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Abstract. The Post-Gluskin-Hosszu Theorem (also called Gluskin-Hosszu
or Hosszu-Gluskin Theorem) refers to an n-ary group 〈A, [ ]〉 and a bi-
nary group 〈A, ◦ 〉, defined on the same set A. E. Post stated and proved
this Theorem, while considering instead of the group 〈A, ◦ 〉, the isomor-
phic to it associated group A0. This reveals Post’s basic contribution, and
justifies the inclusion of his name as leading co-author of the Theorem.
Apparently, M. Hosszu was not aware of Post’s result, while L.M. Gluskin
did not directly address n-ary groups in his research, focusing mainly on
a large class on algebraic systems (positional operatives), for which he
obtained a series of notable results, out of these, one of the consequences
being exactly the Post-Gluskin-Hosszu Theorem.
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1 Introduction

According to W. Dörnte [2], we call n-ary group (n ≥ 2) an universal algebra 〈A, [ ]〉
with a given n-ary operation, [ ] : An → A, which is associative, i.e., for all
i ∈ 1, n− 1 in A there holds the associativity condition

[[a1 . . . an]an+1 . . . a2n−1] = [a1 . . . ai[ai+1 . . . ai+n]ai+n+1 . . . a2n−1],

and for all i = 1, n and all a1, . . . , ai−1, ai+1, . . . , an, b ∈ A, the following equations is
solvable in A:

[a1 . . . ai−1xiai+1 . . . an] = b.

We note that Dörnte’s definition leads, for n = 2, to the usual definition of a binary
group.

One can identify n-ary groups within the class of all universal algebras in various
ways. A rather natural procedure is to point out first, among all the universal algebras,
an algebra with an associative n-ary operation, and further to employ the following
result:

Theorem 1.1. Given a universal algebra 〈A, [ ]〉 endowed with an n-ary associative
operation, the following statements are equivalent:
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1) 〈A, [ ]〉 is an n-ary group;

2) (E. Post [8], 1940) for any a1, . . . , an, b ∈ A the following equations are both
solvable in A:

[xa2 . . . an] = b, [a1 . . . an−1y] = b;

3) (E. Post [8], 1940) for any a1, . . . , ai−1, ai+1, . . . , an, b ∈ A and some i ∈ 2, n− 1,
(n ≥ 3) the following equation is solvable in A

[a1 . . . ai−1xai+1 . . . an] = b;

4) (A.N. Skiba, V.I. Tyutin [11], 1985) for any a, b ∈ A, the following equations are
both solvable in A

[x a . . . a︸ ︷︷ ︸
n−1

] = b, [a . . . a︸ ︷︷ ︸
n−1

y] = b;

5) (A.N. Skiba, V.I. Tyutin [11], 1985) for any a, b ∈ A and some i ∈ 2, n− 1
(n ≥ 3) the following equation is solvable in A

[a . . . a︸ ︷︷ ︸
i−1

x a . . . a︸ ︷︷ ︸
n−i

] = b;

6) (A.M. Gal’mak [3, 4], 1991) for any a, b ∈ A the following equations with n − 1
unknowns are both solvable in A

[x1 . . . xn−1a] = b, [ay1 . . . yn−1] = b;

7) (A.M. Gal’mak [3, 4], 1991) for any a, b ∈ A the following equation with n − 2
unknowns (n ≥ 3) is solvable in A

[ax1 . . . xn−2a] = b.

For the necessary preliminaries regarding the theory of n-ary groups, we address the
reader to the monographs [4, 5, 9].

The following result is usually known as the Gluskin-Hosszu or the Hosszu-Gluskin
Theorem:

Theorem 1.2. (L. M. Gluskin [6], M. Hosszu [7]) On any n-ary group 〈A, [ ]〉
one can define the binary operation ◦, a mapping β and an element d ∈ A such that
〈A, ◦ 〉 is a group, β is its automorphism and the following relations hold true:

[x1x2 . . . xn] = x1 ◦ xβ
2 ◦ . . . ◦ xβn−1

n ◦ d, ∀x1, . . . , xn ∈ A;(1.1)

dβ = d;(1.2)

xβn−1
= d ◦ x ◦ d−1, ∀x ∈ A.(1.3)

As well, the converse of the Gluskin-Hosszu Theorem holds true.

