea, eH
a , eH

b ).(2.19)

Remark 2.10. The trace notion (2.17) is meaningful due to the natural identification
of π∗TM with H or V.

In the same manner we can define a notion of vertical Ricci curvature and vertical
scalar curvature, by the mixed part P of the full curvature. In this work, we will used
essentially the horizontal one.

2.3 Fundamental differential operators on (M,F )

In this paragraph, we study several operators which will be used in the following. Let
τ : π∗TM → TM the canonical map defined by τ(x, y, v) = v ∈ TxM . By τ , we
define a notion of gradient on (M,F ).

Definition 2.11. [3] For a smooth function u on M , the gradient of u noted by Ou,
is the section of π∗TM , characterized by

(2.20) g(x, y)(Ou(x,y), ξ(x,y)) = duπ(x,y)(τξ), ξ ∈ Γ(π∗TM), (x, y) ∈ TM0.

Locally, we have

(2.21) Ou(x,y) = gij(x, y)
∂u

∂xi

∂

∂xj
.

Definition 2.12. For a smooth section ξ ∈ Γ(π∗TM), we define the horizontal
divergence by

(2.22) divHξ = traceg(η → ∇ηH ξ),

and the vertical divergence by

(2.23) divV ξ = traceg(η → ∇ηV ξ),

where ∇ is the Chern connection.
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Remark 2.13. In the basis sections { ∂
∂xi }i=1,...,m of the bundle π∗TM , we have

(2.24) divHξ = gijg(∇ δ

δxi
ξ,

∂

∂xj
),

and

(2.25) divV ξ = gijg(∇F ∂
∂yi

ξ,
∂

∂xj
).

Proposition 2.3. When the manifold (M, F ) is Riemannian, the horizontal diver-
gence divH is reduce to the classical Riemannian common notion of divergence, while
the vertical divV vanishes.

Proof. For the horizontal divergence divH the result follows from (2.24) and for the
vertical one, we have, by a straightforward computations,

(2.26) divV ξ = gijA(θ(F
∂

∂yi
),

∂

∂xj
, ξ),

and the result follows, by Deicke theorem [1]. ¤

Remark 2.14. In view of the above proposition, we remark that the notion of vertical
divergence is essentially Finslerian, while the horizontal one generalizes the classical
Riemannian case.

Now by the Chern connection ∇, we shall define a Hessian of the smooth function
u noted Hu on (M, F ) as the (1, 1; 0)-tensor defines as follows.

Definition 2.15. For u ∈ C∞(M), a hessian of u is the map

(2.27) Hu : Γ(π∗TM)× Γ(TTM0) → C∞(TM0),

such that

(2.28) Hu(ξ, X) = g(ξ,∇X(Ou)).

Remark 2.16. 1. The associated (0, 2; 0)-tensor Ĥu of Hu verify the following
symmetric property [3].

(2.29) Ĥu(X,Y )− Ĥu(Y, X) = 2[A(θ(Y ), Ou, π∗X)−A(θ(X), Ou, π∗Y )],

where X, Y ∈ Γ(TTM0).

2. Note that Hu(ξ, X) can be split in horizontal part and vertical part as follows:

Hu(ξ, X) = HHu(ξ, X) + HV u(ξ, X)
= g(ξ,∇H

XOu) + g(ξ,∇V
XOu).(2.30)

Then, by (2.29) the horizontal part of Ĥu is symmetric. i.e

(2.31) ĤHu(X, Y ) = ĤHu(Y, X).
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From (2.22) and (2.23), we can define the horizontal and vertical Laplacian as
follows

Definition 2.17. Let u ∈ C∞(M). The horizontal Laplacian 4Hu of u is given by

(2.32) 4Hu = −divHOu,

and the vertical Laplacian 4V u by

(2.33) 4V u = −divV Ou.

Proposition 2.4. The horizontal 4Hu Laplacian and vertical 4V u Laplacian of
smooth function u, can be expressed in terms of the hessian Hu of u, respectively by:

(2.34) 4Hu = −traceg((ξ, η) 7→ Hu(ξ, ηH)) η, ξ ∈ Γ(π∗TM),

and

(2.35) 4V u = −traceg((ξ, η) 7→ Hu(ξ, ηV )) η, ξ ∈ Γ(π∗TM).

