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Abstract. The main purpose of the present paper is to study almost Nor-
den structures on 8-dimensional Walker manifolds. We discuss the inte-
grability and Kähler(holomorphic) conditions for these structures. Nonex-
istence of (non-Kähler)quasi-Kähler structures on almost Norden-Walker
8-manifolds is proved.
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1 Introduction

Let M2n be a pseudo-Riemannian manifold with neutral metric, i.e., with pseudo-
Riemannian metric g of signature (n, n). We denote by =p

q(M2n) the set of all tensor
fields of type (p, q) on M2n. Manifolds, tensor fields and connections are always
assumed to be differentiable and of class C∞.

Let (M2n, ϕ) be an almost complex manifold with almost complex structure ϕ.
This structure is said to be integrable if the matrix ϕ = (ϕi

j) is reduced to constant
form in a certain holonomic natural frame in a neighborhood Ux of every point x ∈
M2n. In order that an almost complex structure ϕ be integrable, it is necessary
and sufficient that it be possible to introduce a torsion-free affine connection ∇ with
respect to which the structure tensor ϕ is covariantly constant, i.e., ∇ϕ = 0. It is
also know that the integrability of ϕ is equivalent to the vanishing of the Nijenhuis
tensor Nϕ ∈ =1

2(M2n). If ϕ is integrable, then ϕ is a complex structure and, moreover,
M2n is a C-holomorphic manifold Xn(C) whose transition functions are holomorphic
mappings.

A metric g is a Norden metric [2] if

g(ϕX, Y ) = g(X, ϕY ),

for any X, Y ∈ =1
0(M2n). Metrics of this type have also been studied under the names:

pure and B-metrics (see [1], [2], [4], [12], [17], [19]). If (M2n, ϕ) is an almost complex
manifold with Norden metric g, we say that (M2n, ϕ, g) is an almost Norden manifold.
If ϕ is integrable, we say that (M2n, ϕ, g) is a Norden manifold.
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In the present paper, we shall focus our attention to the Norden manifolds in
dimension eight. Using the Walker metric we constructive a new Norden-Walker
metrics together with so called proper almost complex structures. Note that an
indefinite Kähler-Einstein metric on an eight-dimensional Walker manifolds has been
recently investigated in [8]. Many authors have also been studied recently on Norden-
Walker manifolds (see [13], [14], [15], [16]).

1.1 Holomorphic (almost holomorphic) tensor fields

Let
∗
t be a complex tensor field on Xn(C). The real model of such a tensor field is a

tensor field t on M2n of the same order such that the action of the structure affinor ϕ
on t does not depend on which vector or covector argument of t ϕ acts. Such tensor
fields are said to be pure with respect to ϕ. They were studied by many authors (see,
e.g., [4], [9], [10], [17]-[19], [21]). In particular, being applied to a (0, q)-tensor field ω,
the purity means that for any X1, ..., Xq ∈ =1

0(M2n), the following conditions should
hold:

ω(ϕX1, X2, ..., Xq) = ω(X1, ϕX2, ..., Xq) = ... = ω(X1, X2, ..., ϕXq).

We define an operator

Φϕ : =0
q(M2n) → =0

q+1(M2n)

applied to the pure tensor field ω by (see [21])

(Φϕω)(X,Y1, Y2, ..., Yq) = (ϕX)(ω(Y1, Y2, ..., Yq))−X(ω(ϕY1, Y2, ..., Yq))

+ω((LY1ϕ)X, Y2, ..., Yq) + ... + ω(Y1, Y2, ..., (LYqϕ)X),

where LY denotes the Lie differentiation with respect to Y .
When ϕ is a complex structure on M2n and the tensor field Φϕω vanishes, the com-
plex tensor field

∗
ω on Xn(C) is said to be holomorphic (see [4], [17], [21]). Thus a

holomorphic tensor field
∗
ω on Xn(C) is realized on M2n in the form of a pure tensor

field ω, such that
(Φϕω)(X, Y1, Y2, ..., Yq) = 0,

for any X, Y1, ..., Yq ∈ =1
0(M2n). Therefore such a tensor field ω on M2n is also called

holomorphic tensor field. When ϕ is an almost complex structure on M2n, a tensor
field ω satisfying Φϕω = 0 is said to be almost holomorphic.

