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Abstract. In this paper, we study the properties of special (α, β)-metric
αe

β
α + β, the Randers change of exponential metric. We find a necessary

and sufficient condition for this metric to be locally projectively flat and
we prove the conditions for this metric to be of Berwald and Douglas type.
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1 Introduction

The Matsumoto metric is an interesting (α, β)-metric introduced by using gradient
of slope, speed and gravity in [5]. This metric formulates the model of a Finsler
space. Many authors [1, 5, 10], etc) have studied this metric by different perspec-
tives. Projectively flat Finsler spaces are regular distance functions with straight
geodesics. An extensive study of projectively flat Finsler metrics was taken up by
authors [6, 7, 9, 11, 12, 13, 14] and [15]. Another interesting and important class of
Finsler spaces is the class of Berwald spaces. Berwald spaces are the Finsler spaces
with linear connections. As a generalization of Berwald space S. Bácsó and M. Mat-
sumoto [2] introduced the notion of a Douglas space. A Douglas space is a Finsler
space where the projectively invariant Douglas tensor vanishes.

The purpose of the present paper is to investigate the special (α, β)-metric αe
β
α +β

which is considered to be Randers change of exponential metric. After preliminaries
in section 2, we prove the following in section 3:

The (α, β)-metric F = αe
β
α + β is locally projectively flat if and only if:

(i) β is parallel with respect to α,
(ii) α is locally projectively flat, i.e., of constant curvature.

In section 4, we prove the conditions that the Finsler space Fn with the metric
F = αe

β
α + β is a Berwald space and a Douglas space.
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2 Preliminaries

Let α =
√

aij(x)yiyj be a Riemannian metric, β = biy
j a 1-form and let F =

αφ(s), s = β
α , where φ = φ(s) is a positive C∞ function defined in a neighborhood of

the origin s = 0. It is well known that F = αφ(β
α ) is a Finsler metric for any α and

β with b =‖ β ‖α< b0 if and only if

φ(s) > 0, φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0, (| s |≤ b < b0).

By taking b = s, we obtain

φ(s)− sφ′(s) > 0, (| s |< b0).

Let Gi and Gi
α denote the spray coefficients of F and α respectively, given by

Gi =
gil

4
{
[F 2]xkylyk − [F 2]xk

}
, Gi

α =
ail

4
{
[α2]xkylyk − [α2]xk

}
,

where gij := 1
2 [F 2]yiyj and

(aij) = (aij)−1, Fxk =
∂F

∂xk
, Fyk =

∂F

∂yk
.

For an (α, β)-metric L(α, β) the space Rn = (Mn, α) is called associated Riemannian
space to the Finsler space Fn = (Mn, L(α, β)). The covariant differentiation with
respect to the Levi-Civita connection γi

jk(x) of Rn is denoted by (; ). We have the
following [3]:

Lemma 2.1. The spray coefficients Gi are related to Gi
α by

Gi = Gi
α + αQsi

0 + J(−2αQs0 + r00)
yi

α
+ H(−2αQs0 + r00){bi − yi

α
},(2.1)

where

Q : =
φ′

φ− sφ′
,

J : =
(φ− sφ′)φ′

2φ((φ− sφ′) + (b2 − s2)φ′′)
,

H : =
φ′′

2((φ− sφ′) + (b2 − s2)φ′′)
,

where sl0 = sliy
i, s0 = sl0b

l, r00 = rijy
iyj , rij = 1

2 (bi;j + bj;i), sij = 1
2 (bi;j − bj;i), ri

j =
airrrj , s

i
j = airsrj , rj = brr

r
j , sj = brs

r
j , b

i = airbr and b2 = arsbrbs.

It is well-known that [4] a Finsler metric F = F (x, y) on an open subset U ⊂ Rn

is projectively flat if and only if

Fxkylyk − Fxl = 0.(2.2)

By (2.2), we have the following lemma [13]:
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Lemma 2.2. An (α, β)- metric F = αφ(s), where s = β
α , is projectively flat on an

open subset U ⊂ Rn if and only if

(amlα
2 − ymyl)Gm

α + α3Qsl0 + Hα(−2αQs0 + r00)(blα− syl) = 0.(2.3)

The functions Gi(x, y) of Fn with an (α, β)-metric are written in the form [8]

2Gi = γi
00 + 2Bi,(2.4)

Bi =
αLβ

Lα
si
0 + C∗

{
βLβ

αL
yi − αLαα

Lα

(
1
α

yi − α

β
bi

)}
,(2.5)

provided β2 +Lα +αγ2Lαα 6= 0, where γ2 = b2α2−β2, α = ∂L
∂α , Lβ = ∂L

∂β , Lαα = ∂Lα

∂α ,

the subscript 0 means contraction by yi and we put

C∗ =
αβ (r00Lα − 2αs0Lβ)
2 (β2Lα + αγ2Lαα)

.