Furthermore, in orthonormal basis sections {ea}a=1,...,m, we have

(2.36) 4Hu = −
m∑

a=1

Hu(ea, eH
a ),

and

(2.37) 4V u = −
m∑

a=1

Hu(ea, eV
a ).

Proof. By definition of horizontal Laplacian. ¤

3 Conformal change of Finsler-Ehresmann
connection, and related objects

In this section, we give some characterizations of Chern connection and associated
curvatures, under the conformal change of Finsler-Ehresmann connection. We also
give a necessary and sufficient condition for the Finsler-Ehresmann connection to be
invariant, and under this condition, we obtain the results give in [3].

Definition 3.1. Let (M, F ) and (M, F̃ ) be two Finsler manifolds. The two associated
fundamental tensors g and g̃ are said to be conformal if there exists a positive smooth
function u on M such that g̃ = e2ug. Equivalently g and g̃ are conformal if and only
if F̃ = euF . In this case, the two Finsler manifolds (M,F ) and (M, F̃ ) are said to be
conformal or conformally related.

Lemma 3.1. Let (M,F ) and (M, F̃ ) be conformally related Finsler manifolds, with
the fundamental tensors related by g̃ = e2ug. The associated Finsler-Ehresmann
valued forms θ and θ̃ are related by

(3.1) θ̃ = e−u(θ − B),
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where B is the (0, 1; 1)-tensor

(3.2) B :=
1
F
Bi

j

∂

∂xi
⊗ dxj ,

with Bi
j = ∂Bir

∂yj
∂u
∂xr and Bir = F 2

2 (gir − 2lilr), where l is the distinguished section of

π∗TM given by l := li ∂
∂xi = yi

F
∂

∂xi .

Proof. Let Gi and G̃i the sprays coefficients induced respectively by F and F̃ . we
have

G̃i =
1
4
g̃il

[
2
∂g̃jl

∂xk
− ∂g̃jk

∂xl

]
yjyk

=
1
4
e−2ugil

[
4e2u ∂u

∂xk
gjl + 2e2u ∂gjl

∂xk
− 2e2u ∂u

∂xl
gjk − e2u ∂gjk

∂xl

]
yjyk

= Gi +
F 2

2
(2lilj − gij)

∂u

∂xj
,

Then,

Ñ i
j =

∂G̃i

∂yj
=

∂Gi

∂yj
+

∂

∂yj

[
F 2

2
(2lilr − gir)

∂u

∂xr

]

= N i
j −

∂

∂yj

(
Bir ∂u

∂xr

)

= N i
j − Bi

j ,(3.3)

where Bi
j = ∂

∂yj

(Bir ∂u
∂xr

)
and Bir = F 2

2 (gir − 2lilr). It follows that,

θ̃ :=
∂

∂xi
⊗ δ̃yi

F̃
= e−u

(
∂

∂xi
⊗ 1

F
(dyi + Ñ i

jdxj)
)

= e−u

(
∂

∂xi
⊗ 1

F
δyi − 1

F
Bi

j

∂

∂xi
⊗ dxj)

)
= e−u (θ − B) ,

where B = 1
F Bi

j
∂

∂xi ⊗ dxj . ¤

Lemma 3.2. Let (M, F ) be a Finsler manifold. On the horizontal subbundle H̃ ⊂
TTM0 with respect to the conformal change of the Finsler metric (F̃ = euF ), we
have:

(3.4) θ ≡ B,

where B is the (0, 1; 1)-tensor given by (3.2).

Proof. By definition of θ̃. ¤

Lemma 3.3. If (M,F ) and (M, F̃ ) are conformally related Finsler manifolds, and
the associated Finsler-Ehresmann connections H and H̃ are equal, then,

(3.5) B ≡ 0

The converse is true.
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Proof. By the fact that B = θ − θ̃. ¤

Remark 3.2. The lemma 3.3 means that, H is invariant for B ≡ 0, thus give the
condition on the tensor B for which, the results of [3] on the conformal change of
Chern connection and related curvatures was obtained.