1.2 Holomorphic Norden(Kähler-Norden) metrics

In a Norden manifold a Norden metric g is called a holomorphic if

(Φϕg)(X, Y, Z) = 0,
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for any X, Y, Z ∈ =1
0(M2n), where

(1.1)
(Φϕg)(X, Y, Z) = (ϕX)(g(Y, Z))−X(g(ϕY, Z))

+g((LY ϕ)X,Z)) + g(Y, (LZϕ)X)).

By setting X = ∂k, Y = ∂i, Z = ∂j in the equation (1.1), we see that the components
(Φϕg)kij of Φϕg with respect to a local coordinate system x1, ..., xn may be expressed
as follows:

(Φϕg)
kij

= ϕm
k ∂mgij − ϕm

i ∂kgmj + gmj(∂iϕ
m
k − ∂kϕm

i ) + gim∂jϕ
m
k .

If (M2n, ϕ, g) is a Norden manifold with holomorphic Norden metric g, we say that
(M2n, ϕ, g) is a holomorphic Norden manifold.
In some aspects, holomorphic Norden manifolds are similar to Kähler manifolds. The
following theorem is analogue to the next known result: An almost Hermitian manifold
is Kähler if and only if the almost complex structure is parallel with respect to the
Levi-Civita connection.

Theorem 1.1. [3](For paracomplex version see [11]) For an almost complex manifold
with Norden metric g, the condition Φϕg = 0 is equivalent to ∇ϕ = 0, where ∇ is the
Levi-Civita connection of g.

Kähler-Norden manifold can be defined as a triple (M2n, ϕ, g) which consists of a
manifold M2n endowed with an almost complex structure ϕ and a pseudo-Riemannian
metric g such that ∇ϕ = 0, where ∇ is the Levi-Civita connection of g and the metric
g is assumed to be Nordenian. Therefore, there exist a one-to-one correspondence
between Kähler-Norden manifolds and Norden manifolds with a holomorphic met-
ric. Recall that in such a manifold, the Riemannian curvature tensor is pure and
holomorphic, also the curvature scalar is locally holomorphic function (see [3], [12]).

Remark 1.1. We know that the integrability of the almost complex structure ϕ is
equivalent to the existing a torsion-free affine connection with respect to which the
equation ∇ϕ = 0 holds. Since the Levi-Civita connection ∇ of g is a torsion-free affine
connection, we have: If Φϕg = 0, then ϕ is integrable. Thus, almost Norden manifold
with conditions Φϕg = 0 and Nϕ 6= 0, i.e. almost holomorphic Norden manifolds does
not exist.

2 Norden-Walker metrics

2.1 Walker metric g

A neutral metric g on a 8-manifold M8 is said to be Walker metric if there exists a
4-dimensional null distribution D on M8, which is parallel with respect to g. From
Walker theorem [20], there is a system of coordinates (x1, ..., x8) with respect to which
g takes the local canonical form

(2.1) g = (gij) =
(

0 I4

I4 B

)
,
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where I4 is the unit 4× 4 matrix and B is a 4×4 symmetric matrix whose entries are
functions of the coordinates (x1, ..., x8). Note that g is of neutral signature (+ + + +
− − −−), and that the paralel null 4-plane D is spanned locally by {∂1, ∂2, ∂3, ∂4},
where ∂i = ∂

∂xi , (i = 1, ..., 8).
In this paper, we consider the specific Walker metrics on M8 with B of the form

(2.2) B =




a 0 0 0
0 0 0 0
0 0 b 0
0 0 0 0


 ,

where a, b are smooth functions of the coordinates (x1, ..., x8).