Theorem 1.3. (L. M. Gluskin [6], M. Hosszu [7]) If the element d of the group
〈A, ◦ 〉 and its automorphism β satisfy the conditions (1.2) and (1.3), then 〈A, [ ]〉
is an n-ary group with the n-ary operation (1.1).
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A short and elegant proof of this Theorem was provided by E.I. Sokolov [10]. He
proved the Theorem by considering

x ◦ y = [x a . . . a︸ ︷︷ ︸
n−2

y],

β : x → xβ = [āx a . . . a︸ ︷︷ ︸
n−2

],

d = [ā . . . ā︸ ︷︷ ︸
n

],

where ā is the skew element of a, i.e., the solution of the the equation

[x a . . . a︸ ︷︷ ︸
n−1

] = a.

If one fixes in the n-ary group 〈A, [ ]〉 an element a ∈ A, then the operation ◦,
mapping β and element d, can be chosen as

(1.4) x ◦a y = [xa1 . . . an−2y],

the mapping

(1.5) β = βa : x → [axa1 . . . an−2]

and the element

(1.6) d = da = [a . . . a︸ ︷︷ ︸
n

],

where a1 . . . an−2 is a inverse sequence for the element a in the in the n-ary group
〈A, [ ]〉.

Then Theorem 1.2 can be rephrased as follows (see, e.g., [4]):

Theorem 1.4. In any n-ary group 〈A, [ ]〉 and for any a ∈ A the following properties
hold true:

[x1x2 . . . xn] = x1 ◦a xβa

2 ◦a . . . ◦a x
βn−1

a
n ◦a da, x1, . . . , xn ∈ A;(1.7)

dβa
a = da;(1.8)

xβn−1
a = da ◦a x ◦a d−1

a , x ∈ A,(1.9)

where 〈A, ◦a 〉 is a group and βa is its automorphism.

While defining the operation ◦a and the mapping βa, one may consider as inverse
sequence a1 . . . an−2 any of the sequences a . . . a︸ ︷︷ ︸

i−1

ā a . . . a︸ ︷︷ ︸
n−i−2

, i ∈ 1, n− 2, and in par-

ticular, one of the sequences

a . . . a︸ ︷︷ ︸
n−3

ā, or ā a . . . a︸ ︷︷ ︸
n−3

.
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Remark 1.1. The unity of the group 〈A, ◦a 〉 is the element a. Since

da ◦a ā = [[a . . . a︸ ︷︷ ︸
n

]ā a . . . a︸ ︷︷ ︸
n−3

ā] = a,

it follows that d−1
a = ā is the inverse element in the group 〈A, ◦a 〉 for the element da.

If in (1.4)-(1.6) we replace the element a with ā, then we get E.I. Sokolov’s con-
struction.

According to E.Post [8], the group G is called to be covering for the n-ary group
〈A, [ ]〉, if the set A generates the group G, and the n-ary operation [ ] is related to
the binary operation from the group G by the relation:

[x1x2 . . . xn] = x1x2 . . . xn, x1, x2, . . . , xn ∈ A.

This equality shows that the n-ary operation [ ] coincides on the set A with the n-ary
operation, derived from the operation of the group G. For brevity, we shall say that
the n-ary operation [ ] is the derived operation from the group operation of G. The
subset

A0 = {x1x2 . . . xn−1 | x1, x2, . . . , xn−1 ∈ A} ⊆ G

is a normal subgroup of the group G and it is called associated group ([8], [9]) for the
n-ary group 〈A, [ ]〉. If we fix the element a ∈ A, then it is easy to check ([8]) that

A0 = Aa−1 = {xa−1 | x ∈ A},

where the symbol a−1 denotes the inverse of the element a in the group G. The
element a−1 itself can be represented in the group G as the product

a−1 = a1a2 . . . an−2, a1, a2, . . . , an−2 ∈ A,

where a1 . . . an−2 is an arbitrary inverse sequence in the n-ary group 〈A, [ ]〉 for the
element a.

