On Randers change of exponential metric
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Abstract. In this paper, we study the properties of special (¢, §)-metric
aes + 0, the Randers change of exponential metric. We find a necessary
and sufficient condition for this metric to be locally projectively flat and
we prove the conditions for this metric to be of Berwald and Douglas type.
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1 Introduction

The Matsumoto metric is an interesting (a, 3)-metric introduced by using gradient
of slope, speed and gravity in [5]. This metric formulates the model of a Finsler
space. Many authors [1, 5, 10], etc) have studied this metric by different perspec-
tives. Projectively flat Finsler spaces are regular distance functions with straight
geodesics. An extensive study of projectively flat Finsler metrics was taken up by
authors [6, 7, 9, 11, 12, 13, 14] and [15]. Another interesting and important class of
Finsler spaces is the class of Berwald spaces. Berwald spaces are the Finsler spaces
with linear connections. As a generalization of Berwald space S. Bacsé and M. Mat-
sumoto [2] introduced the notion of a Douglas space. A Douglas space is a Finsler
space where the projectively invariant Douglas tensor vanishes.

The purpose of the present paper is to investigate the special («, 3)-metric aen +0
which is considered to be Randers change of exponential metric. After preliminaries
in section 2, we prove the following in section 3:

The (a, B)-metric F' = aen + B is locally projectively flat if and only if:
(i) B is parallel with respect to a,

(ii) « is locally projectively flat, i.e., of constant curvature.

In section 4, we prove the conditions that the Finsler space F™ with the metric
8 .
F = aea + [ is a Berwald space and a Douglas space.
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2 Preliminaries

Let a = +/a;j(x)y'y’ be a Riemannian metric, 3 = b;y’ a 1-form and let F =
ad(s), s = g, where ¢ = ¢(s) is a positive C*° function defined in a neighborhood of

the origin s = 0. It is well known that F' = a¢(§) is a Finsler metric for any « and
B with b =|| B ||a< b if and only if

B(s) >0, ¢(s) —s¢'(s) + (b* —s3)¢"(5) >0, (] s]<b<bp).
By taking b = s, we obtain

d(s) —s¢'(s) >0, (] s]|<bo).
Let G* and G°, denote the spray coefficients of F' and « respectively, given by

il il
G = L APyt = [Far}, Gh= T {0yt — 0%}

4
where g;; := 5[F?],i,s and

oF oF

ij -1
(@) = (@)™ B = g b = g

For an (a, 8)-metric L(«, 3) the space R™ = (M™, «) is called associated Riemannian
space to the Finsler space F"* = (M™, L(«,3)). The covariant differentiation with
respect to the Levi-Civita connection fy;k(:c) of R™ is denoted by (;). We have the
following [3]:

Lemma 2.1. The spray coefficients G* are related to G, by

(2.1) G' =G, +aQsh+ J(—2aQsy + TOO)% + H(—2aQs0 + 700){b" — yg}’

where
¢
Q="
L (6 — 500
C290((¢ — s¢) + (2 — 52)¢")’
H:= ¢

2((¢ — 5¢') + (> — s7)¢")’

where s = sy, 5o = s10b',700 = Tijy" Y7, 7ij = 5(bij +bjii)y 805 = 5(bizg — bjsi), 1% =
a’"ry, s; =a'"s;5,1; = brr;, 5; = brsg, bt = a™b, and b* = a"%b,.bs.

It is well-known that [4] a Finsler metric ' = F(z,y) on an open subset U C R"
is projectively flat if and only if
(2.2) Fpryyt — Fu = 0.

By (2.2), we have the following lemma [13]:
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Lemma 2.2. An (a,3)- metric F = a¢(s), where s = g, is projectively flat on an

open subset U C R™ if and only if

(2.3) (amla2 — Ymy1) Gt + a3Qsyo + Ha(-2aQso + r00) (i — sy;) = 0.

The functions G*(z,y) of F™ with an («, 8)-metric are written in the form [8]

(2.4) 2G" =~ + 2B,
;  alg BLg ;, aLaa (1 , o
2.5 B = 2 O* {2 — St — Zpt
(25) oo {2y e (L Sy )
provided 32+ Lo + 072 Laa # 0, where 4% = b%a® = §%,a = §E Ly = G5 Loo = D

the subscript 0 means contraction by y* and we put

Oéﬁ (’I“()oLa — 20480[15)
2(32Ly + ay2Laa)

C* =

We shall denote the homogeneous polynomials in (y*) of degree r by hp(r) for brevity.
For example, 75 is hp(2). From (2.4) the Berwald connection BT = (G%;,G%,0) of
F" with an («, §)-metric is given by [8]

Gje = 0uGj = + B,
where we put B} = 9; B" and Bl = 5kB;. On account of [8], B}, are determined by
(2.6) LaBjiy'ye + aLg(Bjibe = bjs)y’ =0,

where v, = a;,y°. A Finsler space F™ with an («, 3)-metric is a Douglas space if and
only if BY = Byl — by is hp(3) [2]. From (2.5) B¥ is written as follows:
2

y La . . o L o o
27) BY = T (shy’ — sy + TGOy ),

3 Projectively flat («, 5)-metric

In this section, we consider the metric F' = aes + [ which is obtained by the
Randers change of the Exponential metric.