2.2 Almost Norden-Walker 8-manifolds

We can construct various almost complex structures ϕ on a Walker 8-manifold M8

with the metric g as in (2.1), (2.2) so that (M8, ϕ, g) is almost Nordenian. The
following ϕ is one of the simplest examples of such an almost complex structure:

ϕ∂1 = ∂3, ϕ∂2 = ∂4, ϕ∂3 = −∂1, ϕ∂4 = −∂2,

ϕ∂5 = 1
2 (a + b)∂3 − ∂7, ϕ∂6 = −∂8,

ϕ∂7 = − 1
2 (a + b)∂1 + ∂5, ϕ∂8 = ∂6.

In conformity with the terminology of Matsushita (see, [6]-[8]) we call ϕ the proper
almost complex structure. The proper almost complex structure ϕ has the local
components

(2.3) ϕ = (ϕi
j) =




0 0 −1 0 0 0 − 1
2 (a + b) 0

0 0 0 −1 0 0 0 0
1 0 0 0 1

2 (a + b) 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0




with respect to the natural frame {∂i} , i = 1, ..., 8.

Remark 2.1. From (2.3) we see that in the case a = −b, ϕ is integrable.

2.3 Integrability of the structure ϕ

We consider the general case for integrability.
The proper almost complex structure ϕ on almost Norden-Walker manifolds is inte-
grable if and only if

(2.4) (Nϕ)i
jk = ϕm

j ∂mϕi
k − ϕm

k ∂mϕi
j − ϕi

m∂jϕ
m
k + ϕi

m∂kϕm
j = 0.
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Since N i
jk = −N i

kj , we need only consider N i
jk (j < k). By explicit calculation, the

nonzero components of the Nijenhuis tensor are as follows:

(2.5)

N1
15 = N1

37 = N3
17 = −N3

35 = 1
2 (a1 + b1),

N3
57 = 1

4 (a + b)(a1 + b1),

N1
25 = N1

47 = N3
27 = −N3

45 = 1
2 (a2 + b2),

N1
17 = −N1

35 = −N3
15 = −N3

37 = − 1
2 (a3 + b3),

N1
57 = − 1

4 (a + b)(a3 + b3),

N1
27 = N1

45 = N3
25 = N3

47 = 1
2 (a4 + b4),

N1
56 = −N1

78 = N3
58 = −N3

67 = − 1
2 (a6 + b6),

N1
58 = −N1

67 = −N3
56 = N3

78 = − 1
2 (a8 + b8).

From (2.5) we have

Theorem 2.1. The proper almost complex structure ϕ on almost Norden-Walker
manifolds is integrable if and only if the following PDEs hold:

(2.6)
a1 + b1 = 0, a2 + b2 = 0, a3 + b3 = 0,
a4 + b4 = 0, a6 + b6 = 0, a8 + b8 = 0.

Corollary 2.2. The proper almost complex structure ϕ on almost Norden-Walker
manifolds is integrable if and only if

(2.7) a = −b + ξ,

where ξ is any function of x5 and x7 alone.

3 Holomorphic Norden-Walker
(Kähler-Norden-Walker) metrics on (M8, ϕ, g)

Let (M8, ϕ, g) be an almost Norden-Walker manifold. If

(3.1) (Φϕg)kij = ϕm
k ∂mgij − ϕm

i ∂kgmj + gmj(∂iϕ
m
k − ∂kϕm

i ) + gim∂jϕ
m
k = 0,

then by virtue of Theorem 1 ϕ is integrable and the triple (M8, ϕ, g) is called a
holomorphic Norden-Walker or a Kähler-Norden-Walker manifold. Taking account of
Remark 1, we see that almost Kähler-Norden-Walker manifold with condition Φϕg = 0
and Nϕ 6= 0 does not exist.