We shall denote the homogeneous polynomials in (yi) of degree r by hp(r) for brevity.
For example, γi

00 is hp(2). From (2.4) the Berwald connection BΓ = (Gi
jk, Gi

j , 0) of
Fn with an (α, β)-metric is given by [8]

Gi
j = ∂̇jG

i = γi
0j + Bi

j ,

Gi
jk = ∂̇kGi

j = γi
jk + Bi

jk,

where we put Bi
j = ∂̇jB

i and Bi
jk = ∂̇kBi

j . On account of [8], Bi
jk are determined by

LαBk
jiy

jyt + αLβ(Bk
jibt − bj;i)yj = 0,(2.6)

where yk = aikyi. A Finsler space Fn with an (α, β)-metric is a Douglas space if and
only if Bij ≡ Biyj − bjyi is hp(3) [2]. From (2.5) Bij is written as follows:

Bij =
αLβ

Lα
(si

0y
j − sj

0y
i) +

α2Lαα

βLα
C∗(biyj − bjyi).(2.7)

3 Projectively flat (α, β)-metric

In this section, we consider the metric F = αe
β
α + β which is obtained by the

Randers change of the Exponential metric.

F = αφ(s), φ(s) = (es + s), s =
β

α
,(3.1)

Let b0 > 0 be the largest number such that

φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0, (|s| ≤ b < b0),

that is,

es(1− s + b2 − s2) > 0, (| s |≤ b < b0)
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Lemma 3.1. F = αe
β
α + β is a Finsler metric, iff ‖β‖α < 1.

Proof. If F = αe
β
α + β is a Finsler metric, then

es(1− s + b2 − s2) > 0, |s| ≤ b < b0.

Let s = b, then we get b < 1, ∀ b < b0. Let b → b0, then b0 < 1. So ‖β‖α < 1. Now, if

|s| ≤ b < 1,

then

es(1− s + b2 − s2) ≥ es(1− s) > 0. (because b2 − s2 ≥ 0)

Thus F = αe
β
α + β is a Finsler metric. ¤

By Lemma (2.1), the spray coefficients Gi of F are given by (2.1) with

Q =
α(1 + e

β
α )

(α− β)e
β
α

,

J =
α2(α− β)(1 + e

β
α )

2(αe
β
α + β)(α2 − αβ + α2b2 − β2)

H =
α2

2(α2 − αβ + α2b2 − β2)
.

Equation (2.3) is reduced to the following form:

(amlα
2 − ymyl)Gm

α +
α4(1 + e

β
α )

(α− β)e
β
α

sl0

+
α3

2(α2 − αβ + α2b2 − β2)

[
−2α2s0(1 + e

β
α )

(α− β)e
β
α

+ r00

] (
blα− β

α
yl

)
= 0.(3.2)

We use the following result [15]:

Lemma 3.2. If (amlα
2 − ymyl)Gm

α = 0, then α is projectively flat.

Proof. If (amlα
2 − ymyl)Gm

α = 0, then

α2amlG
m
α = ymGm

α yl,

then there is a η = η(x, y) such that ymGm
α = α2η, we get

amlG
m
α = ηyl.(3.3)

Contracting Eq. (3.3) with ail yields Gi
α = ηyi, and thus α is projectively flat. ¤

Theorem 3.3. The (α, β)-metric F = αe
β
α + β is locally projectively flat iff

(i) β is parallel with respect to α
(ii) α is locally projectively flat, i.e., of constant curvature.
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Proof. Suppose that F is locally projectively flat. First, we rewrite (3.2) as a poly-
nomial in yi and α. This gives

[
(−4α2β + 2β3 − 2b2α2β)e

β
α (amlα

2 − ymyl)Gm
α

+ (2α6 + 2b2α6 − 2α4β2)(1 + e
β
α )sl0

− 2α4s0(1 + e
β
α )(blα

2 − βyl)− α2βe
β
α r00(blα

2 − βyl)
]

+ α

[
(2α2 + 2b2α2)e

β
α (amlα

2 − ymyl)Gm
α

− 2α4β(1 + e
β
α )sl0 + α2e

β
α r00(blα

2 − βyl)
]

= 0,

or U + αV = 0,(3.4)

where

U = −4α2β + 2β3 − 2b2α2β)e
β
α (amlα

2 − ymyl)Gm
α

+ (2α6 + 2b2α6 − 2α4β2)(1 + e
β
α )sl0

− 2α4s0(1 + e
β
α )(blα

2 − βyl)− α2βe
β
α r00(blα

2 − βyl)

and

V = (2α2 + 2b2α2)e
β
α (amlα

2 − ymyl)Gm
α

− 2α4β(1 + e
β
α )sl0 + α2e

β
α r00(blα

2 − βyl).