Lemma 3.4. Let (M,F ) and (M, F̃ ) be conformally related Finsler manifolds, with
g̃ = e2ug. The associated Cartan tensors A and Ã are related by

Ã = e3uA,(3.6)

and we have

(3.7) Ã(θ̃(X), ξ, η) = e2u [A(θ(X), ξ, η)−A(B(X), ξ, η)] ,

for any X ∈ Γ(TTM0) and ξ, η ∈ Γ(π∗TM).

Proof. In fact

Ãijk :=
F̃

2
∂g̃ij

∂yk
= e3u F

2
∂gij

∂yk
= e3uAijk.

¤

Before the characterization of the conformal change of Chern connection and tak-
ing into account the conformal change of Ehresmann connection, we have the following
result. As for the Riemannian case, we have:

Lemma 3.5. Let (M,F ) be a Finsler manifold, g the fundamental tensor of F and
π∗TM the pulled-back bundle on TM0 . Let ξ ∈ Γ(π∗TM). There exists precisely one
section ξ[ ∈ Γ(π∗T ∗M) such that for all η ∈ Γ(π∗TM), ξ[(η) = g(ξ, η). Conversely,
let α ∈ Γ(π∗T ∗M) there exists precisely one section α] ∈ Γ(π∗TM) such that for all
η ∈ Γ(π∗TM), g(α], η) = α(η).

Proof. By the nondegeneracy of g. ¤

Theorem 3.6. If (M, F ) and (M, F̃ ) are conformally related Finsler manifolds, then
the associated Chern connnections respectively ∇ and ∇̃ are related by:

∇̃Xπ∗Y = ∇Xπ∗Y +D(X,Y ), X, Y ∈ Γ(TTM0), , u ∈ C∞(M),(3.8)

where

(3.9) D(X, Y ) := du(π∗X)π∗Y + du(π∗Y )π∗X − g(π∗X, π∗Y )Ou + Θ(X, Y ).

Θ being the (0, 2; 1)-tensor defined by

Θ(X, Y ) = (A(B(X), π∗Y, •))] + (A(B(Y ), π∗X, •))] − (A(π∗X, π∗Y, •)) ◦ B)]

and for any η ∈ Γ(π∗TM), X ∈ Γ(TTM0)

du(π∗X) := g(Ou, π∗X) = X(u)
(A(π∗X,π∗Y, •)) ◦ B) (η) := A(π∗X, π∗Y,B(ηH)).(3.10)
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Proof. For the Chern connection ∇̃ associated to (M, F̃ ), we have by (2.2) the fol-
lowing generalized Koszul formula:

2g̃(∇̃Xπ∗Y, π∗Z) = X.g̃(π∗Y, π∗Z) + Y.g̃(π∗Z, π∗X)− Z.g̃(π∗X,π∗Y )
+ g̃(π∗[X,Y ], π∗Z)− g̃(π∗[Y,Z], π∗X) + g̃(π∗[Z,X], π∗Y )
− 2Ã(X, Y, Z),

where

Ã(X,Y, Z) = Ã(θ̃(X), π∗Y, π∗Z)) + Ã(θ̃(Y ), π∗Z, π∗X))

− Ã(θ̃(Z), π∗X, π∗Y )).

Using (3.1), we obtain,

2g̃(∇Xπ∗Y, π∗Z) = X(e2u)g(π∗Y, π∗Z) + Y (e2u)g(π∗Z, π∗X)
−Z(e2u)g(π∗X, π∗Y ) + e2ug(π∗[X,Y ], π∗Z)− e2ug(π∗[Y, Z], π∗X)
+e2ug(π∗[Z, X], π∗Y )− 2e2uA(X, Y, Z) + 2e2uB(X, Y, Z),

where

B(X,Y, Z) = A(B(X), π∗Y, π∗Z)) + A(B(Y ), π∗Z, π∗X))
−A(B(Z), π∗X, π∗Y )).