We will write (2.1) and (2.2) in (3.1). Since (Φϕg)ijk = (Φϕg)ikj , we need only
consider (Φϕg)ijk (j < k). By explicit calculation, the nonzero components of the
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Φϕg tensor are as follows:

(3.2)





(Φϕg)155 = a3, (Φϕg)157 = 1
2
(b1 − a1), (Φϕg)177 = b3,

(Φϕg)255 = a4, (Φϕg)257 = 1
2
(b2 − a2), (Φϕg)277 = b4,

(Φϕg)355 = −a1, (Φϕg)357 = 1
2
(b3 − a3), (Φϕg)377 = −b1,

(Φϕg)455 = −a2, (Φϕg)457 = 1
2
(b4 − a4), (Φϕg)477 = −b2,

(Φϕg)517 = −(Φϕg)715 = 1
2
(a1 + b1), (Φϕg)527 = −(Φϕg)725 = 1

2
(a2 + b2),

(Φϕg)537 = −(Φϕg)735 = 1
2
(a3 + b3), (Φϕg)547 = −(Φϕg)745 = 1

2
(a4 + b4),

(Φϕg)555 = 1
2
(a + b)a3 − a7, (Φϕg)557 = −b5,

(Φϕg)567 = −(Φϕg)756 = 1
2
(a6 + b6), (Φϕg)577 = 1

2
(a + b)b3 + a7,

(Φϕg)578 = −(Φϕg)758 = 1
2
(a8 + b8), (Φϕg)655 = −a8,

(Φϕg)657 = 1
2
(b6 − a6), (Φϕg)677 = −b8, (Φϕg)755 = − 1

2
(a + b)a1 − b5,

(Φϕg)757 = −a7, (Φϕg)777 = − 1
2
(a + b)b1 + b5,

(Φϕg)855 = a6, (Φϕg)857 = 1
2
(b8 − a8), (Φϕg)877 = b6.

From (3.2) we have

Theorem 3.1. The triple (M8, ϕ, g) is Kähler-Norden-Walker if and only if the fol-
lowing PDEs hold:

(3.3)
a1 = a2 = a3 = a4 = a6 = a7 = a8 = 0,

b1 = b2 = b3 = b4 = b5 = b6 = b8 = 0.

Corollary 3.2. (M8, ϕ, g) is Kähler-Norden-Walker if and only if the matrix B in
(2.1) has components

B =




a(x5) 0 0 0
0 0 0 0
0 0 b(x7) 0
0 0 0 0


 .

4 Nonexistence of (non-Kähler) quasi-Kähler-Norden-
Walker structures on (M8, ϕ, g)

The basis class of almost complex manifolds with Norden metric is the class of the
quasi-Kähler manifolds. An almost Norden manifold (M2n, ϕ, g) is called a quasi-
Kähler [2], [5], if

σ
X,Y,Z

g((∇Xφ)Y, Z) = 0,

where σ is the cyclic sum by three arguments.
By setting

(LY ϕ)X = LY (ϕX)− ϕ(LY X) = ∇Y (ϕX)−∇ϕXY − ϕ(∇Y X) + ϕ(∇XY )
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in (1.1), we see that (Φϕg)(X,Y, Z) may be expressed as

(Φϕg)(X,Y, Z) = −g((∇Xϕ)Y,Z) + g((∇Y ϕ)Z, X) + g((∇Zϕ)X, Y ).

If we add (Φϕg)(X,Y, Z) and (Φϕg)(Z, Y, X), then by virtue of g(Z, (∇Y ϕ)X) =
g((∇Y ϕ)Z, X), we find

(Φϕg)(X,Y, Z) + (Φϕg)(Z, Y, X) = 2g((∇Y ϕ)Z, X).

Since (Φϕg)(X,Y, Z) = (Φϕg)(X,Z, Y ), from the last equation we have

(Φϕg)(X, Y, Z) + (Φϕg)(Y,Z, X) + (Φϕg)(Z, X, Y ) = σ
X,Y,Z

g((∇Xϕ)Y, Z).

Thus we have

Theorem 4.1. Let (M2n, ϕ, g) be an almost Norden manifold. Then the Norden
metric g is a quasi-Kähler-Norden if and only if

(4.1) (Φϕg)(X, Y, Z) + (Φϕg)(Y, Z,X) + (Φϕg)(Z,X, Y ) = 0

for any X, Y, Z ∈ =1
0(M2n).