Now, (3.4) is a polynomial in yi, such that U and V are rational in yi and α is
irrational. Therefore, we must have

U = 0 and V = 0,

which implies that

(3.5)

[−2α2β(2 + b2) + 2β3]e
β
α (amlα

2 − ymyl)Gm
α

= −2α4[α2(1 + b2)− β2](1 + e
β
α )sl0

+2α4s0(1 + e
β
α )(blα

2 − βyl) + α2βe
β
α r00(blα

2 − βyl)

and

2(1 + b2)e
β
α (amlα

2 − ymyl)Gm
α = 2α2β(1 + e

β
α )sl0 − e

β
α r00(blα

2 − βyl)(3.6)

Contracting (3.5) and (3.6) with bl, we get

(3.7)

[−2α2β(2 + b2) + 2β3]e
β
α (bmα2 − ymβ)Gm

α

= −2α4[α2(1 + b2)− β2](1 + e
β
α )s0

+2α4s0(1 + e
β
α )(b2α2 − β2) + α2βe

β
α r00(b2α2 − β2)
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and

2(1 + b2)e
β
α (bmα2 − ymβ)Gm

α = 2α2β(1 + e
β
α )s0 − e

β
α r00(b2α2 − β2)(3.8)

(3.7) and (3.8)×α2β yields

β(bmα2 − ymβ)Gm
α = α4(1 + e−

β
α )s0.(3.9)

The polynomial α4(1+e−
β
α ) is not divisible by β and β is not divisible by α4(1+e−

β
α ).

Thus s0 is divisible by β and (bmα2−ymβ)Gm
α is divisible by α4(1+e−

β
α ). Therefore,

there exist scalar functions τ = τ(x), χ = χ(x) such that

s0 = τβ,(3.10)

(bmα2 − ymβ)Gm
α = χα4(1 + e−

β
α ).(3.11)

Then (3.9) becomes
βχα4(1 + e−

β
α ) = α4(1 + e−

β
α )τβ.

Thus τ = χ. Then (3.7) becomes

χ(1 + e−
β
α )[2α4(1 + b2)− 2α2β2] = −r00(b2α2 − β2).(3.12)

Since (b2α2 − β2) is not divisible by (1 + e−
β
α )[2α4(1 + b2) − 2α2β2], it follows from

(3.12) that χ = 0. By (3.10), (3.11) and (3.12), we get

s0 = 0,(3.13)

(bmα2 − ymβ)Gm
α = 0,(3.14)

and r00 = 0.(3.15)

Then substituting (3.13) and (3.14) into (3.6), we get

(3.16) sl0 = 0.

Then by (3.14) and Lemma (3.2), α is projectively flat. And by (3.15) and (3.16),
bi;j = 0. i., β is parallel with respect to α.
Conversely, if β is parallel with respect to α and α is locally projectively flat, then by
Lemma (2.2), we can easily see that F is locally projectively flat. ¤

4 Berwald and Douglas spaces

In this section, we find the condition for a Finsler space Fn with (α, β)-metric (3.1)
to be a Berwald space. In the n-dimensional Finsler space Fn with an (α, β)-metric
(3.1), we have

Lα =
(α− β)e

β
α

α
, Lβ = 1 + e

β
α ,

Lαα =
β2

α3
e

β
α , Lββ =

e
β
α

α
.(4.1)
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Substituting (4.1) into (2.6), we have

αe
β
α Bt

jiy
jyt − βe

β
α Bt

jiy
jyt + α2(1 + e

β
α )(Bt

jibt − bj;i)yj = 0(4.2)

Assume that Fn is a Berwald space, that is, Gi
jk = Gi

jk(x). Then we have Bt
ji =

Bt
ji(x). Since α is irrational in (yi), from (4.2), we have

e
β
α Bt

jiy
jyt = 0,(4.3)

−βe
β
α Bt

jiy
jyt + α2(1 + e

β
α )(Bt

jibt − bj;i)yj = 0.(4.4)

From (4.3) and (4.4), we obtain

Bt
jiy

jyt = 0 and (Bt
jibt − bj;i)yj = 0.

which yields
Bt

jiath + Bt
hiatj = 0 Bt

jibt − bj;i = 0.

Thus by the well known Christoffel process we get Bt
ji = 0. Therefore we have

Theorem 4.1. The Randers change of the Exponential metric (3.1) provides a Berwald
metric if and only if bj;i = 0, and then the Berwald connection is Riemannian
(γi

jk, γi
0j , 0).