The mapping
ϕa : u → ua, u ∈ A0

provides an isomorphism of the group A0 onto the group 〈A, ◦a 〉, and the mapping

ψa : x → xa−1, x ∈ A

gives an isomorphism of the group 〈A, ◦a 〉 onto the group A0. Hence, in particular,
it follows that for any a, b ∈ A, the groups 〈A, ◦a 〉 and 〈A, ◦b 〉 are isomorphic. E.g.,
the isomorphism between 〈A, ◦a 〉 and 〈A, ◦b 〉 can be defined by

τ = ψaϕb : x → xa−1b = [xa1 . . . an−2b], x ∈ A.

It is clear, that ϕa and ψa are inverse to each other mappings.
Remark 1.2. Since the equalities

[a . . . a︸ ︷︷ ︸
n−1

ā] = a, an−1ā = a
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are equivalent, then ā = (a−1)n−2, where a−1 is the inverse element of the element a
in the group G.

We shall further present an original reformulation of E. Post’s result.

Theorem 1.5 (E. Post [8, p. 245]) Given any abstract 2-group G0 to serve as
associated group, an abstract element s0 subject to the condition sm−1

0 = t0, t0 in G0,
and any automorphism T of G0, which carries t0 into itself, and whose (m − 1)-st
power is the automorphism of G0 under t0, to serve as the automorphism of G0 under
s0, then there is one and only one associated abstract m-group G; conversely, every
m-group can be thus determined.

Having in view Theorem 1.5, V.A. Artamonov noticed ([1]) that Hosszu and
Gluskin’s construction reduces to the covering group of the n-ary group. In order
to prove this, it suffices to put down rigorously Post’s verbose formulations.

The proof of the direct implication of Theorem 1.5 [8, p. 246] (which E. Post calls
the first part starts by defining for any elements

sij = tij s0, tij ∈ G0, j ∈ 1,m

from the coset G = G0s0 a new element

c(si1si2 . . . sim) = ti1s0ti2s0 . . . tims0.

Then it is proved that this satisfies the equality

(1.10) c(si1si2 . . . sim) = (ti1 · T−1ti2 . . . T−(m−1)tim · t0)s0,

where T is the automorphism from the statement of Theorem 1.5, which acts as

T : t → s−1
0 ts0, t ∈ G0,

and where the symbol T−(j−1)tij denotes the image of the element tij under the action
of the mapping T−(j−1). Then it is stated that the coset G = G0s0 is an m-ary group
relative to the m-ary operation c.

If we replace the notation T−1t (which stands for the image of the element t via
the mapping T−1) by tT

−1
and if we denote T−1 = β, then E. Post’s equality (1.10)

gets the form

(1.11) c(si1si2 . . . sim) = (ti1t
β
i2

. . . tβ
m−1

im
t0)s0.

The equality (1.11) differs from (1.1) and (1.7) only by notations and by the factor
s0, which ensures the passing from the element ti1t

β
i2

. . . tβ
m−1

im
t0 of the set G0 to the

element c(si1si2 . . . sim) of the set G = G0s0.

In the following sections we shall thoroughly examine the direct and the inverse
implications of Theorem 1.5, and prove the equivalence of the equalities from Theorem
1.4 with the corresponding equalities from Theorem 1.5.
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2 The reverse implication of Theorem 1.5

For proving the reverse implication from Theorem 1.5 (which was called by E. Post
the second part), we need the following

Lemma 2.1. Let 〈A, [ ]〉 be an n-ary group, let G and A0 be its covering and
associated groups, respectively, let a be a fixed element of A, and let

γ : u → aua−1, ∀u ∈ G,

di = ai, i ∈ {1, 2, . . .}.
Then the following statements hold true:

1) the restriction of γ to A is a automorphism of the n-ary group 〈A, [ ]〉;
2) the restriction of γ to A0 is a automorphism of the group A0;
3) the mapping γ leaves unchanged each element di for all i ∈ {1, 2, . . .};
4) the i-th power of the automorphism γ acts on G as an inner automorphism, defined
by the element di, i.e., uγi

= diud−1
i , u ∈ G.

