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Abstract. A relativistic model for viscoanelastic phenomena in continu-
ous media is proposed its the development is based on the general meth-
ods of the non-equilibrium thermodynamic. It is assumed that in the rest
frame several microscopic phenomena occur which give rise to inelastic
strains and the contributions of these phenomena are introduced as inter-
nal degrees of freedom in Gibbs relation. In the adiabatic case we shall
assume that the internal irreversible process produce a variation of the
rest mass of the generic element and applying the methods of the rel-
ativistic dynamic in variable rest mass the four-dimensional equation of
motion is derived and the explicit expression for energy-momentum tensor
is obtained. We shall limit ourselves to the special relativity.
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1 Introduction

The consideration of relativistic effects in continuum mechanics is of fundamental
importance when the speed of the macroscopic motion is comparable with the speed
of light, like for example in the fluids consisting of particles which are accelerated in
synchrotrons and betatrons, or in the giant and super-giant stars, etc..
Therefore it is necessary to formulate a relativistic theory of continuous media which
conforms to the Einstein’s principles and where an important role is played by the
energy tensor which leads to the equations of motion.
Several authors ([1] - [4]) and see the bibliography in [5]) have been interested in this
issue but usually the definition of the energy tensor is based on a-priori considerations
and the proposed expressions are not univocally given.
Often, various irreversible processes are present in the continuous media, such as
the viscosity and the inelastic behavior of the material, which produce relaxation
phenomena.
In some previous papers ([6]-[9] and see the bibliography in [10]), from a classical
(non-relativistic) point of view, it was proposed a model based on the non-equilibrium
thermodynamics theory. In this theory, it is assumed that as a consequence of several
microscopic phenomena there appears macroscopic inelastic strains (for instance, slip,
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dislocation, etc.) and a viscous flow phenomenon occurs analogously to the viscous
flow of ordinary fluids. An explicit form for the entropy production was derived and
the phenomenological equations were obtained. These phenomena affect the generic
element of the continuous medium and as a consequence have a strong influence on
its structure.
In this paper the generalization of the classical model based on the non-equilibrium
thermodynamics theory to the relativistic case is proposed. This generalization is
based on the assumption that the rest mass of the generic element undergoes a vari-
ation on time due to the presence of the aforementioned irreversible phenomena and
this variation is due to the relativistic principle of equivalence between mass and
energy [11, 12].
In section 2 some basic results of the non-relativistic theory are recalled and it is
introduced the concept of relativistic thermodynamic potential that can be considered
as a generalization of the enthalpy of the ideal fluids.
In section 3, from the principles of special relativity, is deduced the law of variation
of the rest mass and, finally, in section 4 the four-dimensional equation of motion is
derived and the explicit expression for energy-momentum tensor is obtained as well.

2 Non relativistic theory for
viscous-anelastic media

Mechanical processes in continuous media usually are irreversible phenomena and
therefore is necessary to investigate these phenomena with the help of the non-
equilibrium thermodynamics theory.

A very important physical quantity, on which this theory is based, is the entropy.
In the holonomic case [10] it was assumed that the specific entropy s depends on the
internal energy u, on the symmetric strain tensor1 εik and on some variables Zik, so
that

(2.1) s = s(u, εik, Zik) .

The tensor variable Zik is a macroscopic variable whose physical nature can’t be
a-priori specified but it is necessary in order to give a complete description of the
state of the medium. For this reason this tensor is called hidden variable and its
components are hidden variables. In the following we shall only assume that Zik has
some influence on the mechanical properties of the medium and that it is a symmetric
tensor field, i.e.

(2.2) Zik = Zki .

Theorem 2.1 (Gibbs relation). By using (2.1) we can obtain the following Gibbs
relation:

(2.3) T ds = du − ν τ ik
(eq) dεik + ν Gik dZik ,

1In the following it is assumed that the Latin indexes run from 1 to 3. The Einstein’s convection
of sum over repeated indexes is also used.