Now, we consider the condition for a Finsler space Fn with an (α, β)-metric (3.1)
to be a Douglas space. Substituting (4.1) into (2.7), we obtain

2(α− β)e
β
α (α2 − αβ + b2α2 − β2)Bij

− 2α2(1 + e
β
α )(α2 − αβ + b2α2 − β2)(si

0y
j − sj

0y
i)

− α2
{

(α− β)e
β
α r00 − 2α2s0(1 + e

β
α )

}
(biyj − bjyi) = 0.(4.5)

Suppose that Fn is a Douglas space, that is Bij are hp(3). Separating (4.5) in rational
and irrational terms of yi, because α is irrational in (yi), we have

(4.6)

[
(−4α2β + 2β3 − 2b2α2β)e

β
α Bij

+(1 + e
β
α )(−2α4 − 2b2α4 + 2α2β2)(si

0y
j − sj

0y
i)

+ α2βe
β
α r00(biyj − bjyi) + 2α4s0(1 + e

β
α )(biyj − bjyi)

]

+α
[
e

β
α Bij(2α2 + 2b2α2) + 2α2β(1 + e

β
α )(si

0y
j − sj

0y
i)

− α2e
β
α r00(biyj − bjyi)

]
= 0.

Hence the equation (4.6) is divided into two equations as follows:

(4.7)

(−4α2β + 2β3 − 2b2α2β)e
β
α Bij

+(1 + e
β
α )(−2α4 − 2b2α4 + 2α2β2)(si

0y
j − sj

0y
i)

+α2βe
β
α r00(biyj − bjyi) + 2α4s0(1 + e

β
α )(biyj − bjyi) = 0
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and

e
β
α Bij(2α2 + 2b2α2) + 2α2β(1 + e

β
α )(si

0y
j − sj

0y
i)− α2e

β
α r00(biyj − bjyi) = 0(4.8)

Eliminating Bij from (4.7) and (4.8), we obtain

A(si
0y

j − sj
0y

i) + B(biyj − bjyi) = 0(4.9)

where

A =
(−2α4 − 4b2α4 + 6α2β2 − 2b4α4 + 4b2α2β2 − 2β4

)
(1 + e

β
α ),(4.10)

B = e
β
α r00(β3 − α2β) + 2α4(1 + b2)(1 + e

β
α )s0.(4.11)

Transvecting (4.9) by biyj , we get

As0α
2 + B(b2α2 − β2) = 0.(4.12)

The term of (4.12) which does not contain α2 is −β5r00. Hence there exists hp(5) : v5

such that

−β5r00 = α2V5(4.13)

Here we consider two cases:

(i) V5 = 0,
(ii) V5 6= 0, α2 6≡ 0 (mod β).

Case (i). When V5 = 0, this leads to r00 = 0. Therefore, substituting r00 = 0 into
(4.12), we get

s0(A + γ2B1) = 0,(4.14)

where

B1 = 2α2(1 + b2)(1 + e
β
α ).

If A + γ2B1 = 0, then the term of A + γ2B1 = 0 which does not contain α2 is −4β4.
Thus there exists hp(2) : V2 such that

−4β4 = α2V2,

Hence we have V2 = 0, which leads to a contradiction. Therefore, we must have
A + γ2B1 6= 0. Therefore, we have s0 = 0 from (4.14). Substituting s0 = 0 and
r00 = 0 into (4.9), we get

A(si
0y

j − sj
0y

i) = 0.(4.15)

If A = 0, then from (4.10), we have

A =
(−2α4 − 4b2α4 + 6α2β2 − 2b4α4 + 4b2α2β2 − 2β4

)
(1 + e

β
α ) = 0.(4.16)



102 Gauree Shanker and Ravindra

The term of (4.16) which does not contain α2 is −4β4. Thus there exists hp(2) : V2

such that

−4β4 = α2V2,

from which we have V2 = 0. It is a contradiction, therefore we must have A 6= 0.
Therefore, from (4.15) we obtain

si
0y

j − sj
0y

i = 0.

Transvecting the above equation by yj gives si
0 = 0, which imply sij = 0. Conse-

quently, we have rij = sij = 0, that is, bi;j = 0.
Case (ii). The equation (4.13) shows that there exists a function k = k(x) satisfying

r00 = k(x)α2.

Thus we have the term of (4.12) does not contain α2 is included in the term −β5r00.
Hence we get r00 = 0. From (4.15), we have A(si

0y
j − sj

0y
i) = 0. If A = 0, then it is a

contradiction. Hence A 6= 0. Therefore, we obtain si
0y

j − sj
0y

i = 0. Transvecting this
equation by yj we get si

0 = 0. Hence both the cases (i) and (ii) lead to rij = 0 and
sij = 0, that is, bi;j = 0.
Conversely if bi;j = 0, then Fn is a Berwald space, so Fn is a Douglas space.
Thus we have the following

Theorem 4.2. The Randers change of exponential metric is of Douglas type if and
only if α2 6≡ 0 (mod β) and bi;j = 0.

From Theorem 4.1 and Theorem 4.2, we have

Theorem 4.3. If the Randers change of exponential metric is of Douglas type, then
it is Berwaldian.
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