Proof. 1) It is obvious that the restriction of γ to A is a bijection. But since

[x1x2 . . . xn]γ = a(x1x2 . . . xn)a−1

= (ax1a
−1)(ax2a

−1) . . . (axna−1) = [xγ
1xγ

2 . . . xγ
n]

for all x1, x2, . . . , xn ∈ A, then γ is an automorphism of the n-ary group 〈A, [ ]〉.
2) Since γ is an inner automorphism of the group G and A0 is a normal subgroup

in G, then the restriction of γ to A0 is an automorphism of the group A0.
3) Since dγ

i = a(ai)a−1 = ai = di, then dγ
i = di.

4) Since uγi

= aiu(a−1)i = aiu(ai)−1 = diud−1
i , then uγi

= diud−1
i . ¤

If in Theorem 1.5 one translates the verbose formulations into mathematical for-
mulas, then the converse claim of this Theorem gets the following form.

Theorem 2.1 (E. Post [8]) Let 〈A, [ ]〉 be an n-ary group, let G and A0 be respec-
tively its covering and associate groups. Let a ∈ A and denote

(2.1) b = an−1 ∈ A0.

Let γ be the restriction to A0 of the automorphism γ from Lemma 1.1, i.e.,

(2.2) uγ = aua−1, u ∈ A0.

Then γ is an automorphism of the group A0, and for any x1, x2, . . . , xn ∈ A, and
u ∈ A0, there hold true the following equalities:

[x1x2 . . . xn] = u1u
γ
2 . . . uγn−1

2 ba, where ui = xia
−1, ∀i ∈ 1, n;(2.3)

bγ = b;(2.4)

uγn−1
= bub−1.(2.5)
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Proof. The fact that γ is an automorphism of the group A0 was shown in item 1) of
Lemma 2.1. Further, we have

u1u
γ
2 . . . uγn−1

n ba = (xa−1)a(x2a
−1)a−1aa(x3a

−1)a−1a−1 . . .

. . . an−2(xn−1a
−1) a−1 . . . a−1︸ ︷︷ ︸

n−2

a . . . a︸ ︷︷ ︸
n−1

(xna−1) a−1 . . . a−1︸ ︷︷ ︸
n−1

an−1a =

= x1x2x3 . . . xn−1xn = [x1x2 . . . xn],

which leads to (2.3).
Similarly, by replacing b = dn−1 in item 3) of Lemma 2.1, we get (2.4), and by

replacing i = n− 1 and b = dn−1 in item 4) of Lemma 2.1, it follows (2.5). ¤
Consider 〈A, [ ]〉, G, A0, a, b and γ like in Theorem 2.1. We specified in the

introduction that the inverse element a−1 in the group G coincides with the product
of elements a1a2 . . . an−2, where a1 . . . an−2 is a inverse sequence for the element a of
the n-ary group 〈A, [ ]〉. Hence, taking into account that the n-ary operation [ ]
derived from the operation of the group G, the equalities (1.4)-(1.6) can be re-written
in the following form

x ◦a y = xa−1y,(2.6)

βa : x → axa−1,(2.7)
da = an,(2.8)

where in the right hand sides of the equalities there are present the derivatives of the
elements of the group G.

We shall show, that the equalities (2.3), (2.4) and (2.5) of Theorem 2.1 corre-
spondingly infer the equalities (1.7), (1.8) and (1.9) of Theorem 1.4.