From (4.1) we easily see that a Kähler-Norden manifold is a quasi-Kähler-Norden.
Conversely, quasi-Kähler-Norden manifold is a non-Kähler-Norden, in general. In
particular, let (M8, ϕ, g) be an almost Norden-Walker 8-manifold. Using (3.2) and
(4.1) we have

(4.2)

(Φϕg)155 + (Φϕg)551 + (Φϕg)515 = a3 = 0,

(Φϕg)157 + (Φϕg)571 + (Φϕg)715 = 1
2 (b1 − a1) = 0,

(Φϕg)177 + (Φϕg)771 + (Φϕg)717 = b3 = 0,

(Φϕg)255 + (Φϕg)552 + (Φϕg)525 = a4 = 0,

(Φϕg)257 + (Φϕg)572 + (Φϕg)725 = 1
2 (b2 − a2) = 0,

(Φϕg)277 + (Φϕg)772 + (Φϕg)727 = b4 = 0,
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(Φϕg)355 + (Φϕg)553 + (Φϕg)535 = −a1 = 0,

(Φϕg)357 + (Φϕg)573 + (Φϕg)735 = 1
2 (b3 − a3) = 0,

(Φϕg)377 + (Φϕg)773 + (Φϕg)737 = −b1 = 0,

(Φϕg)455 + (Φϕg)554 + (Φϕg)545 = −a2 = 0,

(Φϕg)457 + (Φϕg)574 + (Φϕg)745 = 1
2 (b4 − a4) = 0,

(Φϕg)477 + (Φϕg)774 + (Φϕg)747 = −b2 = 0,

(Φϕg)557 + (Φϕg)575 + (Φϕg)755 = − 1
2 (a + b)a1 − 3b5 = 0,

(Φϕg)567 + (Φϕg)675 + (Φϕg)756 = 1
2 (b6 − a6) = 0,

(Φϕg)577 + (Φϕg)775 + (Φϕg)757 = 1
2 (a + b)b3 − a7 = 0,

(Φϕg)578 + (Φϕg)785 + (Φϕg)857 = 1
2 (b8 − a8) = 0,

(Φϕg)655 + (Φϕg)556 + (Φϕg)565 = −a8 = 0,

(Φϕg)677 + (Φϕg)776 + (Φϕg)767 = −b8 = 0,

(Φϕg)855 + (Φϕg)558 + (Φϕg)585 = a6 = 0,

(Φϕg)877 + (Φϕg)778 + (Φϕg)787 = b6 = 0,

(Φϕg)555 = 1
2 (a + b)a3 − a7 = 0,

(Φϕg)777 = − 1
2 (a + b)b1 + b5 = 0.

From (3.2) and (4.2) we see that the triple (M8, ϕ, g) is quasi-Kähler-Norden-Walker
if and only if the PDEs in the form (3.3) holds. On the other hand, the equation (3.3)
is a Kähler condition of almost Norden-Walker manifolds. Thus we have

Theorem 4.2. Let (M8, ϕ, g) be an almost Norden-Walker Manifold. Then there
does not exist a (non-Kähler)quasi-Kähler structure on this manifold.

5 Conclusions

A Walker n−manifold is a semi-Riemannian manifold which admits a field of parallel
null r planes with r ≤ n

2 . In this article, we study the almost Norden structures
of a Walker 8-manifold (M, g) which admits a field of parallel null 4-palnes. The
metric g is necessarily of neutral signature (+ + + + − − −−). In [8], the authors
consider Goldberg’s conjecture but for the metrics with neutral signature. They
initially display examples of almost Kahler-Einstein neutral structures on R8 such
that the almost complex structure is not integrable. Then, they obtain the structures
of the same type on the torus T 8. Therefore, it is proved that the neutral version of
Goldberg’s conjecture fails. For such restricted Walker 8-manifolds, we study almost
Norden structures on 8-dimensional Walker manifolds. We discuss the integrability
and Kähler(holomorphic) conditions for these structures. Also, nonexistence of (non-
Kähler)quasi-Kähler structures on almost Norden-Walker 8-manifolds is proved.
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