A relativistic viscoanelastic model 3

where % is the mass density, τ ik
(eq) is the equilibrium stress tensor of thermoelastic

nature [10], T the absolute) temperature and Gik is the affinity tensor, which is defined
as the conjugate of the tensor Zik .

Proof. We define the following tensor fields

(2.4)





τ ik
(eq)

def= − % T
∂

∂εik
s(u, εik, Zik) ,

Gik def= % T
∂

∂Zik
s(u, εik, Zik),

and the absolute temperature

(2.5)
1
T

def=
∂

∂u
s(u, εik, Zik) ,

By using equations (2.4) and (2.5) from (2.1) we obtain the differential ds of s Gibbs
relation:

(2.6) T ds = du − ν τ ik
(eq) dεik + ν Gik dZik ,

being %
def= ν−1. ¤

Of course, from (2.6) one has:

τ ik
(eq) = τki

(eq) Gik = Gki .

Theorem 2.2 (Decomposition of the total strain). By using the generalized
Gibbs thermodynamic potential:

g = u − Ts − ν τ ik
(eq) εik ,

the total strain εik can be splitt in the thermoelastic, ε
(0)
ik , and anelastic part ε

(1)
ik ,

i.e.
εik = ε

(0)
ik + ε

(1)
ik .

Proof. We consider the following generalized Gibbs thermodynamic potential

g = u − Ts − ν τ ik
(eq) εik .

From the equation (2.6) one has

(2.7) d g = − s dT − εik d(ν τ ik
(eq) ) − ν Gik dZik ,

and we get

(2.8)





g = g(T, ν τ ik
(eq), Zik) ,

εik = − ∂

∂ (ν τ ik
(eq))

g(T, ν τ ik
(eq), Zik).
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Thus we have the following tensor-valued function

(2.9) εik = ϕik (T, ν τ ik
(eq), Zik) .

By introducing a reference state of the medium Σ(0) in which we assume T = T0,
τ

(0)ik
(eq) = 0 and ν = ν0 we define the function ϕ

(1)
ik of Zik by

(2.10) ϕ
(1)
ik (Zik) = ϕik (T0, ν0 τ

(0)ik
(eq) , Zik) .

Now, we can define the following strains:

(2.11)





ε
(1)
ik = ϕ

(1)
ik (Zik) ,

ε
(0)
ik = εik − ϕ

(1)
ik (Zik) ,

so that, by virtue of (2.9) and (2.10), from (2.11)2 one has

(2.12) ε
(0)
ik = ϕik (T, ν τ ik

(eq), Zik) − ϕik (T0, ν0 τ
(0)ik
(eq) , Zik) .

This equation shows that if T = T0 and ν τ ik
(eq) = ν0 τ

(0)ik
(eq) then

(2.13) ε
(0)
ik = 0 for all value of Zik .

From (2.11) one has:
εik = ε

(0)
ik + ε

(1)
ik .

and we can say that tensor Zik is a kind of operator which splits the strain into two
parts: the strain ε

(0)
ik which vanishes for all values of Zik if T = T0 and ν τ ik

(eq) =

ν0 τ
(0)ik
(eq) (see (2.12) and (2.13)) and the strain ε

(1)
ik which depends only on Zik (see

(2.11)1 and (2.13)). Tensors ε
(0)
ik and ε

(1)
ik are, respectively, the thermoelastic part and

the anelastic part of the strain.
¤

Assuming that the tensor-valued function ϕ
(1)
ik which occur in (2.11)1 has an in-

verse ψ
(1)
ik , we have:

(2.14) Zik = ψ
(1)
ik (ε(1)

ik ) ,

so that from (2.1) one obtains:

(2.15) s = s(u, εik, ε
(1)
ik ) .

By taking into account Equations (2.2)-(2.5) we can define the following fields:

(2.16)





1
T

=
∂

∂u
s(u, εik, ε

(1)
ik ) ,

τ ik
(eq) = − % T

∂

∂ εik
s(u, εik, ε

(1)
ik ) ,

τ ik
(1) = % T

∂

∂ ε
(1)
ik

s(u, εik, ε
(1)
ik ) .
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From (2.15) and (2.16) one obtains the Gibbs relation in the form

(2.17) T ds = du − ν τ ik
(eq) dεik + ν τ ik

(1) dε
(1)
ik .