Since the mapping γ is the inner automorphism of the group G which is defined by
the element a, it leaves unchanged the elements a and a−1, i.e. aγ = a, (a−1)γ = a−1.
Moreover, as shown before, the element a−1 coincides with the product of elements
a1a2 . . . an−2, where a1 . . . an−2 is the inverse sequence for the element a in the n-ary
group 〈A, [ ]〉. We shall use as well the equalities (2.6) and (2.8), and also the fact
that γ is an automorphism of the group G. Then from (2.3) we subsequently obtain
the chain of equalities:

[x1x2 . . . xn] = (x1a
−1)(x2a

−1)γ . . . (xna−1)γn−1
an−1a,

[x1x2 . . . xn] = (x1a
−1)xγ

2(a−1)γ . . . xγn−1

n (a−1)γn−1
an,

[x1x2 . . . xn] = x1a
−1xγ

2a−1 . . . xγn−1

n a−1an,

[x1x2 . . . xn] = x1 ◦a xγ
2 ◦a . . . ◦a xγn−1

n ◦a da.

Due to (2.7), the restriction of the mapping γ to A coincides with the mapping βa.
Therefore, the change in the last equality from above of γ into βa leads to the equality
(1.7). In this way, from (2.3), it follows (1.7).

From (2.4) we subsequently obtain

bγa = ba, bγaγ = ba,
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(ba)γ = ba, (an−1a)γ = an−1a, (an)γ = an,

whence, from (2.8) and from the fact that the mappings γ and βa coincide on the set
A, it follows (1.8). In this manner, (2.4), implies (1.8).

Similarly, by replacing u = xa−1 in (2.5), we subsequently obtain

(xa−1)γn−1
= an−1xa−1(a−1)n−1,

xγn−1
(a−1)γn−1

= ana−1xa−1(a−1)n−1,

xγn−1
a−1 = ana−1xa−1(a−1)n−1,

xγn−1
= an ◦a x ◦a (a−1)n−2.

The remarks 1.1 and 1.2 yield (a−1)n−2 = d−1
a , and hence, from the last equalities

and from the fact that the mappings γ and βa coincide on the set A, it follows (1.9).
In this way, (2.5), implies (1.9).

Now we can affirm that Theorem 1.2 is a consequence of Theorem 2.1. As a
matter of fact, the two Theorems are essentially equivalent, since by making all the
reasonings in reverse order, we can see that Theorem 2.1 is a consequence of Theorem
1.2.

3 The direct implication of Theorem 1.5

If in Theorem 1.5 we transform the verbose statements into formulas, then the direct
implication of this Theorem gets the following form.

Theorem 3.1 (E. Post [8]) Let the group G have a subgroup A0 and an element a
such that (2.1) is satisfied; let the subgroup A0 have an automorphism γ, such that
(2.2), (2.4) and (2.5) hold true. Then the coset A = A0a is an n-ary group with the
n-ary operation [ ], derived from the operation of the group G, and (2.3) holds true;
moreover, the set A0 may be represented in the form

(3.1) A0 = {x1x2 . . . xn−1 | x1, x2, . . . , xn−1 ∈ A}.
We shall further prove a more general version of Theorem 1.5.

Theorem 3.2 (E. Post [8]). Let the group G have a subgroup A0 and an element a
such that (2.1) is satisfied; let the subgroup A0 have an automorphism γ, such that
(2.4) and (2.5) hold true. Then 〈A = A0a, [ ]〉 is an n-ary group with the n-ary
operation (2.3). If the action of the automorphism γ is defined by (2.2), then the
n-ary operation [ ] is derived from the operation of the group G; moreover, the set
A0 can be represented in the form (3.1).

Proof. We readily notice that from the equality A = A0a, it follows that a ∈ A,
A0 = Aa−1. Then for any x1, x2, . . . , xn ∈ A, we have

u1 = x1a
−1, u2 = x2a

−1, . . . , un = xna−1 ∈ A0.

Since A0 is a group and γ is its automorphism, then u1u
γ
2 . . . uγn−1

n b ∈ A0, whence
it follows that u1u

γ
2 . . . uγn−1

n ba ∈ A. Since the n-ary operation [ ] is defined by the



On Post-Gluskin-Hosszu Theorem 19

equality (2.3), then [x1x2 . . . xn] ∈ A. As consequence, the set A is closed relative to
the n-ary operation [ ].