(3.1) F=a¢(s), o(s)=(e’+s), s=—,

SRSy

Let by > 0 be the largest number such that
¢(s) — 5¢'(s) + (0° = s*)¢"(s) > 0, (Is| < b < by),
that is,

e(1—s+b—5%) >0, (|s|<b<by)
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Lemma 3.1. F = ae« + 3 is a Finsler metric, iff 18]l < 1.
Proof. If F = aes + 0 is a Finsler metric, then
eE(1—s+b%>—5%)>0, |[s]<b<by.

Let s = b, then we get b < 1,V b < by. Let b — by, then by < 1. So ||B]|o < 1. Now, if

s| <b<1,
then
(1 —s+b%—s%)>e’(1—s)>0. (because b* — s> > 0)
Thus F = ae= + 0 is a Finsler metric. O

By Lemma (2.1), the spray coefficients G* of F are given by (2.1) with

(1+e§)
Q="
(a = B)es
_ o?(a = B)(1+e%)
2(aes + B)(02 — aff + a2b? — 32)

a2

© 2(a? —af + a?bh? — 32)’

Equation (2.3) is reduced to the following form:

at(1+ e
(amla2 — Ymy1) Gy + (a(—)eﬁ)sw
a’ —2a250(1 + eg)

32)  +

2(a? —aB+a?? - 52) | (a— Bles
We use the following result [15]:
Lemma 3.2. If (ami® — ymy)G™ = 0, then « is projectively flat.
Proof. If (amia® — ymy)G™ = 0, then
*amGy = ym Gy,
then there is a n = n(x,y) such that y,,G™ = o’n, we get
(3.3) amiGy' = nyi.
Contracting Eq. (3.3) with a* yields G?, = ny’, and thus « is projectively flat. |

Theorem 3.3. The (a, 8)-metric F = aes + B is locally projectively flat iff

(i) B is parallel with respect to «
(ii) « is locally projectively flat, i.e., of constant curvature.
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Proof. Suppose that F is locally projectively flat. First, we rewrite (3.2) as a poly-
nomial in 3* and . This gives

B
 (amia® = ymy)) G2

{(—4a2ﬁ +23% — 2% B)e
+ (208 + 2075 — 2016%)(1 + eg)slo
—2atso(1+ %) (bia® — fyr) — a?Bes rop(bra® — 53/1)]
+ «a [(2@2 + 2b2a2)e§ (amie?® — Ymy)G™

— 204 B(1 + €% )sp0 + aZe o (ba? — ﬁyl)] =0,
(3.4) or U+aV =0,
where
U= —4a’3 +26° - 26°a2B)e (amia® — ymyr) GI
+ (205 + 20208 — 20462 (1 + %)
—2a*so(1 + eg)(bla2 — By) — a25€§7“00(bla2 - By1)
and
V= (2042 + 2b2a2)eg(amla2 — Y ) G2
— 204 B(1 + €% )50 + a%e T o (bra? — By).

Now, (3.4) is a polynomial in y, such that U and V are rational in y* and « is
irrational. Therefore, we must have

U=0andV =0,
which implies that
[~20263(2 + b2) + 26%]e (amia?® = Ymy)) G
(3.5) — —204[0%(1 4 b%) — B2](1 + €4 )sio
+20s0(1 + e%) (ba® — By) + a*Be S oo (ba® — Byy)
and
(3:6) 21 +b%)es (amo® — ymy)GI = 202B(1 + €5 )s19 — = ro0(bi0® — By)
Contracting (3.5) and (3.6) with b', we get
[—2a2B(2 + b2) + 28%]e% (bna? — ymB)G™
(3.7) = —204[a2(1 4 b%) — B2)(1 + e=)sg
+2a’s(1 + e ) (b%a® — §2) + a2fearo(b2a? — 52)
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and

B8
o

(38) 201+ 06k (bno? — ynB)GI = 20*6(1 + e* )y — 5 roo 12 — 52)

(3.7) and (3.8) xa?f3 yields
(3.9) Bbma® — ymB)G™ = a*(1 + e~ = )sq.