Let us now consider the first law of thermodynamic which is:

(2.18) %
du

dt
= −div J (q) + τ ik dεik

dt
,

J (q) being the heat flow and τ ik is the mechanical stress tensor which occurs in the
equations of motion.
Similarly to the definition given for the ordinary fluid we define the viscous stress
tensor τ ik

(vi) as

(2.19) τ ik
(vi)

def= τ ik − τ ik
(eq) ,

and from the Equations (2.17), (2.18) we have

(2.20) %
ds

dt
= − div

(J (q)

T

)
+ σ(s) ,

where

(2.21) σ(s) def=
1
T

[
− 1

T
J (q) · gradT + τ ik

(vi)

dεik

dt
+ τ ik

(1)

dε
(1)
ik

dt

]
,

is the entropy production per unit of volume and per unit of time.
According to the usual procedure of non-equilibrium thermodynamic and by virtue

of the form (2.21), for the entropy production, we obtain the following phenomeno-
logical equations

j
(q)
i = −T−1 Lk

(q)(q)i

∂T

∂xk
+ Lkj

(q)(0)i

dεkj

dt
+ L(q)(1)ikj τkj

(1) ,(2.22)

τ ik
(vi) = −T−1 Likj

(0)(q)

∂T

∂xj
+ Likjn

(0)(0)

dεjn

dt
+ Lik

(0)(1)jn τ jn
(1) ,(2.23)

dε
(1)
ik

dt
= −T−1 Lj

(1)(q)ik

∂T

∂xj
+ Ljn

(1)(0)ik

dεjn

dt
+ L(1)(1)ikjn τ jn

(1) .(2.24)

The tensors L are called phenomenological tensors. The equation (2.22) may be re-
garded as a generalization of the Fourier’s law for the heat conduction. The equations
(2.23) and (2.24) describe, respectively, the viscous flow phenomenon and the irre-
versible process of anelastic flow. The second and third term on the right hand side
of (2.22), the first and third term of (2.23) and the first and second term of (2.24)
represent cross effects among the irreversible phenomena mentioned above.
If the cross effects can be neglected the equations (2.22)-(2.24) become

j
(q)
i = −T−1 Lk

(q)(q)i

∂T

∂xk
,(2.25)

τ ik
(vi) = Lik

(0)(0)jn

dεjn

dt
,(2.26)

dε
(1)
ik

dt
= Ljn

(1)(1)ik τ
(1)
jn ,(2.27)
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Tensors εik, ε
(1)
ik and τ ik

(1) are symmetric functions. The time derivatives dεik/dt and

dε
(1)
ik /dt and the heat flux are odd functions of the microscopic particle velocities while

the stresses τ ik
(vi) and τ ik

(1) and the temperature gradient ∂T/∂xk are even function of
the these velocities so that the Onsager-Casimir reciprocity relations read

Lik
(0)(0)jn = Lki

(0)(0)jn = Lik
(0)(0)nj = Lki

(0)(0)nj ,(2.28)

Ljn
(1)(1)ik = Ljn

(1)(1)ki = Lnj
(1)(1)ik = Lnj

(1)(1)ki .(2.29)

The equations (2.28)-(2.29) reduce the number of the independent components of the
phenomenological tensors.
We call a viscoanelastic medium of order one the medium having the entropy in the
form (2.15) .
The rheological equations obtained from (2.25)-(2.27) were applied to different ma-
terials (polymers: polyisobutylene [8], isomers: m-toluidine [9]) with confirmation of
the experimental data.
The nonholonomic case is studied in [13].
Taking into account the irreversible processes, previously discussed, the following
thermodynamic function can be introduced

(2.30) h
def= u − ν τ ik

(eq) εik + ν τ ik
(1) ε

(1)
ik .

ant it will be called generalized enthalpy.
By neglecting the external heat flux we have the adiabatic process, i.e. J (q) = 0 so
that from the Equations (2.18),(2.30) we have

dh

dt
= ν

(
τ ik dεik

dt
+ %

dΛ
dt

)
,

where
Λ def= ν

(
τ ik
(1) ε

(1)
ik − τ ik

(eq) εik

)
.