By using (2.3), (2.4) and (2.5), then for any i ∈ 0, n− 1, we have

[xi . . . xi[xi+1 . . . xi+n]xi+n+1 . . . x2n−1] =

= u1u
γ
2 . . . uγi−1

i ([xi+1 . . . xi+n]a−1)γi

uγi+1

i+n+1 . . . uγn−1

2n−1ba =

= u1u
γ
2 . . . uγi−1

i (ui+1u
γ
i+2 . . . uγn−1

i+n baa−1)γi

uγi+1

i+n+1 . . . uγn−1

2n−1ba =

= u1u
γ
2 . . . uγi−1

i (ui+1u
γ
i+2 . . . uγn−1

i+n b)γi

uγi+1

i+n+1 . . . uγn−1

2n−1ba =

= u1u
γ
2 . . . uγi−1

i (uγi

i+1u
γi+1

i+2 . . . uγn−1

n uγn

n+1 . . . uγn−1+i

i+n bγi

)uγi+1

i+n+1 . . . uγn−1

2n−1ba =

= u1u
γ
2 . . . uγn−1

n (uγ
n+1 . . . uγi

i+n)γn−1
buγi+1

i+n+1 . . . uγn−1

2n−1ba =

= u1u
γ
2 . . . uγn−1

n (buγ
n+1 . . . uγi

i+nb−1)buγi+1

i+n+1 . . . uγn−1

2n−1ba =

= u1u
γ
2 . . . uγn−1

n buγ
n+1 . . . uγi

i+nuγi+1

i+n+1 . . . aγn−1

2n−1ba =

= u1u
γ
2 . . . uγn−1

n buγ
n+1 . . . uγn−1

2n−1ba,

i.e.,

[x1 . . . xi[xi+1 . . . xi+n]xi+n+1 . . . x2n−1] = u1u
γ
2 . . . uγn−1

n buγ
n+1 . . . uγn−1

2n−1ba.

Hence, we get

[x1 . . . xi[xi+1 . . . xi+n]xi+n+1 . . . x2n−1] = [x1 . . . xj [xj+1 . . . xj+n]xj+n+1 . . . x2n−1]

for any i, j ∈ 0, n− 1, which means exactly the associativity of the n-ary operation
[ ].

For any i ∈ 1, n and any g1, . . . , gi−1, gi+1, . . . , gn and h ∈ A we shall further study
the solvability in 〈A, [ ]〉 of the equation

(3.2) [g1 . . . gi−1tgi+1 . . . gn] = h.

Since we have

g1 = u1a1, . . . , gi−1 = ui−1a, gi+1 = ui+1a, . . . , gn = una, h = wa,

for some u1, . . . , ui−1, ui+1, . . . , un, w ∈ A0, and considering that γ is an automor-
phism of the group A0, it follows that

uγ
2 , . . . , uγi−2

i−1 , uγi

i+1, . . . , uγn−1

n ∈ A0.

The equation
u1u

γ
2 . . . uγi−2

i−1 s uγi

i+1 . . . uγn−1

n b = w,

is solvable within the group A0, i.e., there exists v ∈ A0, such that

u1u
γ
2 . . . uγi−2

i−1 vuγi

i+1 . . . uγn−1

n b = w.
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Denoting by δ the inverse automorphism of the automorphism γ, and setting ui =
vδi−1

, the last equality can be written as

u1u
γ
2 . . . uγi−2

i−1 uγi−1

i uγi

i+1 . . . uγn−1

n b = w,

whence
u1u

γ
2 . . . uγi−2

i−1 uγi−1

i uγi

i+1 . . . uγn−1

n ba = wa,

i.e.,
u1u

γ
2 . . . uγi−2

i−1 uγi−1

i uγi

i+1 . . . uγn−1

n ba = h.

From the last equality, by setting gi = uia, and considering (2.3), we get

[g1g2 . . . gi−1gigi+1 . . . gn] = u1u
γ
2 . . . uγi−2

i−1 uγi−1

i uγi

i+1 . . . uγn−1

n ba = h.

Hence gi is a solution of the equation (3.2). Consequently, according to the definition
of W. Dörnte, 〈A, [ ]〉 is an n-ary group.