It follows that

2g̃(∇̃Xπ∗Y, π∗Z) = 2e2ug(∇Xπ∗Y, π∗Z) + 2e2udu(π∗X)g(π∗Y, π∗Z)
+ 2e2udu(π∗Y )g(π∗X, π∗Z)− 2e2ug(g(π∗X, π∗Y )Ou, π∗Z)
+ 2e2uB(X,Y, Z).(3.11)

Thus,

g(∇̃Xπ∗Y −∇Xπ∗Y, π∗Z) = du(π∗X)g(π∗Y, π∗Z) + du(π∗Y )g(π∗X,π∗Z)
− g(g(π∗X, π∗Y )Ou, π∗Z) + B(X, Y, Z),(3.12)

with B(X,Y, Z) = g(Θ(X, Y ), π∗Z), where, the (0, 2; 1)-tensor Θ is defined by:

Θ(X, Y ) = (A(B(X), π∗Y, •))] + (A(B(Y ), π∗X, •))] − (A(π∗X,π∗Y, •)) ◦ B)]
.

The result follows, from the lemma 3.5 and the nondegenerance of g. ¤

Remark 3.3. 1. When the Ehresmann connection is invariant under the confor-
mal change of the metric, then, by Lemma 3.3, B = 0 and (3.8) is equivalent to
the result on conformal change of Chern connection given in [3].

2. The classical result on conformal change of Chern connection, obtained in local
coordinates [2], derives immediately of our global result, derives immediately of
our global result, using local relationship between both Chern connection and
Cartan connection [1].
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Definition 3.4. The generalized Kulkarni-Nomizu product t¯T of the (1, 1; 0)-tensor
t and the (2, 0; 0)-tensor T , is the (2, 2; 0)-tensor t¯ T given by:

(t¯ T )(ξ, η, X, Y ) = t(ξ, X)T (η, π∗Y )− T (ξ, π∗Y )t(η,X)
+ T (ξ, π∗X)t(η, Y )− t(ξ, Y )T (η, π∗X)(3.13)

Theorem 3.7. If (M, F ) and (M, F̃ ) are conformally related Finsler manifolds, then
the associated respectively full curvatures of Chern connection Φ and Φ̃ are related by:

Φ̃(ξ, η,X, Y ) = e2u [Φ + (bu ¯ g) + Tu] (ξ, η, X, Y ),(3.14)

where

(3.15) bu(ξ, X) = Hu(ξ,X)− du(π∗X)du(ξ) +
1
2
g(Ou, Ou)g(ξ, π∗X),

and

Tu(ξ, η, X, Y ) = 2A(θ(X),Ou, ξ)g(η, π∗Y )− 2A(θ(Y ), Ou, ξ)g(η, π∗X)
+ 2A(θ(Y ), π∗X, ξ)du(η)− 2A(θ(X), π∗Y, ξ)du(η)
+ du(Θ(Y, ξH))g(η, π∗X)− du(Θ(X, ξH))g(η, π∗Y )
+ g(Θ(X, ξH), π∗Y )du(η)− g(Θ(Y, ξH), π∗X)du(η)
+ g(Θ(Y, (Ou)H), η)g(π∗X, ξ)− g(Θ(X, (Ou)H), η)g(π∗Y, ξ)
+ g

(
Θ(X, ΘH(Y, ξH)), η

)− g
(
Θ(Y, ΘH(X, ξH)), η

)

+ g((∇XΘ)(Y, ξH), η)− g((∇Y Θ)(X, ξH), η).(3.16)

Proof. Let ξ, η ∈ Γ(π∗TM) and X, Y ∈ Γ(TTM0), the full curvature tensor associated
to the conformal change of Chern connection, is given by:

(3.17) φ̃(X, Y )ξ = ∇̃X∇̃Y ξ − ∇̃Y ∇̃Xξ − ∇̃[X,Y ]ξ.