Hence, in adiabatic case, the substantial variation with respect to time of thermody-
namic potential h depends on the substantial variations with respect to time of both
the total strain and Λ .

3 Relativistic considerations

Let K an arbitrary given inertial frame in which a four-dimensional coordinate system
{x0 = c t, x1, x2, x3} are introduced where c is the velocity of light, xi (i = 1, 2, 3) are
the Euclidean coordinates in the ordinary flat space and t is the time.

Let K ′ (x′0 = c t′, x′i) the rest frame of the generic element M and d
◦
m =

◦
% d

◦
V is its

rest mass.
If in K ′ no external heat flux occurs, i.e. the motion of M in K ′ is adiabatic, we have

(3.1)
d

dt′
d
◦
m =

d

dt′

(◦
% d

◦
V

)
= 0 .
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By virtue of the relation

(3.2)
d

dt′
d
◦
V = divv′ d

◦
V (v′ = 0 , divv′ =

∂v′i

∂x′i
6= 0) ,

from (3.1) one obtains

(3.3)
d
◦
%

dt′
+

◦
% divv′ =

∂
◦
%

∂t′
+ div (

◦
%v′) = 0 .

The quantity
◦
% in (3.3) plays the role of the invariant rest mass density which was

introduced by Fock [12] in the adiabatic case of ideal fluids.
We consider in K the metric

(3.4) d s2 = c2(dt)2− (dx1)2− (dx2)2− (dx3)2 = eαδα
β dxα dxβ (α, β = 0, 1, 2, 3) ,

where δα
β is the Kronecker’s tensor and eα is the Eisenberg’s symbol (e0 = 1 , e1 =

e2 = e3 = −1 ) which is not participating into the sum.
The four-velocity of the particle M in K is

(3.5) Wσ =
dxσ

ds
=

(
α ;

α

c
v
)

; α =
(
1− v2

c2

)− 1
2

.

and in K ′ the relation (3.5) becomes

(3.6) W ′σ =
(
1 ;

1
c
v′

)
, , divv′ =

∂v′i

∂x′i
6= 0) ,

so that the equation (3.3) can be written as

(3.7)
∂

∂x′σ

(◦
%W ′σ

)
= 0,

which in K becomes

(3.8)
∂

∂xσ

(◦
%W σ

)
= 0 .

4 The relativistic equations of motion

Let be d
◦
E =

◦
h d

◦
m the total energy in K ′, rest frame of the generic element M , in

which

(4.1)





◦
h =

◦
u +

◦
Λ ,

d
◦
h

dt′
=

◦
ν

(◦
τ

ik d
◦
εik

dt′
+

◦
%

d
◦
Λ

dt′

)
,

where

(4.2)
◦
Λ =

◦
ν
( ◦

τ
ik

(1)

◦
ε
(1)

ik − ◦
τ

ik

(eq)

◦
εik

)
.
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According to the theory of relativity, and in particular to the equivalence energy-mass,
we have

(4.3) dm̄◦ =
d
◦
E

c2
=

1
c2

◦
h d

◦
m .

The equation (4.3) gives the variation of the rest mass d
◦
m of the element M in K ′

due to relativistic effects of the mechanical energy d
◦
E.

By putting

(4.4) dm̄◦ =
◦
µd

◦
V ,

from (4.3) we obtain

(4.5)
◦
µ =

◦
H

c2
,

where
◦
H

def=
◦
%
◦
h is the generalized enthalpy per unit of volume of the element M in

K ′.
By using Equations (3.1),(4.1)2, from (4.3) one obtains

(4.6)
d

dt′
(dm̄◦) =

1
c2

d
◦
h

dt′
d
◦
m =

1
c2

(◦
τ

ik d
◦
εik

dt′
+

◦
%

d
◦
Λ

dt′

)
d
◦
V ,

Like in K ′ one has
d

ds′
=

1
c

d

dt′
and x′0 = ct′, so that the Equation (4.6) can be

written as

(4.7)
d

ds′
(dm̄◦) =

1
c2

(◦
τ

ik d
◦
εik

dx′0
+

◦
%

d
◦
Λ

dx′0

)
d
◦
V .