By using (2.2) and (2.3), we get

[x1x2 . . . xn] = u1u
γ
2 . . . uγn−1

n ba

= x1a
−1(ax2a

−1a−1)(a2x3a
−1a−2) . . .

. . . (an−2xn−1a
−1a−(n−2))(an−1xna−1a−(n−1))an−1a

= x1x2x3 . . . xn−1xn,

i.e.,
[x1x2 . . . xn] = x1x2 . . . xn.

It follows that the n-ary operation [ ] is derived from the operation of the group G.
Using this fact, and the closedness of the set A relative to the n-ary operation [ ], we
get

x1 . . . xn−1a = [x1 . . . xn−1a] ∈ A

for any x1, . . . , xn−1 ∈ A, whence from the equality A0 = Aa−1 it follows

x1 . . . xn = [x1 . . . xna]a−1 ∈ Aa−1 = A0.

Then
{x1 . . . xn−1 | x1, . . . , xn−1 ∈ A} ⊆ A0.

Since 〈A, [ ]〉 is an n-ary group, then there exist a1, . . . , an−2 ∈ A such that

[aaa1 . . . an−2] = a,

whence using the fact that the n-ary operation [ ] is derived from the operation of
the group G, it follows that

aaa1 . . . an−2 = a.

The last equality infers a−1 = a1 . . . an−2. But since A0 = Aa−1, then

A0 = Aa1 . . . an−2 ⊆ {x1 . . . xn−1 | x1, . . . , xn−1 ∈ A}.
From the proved inclusions, it results (3.1). ¤
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Remark 3.1. Since the n-ary operation [ ] of the n-ary group 〈A = A0a, [ ]〉
from the Theorems 3.1 and 3.2 is derived from the operation of the group G, then the
subgroup of the group G, generated by the coset A = A0a, is the covering group for
the n-ary group 〈A = A0a, [ ]〉. If we remove from the premises of the Theorems 3.1
and 3.2 the assumption that the group G is generated by the coset A = A0a, then we
get two more versions of the direct implication of Theorem 1.5, as described below.

Theorem 3.3 (E. Post [8]) Let the group G have a subgroup A0 and an element a
such that the group G is generated by the coset A = A0a and (2.1) holds true; let γ
be an automorphism of the subgroup A0, such that (2.2), (2.4) and (2.5) are satisfied.
Then 〈A = A0a, [ ]〉 is an n-ary group with the n-ary operation which is defined
by means of (2.3); the covering group of this n-ary group is the group G, and its
associated group is the subgroup A0.

Theorem 3.4 (E. Post [8]) Let the group G have a subgroup A0 and an element a
such that the group G is generated by the coset A = A0a and (2.1) holds true; let γ
be an automorphism of the subgroup A0, such that (2.4) and (2.5) are satisfied. Then
〈A = A0a, [ ]〉 is an n-ary group with the n-ary operation defined by means of (2.3); if
the action of the automorphism γ is defined by the rule (2.2), then the covering group
of this n-ary group is the group G, and its associated group is the subgroup A0.

4 Conclusions

The analysis of the Gluskin-Hosszu Theorem and of the corresponding result of E. Post
(Theorem 1.5) developed in the present work shows that the considered statements
are not only equivalent, but that they practically coincide. Slight differences between
these statements can be explained by the fact that E. Post used in his Theorem the
group A0, while in the Gluskin-Hosszu’s Theorem, there appears a certain isomorphic
copy of the group – e.g., the group 〈A, ◦a 〉, like in Theorem 1.4. The change of the
group A0 with its isomorphic copy leads to the fact that in Gluskin-Hosszu’s Theorem
- unlike in Post’s Theorem - in the equality which states the relation between the n-
ary and the binary operations, the multiplier which allows to define the isomorphism
of the considered groups, is missing.

In this way, we promote and sustain the inclusion of Post’s name in the former
Gluskin-Hosszu name of the Theorem, and provide the necessary scientific grounds
in this matter of historical fairness.
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