If we denote W := ∇̃Y ξ, then from (3.8) we have

∇̃XW = ∇XW + du(π∗X)W + du(W )π∗X − g(π∗X, W )Ou

−Θ(X,WH).(3.18)

Computing any terms of the right hand of the above equation, we have:

∇XW = ∇X∇Y ξ + du(π∗Y )∇Xξ + 2A(θ(X), Ou, π∗Y )ξ + Hu(π∗Y, X)ξ
+ du(∇Xπ∗Y )ξ + du(ξ)∇Xπ∗Y + 2A(θ(X), Ou, ξ)π∗Y + Hu(ξ, X)π∗Y
+ du(∇Xξ)π∗Y − g(ξ, π∗Y )∇XOu− 2A(θ(X), ξ, π∗Y )Ou− g(∇Xξ, π∗Y )Ou
− g(∇Xπ∗Y, ξ)Ou +∇XΘ(Y, ξH)(3.19)

du(π∗X)W = du(π∗X)∇Y ξ + du(π∗X)du(π∗Y )ξ + du(π∗X)du(ξ)π∗Y
− g(ξ, π∗Y )du(π∗X)Ou + du(π∗X)Θ(Y, ξH)(3.20)

du(W )π∗X = du(∇Y ξ)π∗X∇Y ξ + 2du(ξ)du(π∗Y )π∗X − g(ξ, π∗Y )du(Ou)π∗X
+ du(Θ(Y, ξH))π∗X(3.21)
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g(W,π∗X)Ou = g(∇Y ξ, π∗X)∇u + du(π∗Y )g(ξ, π∗X)Ou + du(ξ)g(π∗X, π∗Y )Ou
− g(ξ, π∗Y )g(Ou, π∗X)Ou + g(Θ(Y, ξH), π∗X)Ou(3.22)

Θ(X, WH) = Θ(X, (∇Y ξ)H) + Θ(X, ξH)du(π∗Y ) + du(ξ)Θ(X, Y )
− g(ξ, π∗Y )Θ(X, (Ou)H)(3.23)

Replacing (3.19), (3.20), (3.21) and (3.22) in (3.18), we get the first term on the right
of (3.17). In the same manner, we obtain the second and the third terms.
Using (2.29) and the covariant derivative of the (0, 2; 1)-tensor Θ, defined as the
(0, 2; 1)-tensor

(3.24) (∇XΘ)(Y,Z) := ∇XΘ(Y, Z)−Θ
(
(∇Xπ∗Y )H , Z

)−Θ
(
X, (∇Xπ∗Z)H

)

We obtain,

g(φ̃(X, Y )ξ, η) = g(φ(X, Y )ξ, η + Hu(ξ, X)g(η, π∗Y )−Hu(η, X)g(ξ, π∗Y )
− du(X)du(ξ)g(η, π∗Y ) + du(Y )du(ξ)g(η, π∗X)
− g(ξ, π∗Y )‖Ou‖2gg(η, π∗X)− du(Y )du(η)g(ξ, π∗X)
− Hu(ξ, Y )g(η, π∗X) + Hu(η, Y )g(ξ, π∗X)
+ g(ξ, π∗X)‖Ou‖2gg(η, π∗Y ) + du(X)g(ξ, π∗Y )du(η)
+ 2A(θ(X),Ou, ξ)g(η, π∗Y )− du(Θ(X, ξH))g(η, π∗Y )
+ du(Θ(Y, ξH))g(η, π∗X)− 2A(θ(Y ), Ou, ξ)g(η, π∗X)
+ 2A(θ(Y ), π∗X, ξ)du(η)− 2A(θ(X), π∗Y, ξ)du(η)
+ g(Θ(X, ξH), π∗Y )du(η)− g(Θ(Y, ξH), π∗X)du(η)
+ g(Θ(Y, (Ou)H), η)g(π∗X, ξ)− g(Θ(X, (Ou)H), η)g(π∗Y, ξ)
+ g

(
Θ(X, ΘH(Y, ξH)), η

)− g
(
Θ(Y, ΘH(X, ξH)), η

)

+ g((∇XΘ)(Y, ξH), η)− g((∇Y Θ)(X, ξH), η)(3.25)

Noting that e2ug(φ̃(X, Y )ξ, η) = g̃(φ̃(X, Y )ξ, η) = Φ̃(ξ, η,X, Y ), we obtain the result.
¤