The equation of motion for dm̄◦ is

(4.8)
d

ds′
(dm̄◦W ′i) =

1
c2

∂
◦
τ

ik

∂x′k
d
◦
V ,

where

(4.9)
◦
τ

ik
=

◦
τ

ik

(eq) +
◦
τ

ik

(vi) .

By putting 2

(4.10)





f ′0 =
1
c2

[◦
τ

ik d
◦
εik

dx′0
+

◦
%

d
◦
Λ

dx′0

]
(4.1)2=

◦
%

c2

∂
◦
h

∂x′0
,

f ′i =
1
c2

∂
◦
τ

ik

∂x′k
,

2in Σ′ we have d
dt′ = ∂

∂t′
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the equations (4.7) and (4.8), according to (3.6) can be written in the following form

(4.11)
d

ds′
(dm̄◦W ′σ) = f ′σ d

◦
V .

Since dm̄◦ and d
◦
V are invariants, the Equation (4.11) assumes the form

(4.12)
d

ds
(dm̄◦Wσ) = fσ d

◦
V .

In order to determine the expression of fσ we consider the following Lorentz trans-
formation between K and K ′

(4.13) xσ = a·σν x′ν = a·σ0 x′0 + a·σi x′i ,

where a·σν = eν aνσ and Wσ = a0 σ, with

(4.14)





a00 =
1√

1− v2

c2

= α = W 0 ,

a0i = − ai0 =
α

c
vi = W i ,

aik = −δik − (α− 1)
vivk

v2
.

We have

fσ = f ′ν
∂xσ

∂x′ν
= f ′0

∂xσ

∂x′0
+ f ′i

∂xσ

∂x′i
=

=
1
c2

(◦
%

∂
◦
h

∂x′0
Wσ +

∂
◦
τ

ik

∂x′k
a·σi

)
(3.8)
=

=
1
c2

(∂(
◦
H W ν)
∂xν

Wσ +
∂(
◦
τ

ik
a· νk a·σi )
∂xν

)
.

(4.15)

By taking into account the well know relation

(4.16)
d

ds
d
◦
V =

∂W ν

∂xν
d
◦
V ,

the first member of the equation (4.12) can be written as

(4.17)
d

ds
(dm̄◦Wσ) =

d

ds
(
◦
µd

◦
V W σ) =

∂(
◦
µW σW ν)

∂xν
d
◦
V ,

and according to Equations (4.5),(4.17),(4.15) from (4.12) we have the following ten-
sorial equation

(4.18)
∂Tσν

∂xν
= Θσ ,

where

(4.19)





T σν =
◦
H W σ W ν − ◦

τ
ik

a·σi a· νk ,

Θσ =
∂(

◦
H W ν)
∂xν

Wσ .

The tensor T σν is the energy momentum tensor for the relativistic visco-anelastic
medium.
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Conclusions

In this paper it is has been a relativistic model for the classical viscoanelastic media.
In particular, the energy tensor has been explicitly computed in the hypothesis that
irreversible processes are considered to be responsible for the variation of the rest
mass of the generic element of the continuum. The relativistic equation of motion is
derived.

References

[1] S. Hayward, Relativistic thermodynamics, Class quantum Grav. 15 (1998), 3147–
3162.

[2] R. Jackiw, V. P. Nair, S. Y. Pi and A. P. Polychronakos, Perfect fluid theory and
its extensions, J. Phys. A : Math. Gen. 37 (2004), 327–432.

[3] G. Ferrarese and D. Bini, Introduction to relativistic continuum mechanics, Lect.
Notes Phys. 727, Spinger-Verlag 2008.

[4] V. Ciancio, F. Farsaci, Relativistic elastic tensor, Appl. Sci. 13 (2011), 21–29.
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