Elsewere, we can observed that, The decomposition of the (2, 2; 0)-tensor Tu is
gived by Tu = THH

u + THV
u + TV H

u + TV V
u where

THH
u (ξ, η, X, Y ) = du(Θ(Y, ξH))g(η, π∗X)− du(Θ(X, ξH))g(η, π∗Y )

+ g(Θ(X, ξH), π∗Y )du(η)− g(Θ(Y, ξH), π∗X)du(η)
+ g(Θ(Y, (Ou)H), η)g(π∗X, ξ)− g(Θ(X, (Ou)H), η)g(π∗Y, ξ)
+ g

(
Θ(X, ΘH(Y, ξH)), η

)− g
(
Θ(Y, ΘH(X, ξH)), η

)

+ g((∇XΘ)(Y, ξH), η)− g((∇Y Θ)(X, ξH), η)(3.26)

THV
u (ξ, η, X, Y ) = 2A(θ(Y ), π∗X, ξ)du(η)− 2A(θ(Y ),Ou, ξ)g(η, π∗X)

+ g((∇XΘ)(Y, ξH), η)− g((∇Y Θ)(X, ξH), η)(3.27)

and

(3.28) TV V
u = 0

It follows that, the hh-curvature R and hv-curvature P of F are related at those of
F̃ respectively R̃ and P̃ by:
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Corollary 3.8. Under the conformal change F̃ = euF , the hh and hv curvatures of
Chern connection are related by

(3.29)
R̃(ξ, η, X, Y ) = e2u

[
R + (bu ¯ g)HH + T HH

u

]
(ξ, η, X, Y )

P̃ (ξ, η, X, Y ) = e2u
[
P + (bu ¯ g)HV + (bu ¯ g)V H + T V H

u + T V H
u

]
(ξ, η, X, Y ),

where

(3.30) bu(ξ, X) = Hu(ξ,X)− du(π∗X)du(ξ) +
1
2
g(Ou, Ou)g(ξ, π∗X),

¯ is the generalized Kulkarni-Nomizu product (3.13) of the (1, 1; 0)-tensor bu and the
(2, 0; 0)-tensor g.

Proof. By (3.26), (3.27) and the proof of the theorem 3.7, we obtain the proof. ¤

Remark 3.5. When the horizontal subbundle is choice to be invariant under the
conformal change, THH

u vanish by the lemma 3.3 and we obtain the result of [3].

Corollary 3.9. If (M,F ) and (M, F̃ ) are conformally related Finsler manifolds, then
the associated horizontal Ricci curvatures RicH and R̃icH̃ are related by:

R̃icH̃(ξ, X) =
[
RicH + (4Hu− (m− 2)‖Ou‖2g)g − (m− 2)(Hu − du ◦ du)

]
(ξ, X)

+ (1−m)du
(
Θ(X, ξH)

)
+ g(Θ(X, ξH), Ou)− g(Θ(OHu, ξH), π∗X)

+ Ωaa(ξ, X)(3.31)

where

Ωaa(ξ,X) =
m∑
a

[
A(B(OHu)), ea, ea)g(π∗X, ξ)

]− g(Θ(X, (Ou)H), ξ)

+
m∑
a

[
g

(
Θ(X, ΘH(eH

a , ξH)), ea

)− g
(
Θ(eH

a , ΘH(X, ξH)), ea

)]

+
m∑
a

[
g((∇XΘ)(eH

a , ξH), ea)− g((∇eH
a

Θ)(X, ξH), ea)
]

(3.32)

Proof. By (2.18),(3.29) and the fact that (ẽa = e−uea)a=1...m we have

R̃icH̃(ξ, X) =
m∑
a

R̃(ξ, ẽa, ẽH
a , X)(3.33)

=
m∑
a

e2u
[
R + (bu ¯ g)HH + THH

u

]
(ξ, ẽa, ẽH

a , X)

= RicH(ξ, X) +
m∑
a

[
(bu ¯ g)HH + THH

u

]
(ξ, ea, eH

a , X)

But,

m∑
a

(
bu ¯ g)HH

)
(ξ, ea, eH

a , X) =
m∑
a

[
g(ea, ea)bH

u (ξ,X)− bH
u (ea, X)g(ξ, ea)

]
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+
m∑
a

[
g(ξ, π∗X)bu(ea, eH

a )− g(ea, π∗X)bu(ξ, eH
a )

]

= mbH
u (ξ, X)− bH

u (ξ,X) + g(ξ, π∗X)
m∑
a

[
bu(ea, eH

a )
]

− bH
u (ξ, X)

= (m− 2)bH
u (ξ, X) + g(ξ, π∗X)

m∑
a

[
bu(ea, eH

a )
]

(3.34)

Then noting that,

bH
u (ξ, X) = Hu(ξ,X)− du(π∗X)du(ξ) +

1
2
‖Ou‖2gg(ξ, π∗X),(3.35)

then
m∑
a

bu(ea, eH
a ) =

[
−4Hu +

m− 2
2

‖Ou‖2g
]

(3.36)

we obtain,

m∑
a

(
bu ¯ g)HH

)
(ξ, ea, eH

a , X) =
(
(4Hu− (m− 2)|Ou‖2g)

)
g(ξ,X)

− (m− 2) (Hu − du ◦ du) (ξ, X)(3.37)

by replacing (3.35) and (3.36) in (3.34). Likewise, we have

m∑
a

THH
u (ξ, ea, eH

a , X) =
m∑
a

[
du(Θ(eH

a , ξH))g(ea, π∗X)− du(Θ(X, ξH))g(ea, ea)
]

+
m∑
a

[
g(Θ(X, ξH), ea)du(ea)− g(Θ(eH

a , ξH), π∗X)du(ea)
]

+
m∑
a

[
g(Θ(eH

a , (Ou)H), ea)g(π∗X, ξ)− g(Θ(X, (Ou)H), ea)g(ea, ξ)
]

+
m∑
a

[
g

(
Θ(X, ΘH(eH

a , ξH)), ea

)− g
(
Θ(eH

a , ΘH(X, ξH)), ea

)]

+
m∑
a

[
g((∇XΘ)(eH

a , ξH), ea)− g((∇eH
a

Θ)(X, ξH), ea)
]

= (1−m)du(Θ(X, ξH)) + g(Θ(ξH , X), Ou))− g(Θ(ξH , (Ou)H), π∗X)

+
m∑
a

[
A(B(OHu)), ea, ea)g(π∗X, ξ)

]− g(Θ(X, (Ou)H), ξ)

+
m∑
a

[
g

(
Θ(X, ΘH(eH

a , ξH)), ea

)− g
(
Θ(eH

a , ΘH(X, ξH)), ea

)]

+
m∑
a

[
g((∇XΘ)(eH

a , ξH), ea)− g((∇eH
a

Θ)(X, ξH), ea)
]

(3.38)

Replacing (3.37) and (3.38) in (3.33) we obtain the result. ¤
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Remark 3.6. When the horizontal subbundle is invariant under the conformal change,
the horizontal Ricci curvature behaves like in Riemannian case for Ricci curvature of
Levi-Civita connection.

Corollary 3.10. If (M, F ) and (M, F̃ ) are conformally related Finsler manifolds,

then the associated horizontal scalar curvatures ScalH and ˜Scal
H̃

are related by:

˜Scal
H̃

= e−2u
[
ScalH + 2(m− 1)4Hu− (m− 2)(m− 1)‖Ou‖2g)

]

+ e−2u

[
m∑

b

(2−m)
[
du(Θ(eH

b , eH
b )) + g(Θ(eH

b , OHu), eb)
]
]

+ e−2u




m∑

a,b=1

[
g

(
Θ(eH

b ,ΘH(eH
a , eH

b )), ea

)− g
(
Θ(eH

a , ΘH(eH
b , eH

b )), ea

)]



+ e−2u




m∑

a,b=1

[
g((∇eH

b
Θ)(eH

a , eH
b ), ea)− g((∇eH

a
Θ)(eH

b , eH
b ), ea)

]

(3.39)

Proof. The proof is the same manner as the proof of corollary 3.9. ¤

Remark 3.7. By the above Corollary, we can obtain a good formulation of the
Yamabe-type problem in Finsler geometry.
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