The polynomial a4(1—|—e_§) is not divisible by 3 and (3 is not divisible by a*(1 +e_§).
Thus sg is divisible by 8 and (b,,a® —y,, 3)G™ is divisible by a*(1 +e’g). Therefore,
there exist scalar functions 7 = 7(z), x = x(z) such that

(3.10) s0 =70,
(3.11) (bm@® = ymB)GI = xa* (1 + e~ ).
Then (3.9) becomes
Bya*(1+e %) = a*(1+ e 2)7.
Thus 7 = x. Then (3.7) becomes
(3.12) x(1+ e~ a)[2a%(1 + b%) — 2a28%] = —rgo(b2a® — B2).

Since (b*a? — 3%) is not divisible by (1 + efg)[2a4(1 +b?) — 20232, it follows from
(3.12) that x = 0. By (3.10), (3.11) and (3.12), we get

(3.13) s0 =0,
(3.14) (bmo? — 4 B)G™ =0,
(3.15) and roo = 0.

Then substituting (3.13) and (3.14) into (3.6), we get
(316) S0 = 0.

Then by (3.14) and Lemma (3.2), « is projectively flat. And by (3.15) and (3.16),
bi;; = 0. i., B is parallel with respect to a.

Conversely, if 3 is parallel with respect to a and « is locally projectively flat, then by
Lemma (2.2), we can easily see that F' is locally projectively flat. O
4 Berwald and Douglas spaces

In this section, we find the condition for a Finsler space F" with («, 8)-metric (3.1)

to be a Berwald space. In the n-dimensional Finsler space F™ with an («, )-metric
(3.1), we have

62
(41) Loo = 56 ’ Lﬁﬁ =
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Substituting (4.1) into (2.6), we have

e
a

B8 ; B8 ; ;
(4.2) aeaB;iyjyt - BeaBL-yjyt +a*(14e )(B;ibt — b)Yy =0

Assume that F™ is a Berwald space, that is, G;k = G;k(a:) Then we have B}, =
BY,;(x). Since « is irrational in (y*), from (4.2), we have
(4:3) egB;'iyjyt =0,
(4.4) _ﬂegBﬁiyjyt +a®(1+ eg)(B;’ibt —bj.i)y’ =0.
From (4.3) and (4.4), we obtain
B’y =0 and (Bjb, —bj)y’ = 0.

which yields
B;,L-(lth + B;t”-(ltj =0 B;th - bj;i =0.
Thus by the well known Christoffel process we get Bf; = 0. Therefore we have

Theorem 4.1. The Randers change of the Exponential metric (3.1) provides a Berwald
metric if and only if bj; = 0, and then the Berwald connection is Riemannian

(’Y;lw 7(%j7 0) .

Now, we consider the condition for a Finsler space F™ with an (o, #)-metric (3.1)
to be a Douglas space. Substituting (4.1) into (2.7), we obtain

2(a— ﬁ)eg (o — af +b%a® — 3*)BY
“)(0* —af+ 1%’ — 57)(shy’ — spy')
(4.5) —aQ{(a B)earoo—Qa so( 1+ew (biy? —bly")

—2a%(1+e

Suppose that F™ is a Douglas space, that is B% are hp(3). Separating (4.5) in rational
and irrational terms of y*, because « is irrational in (y*), we have

(1026 + 26" — 2202 p)en B

(14 e)(—2a* — 20%a* + 2a26%) (shy? — shy?)

(4.6) + a?Bewroo(by’ — by’ + 20ts0(1+ e ) (biy? — bjyi)}
ta [65 BiI(20a2 + 2b202) + 202 B(1 + e= ) (siy? — shy?)
— aPenro(biyl — b]yl)} =0.

Hence the equation (4.6) is divided into two equations as follows:

(~4a23 + 26° — 2620 B)e B
(4.7) (1 + e9)(—2a% — 202a* + 20%6)(shy’ — shy’)

Fa2Beroo(biy? — biyt) + 204s0(1 + ea ) (biy? — biy') =0
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and
(4.8) ea BY (20 4 2b%a?) + 202 6(1 + eg)(séyj — s)y') — a26§r00(biyj —y') =0

Eliminating B% from (4.7) and (4.8), we obtain

(4.9) A(spy’ — shy') + B(b'y! —by') =

where

(4.10) A= (=20 — 402 + 60%6% — 2b*a* + 4b%a*B% — 28%) (1 + %),
(4.11) B=e* 00(@3—a25)+2a4(1+b2)(1+e§)30.

Transvecting (4.9) by b;y;, we get
(4.12) Aspa? + B(b?*a? — %) =0

The term of (4.12) which does not contain a? is —3%rgg. Hence there exists hp(5) : vy
such that

(4.13) —B%r00 = a*V3

Here we consider two cases:
(i) Vs =0,
(ii) Vs # 0,02 # 0 (mod ).

Case (i). When V5 = 0, this leads to rgg = 0. Therefore, substituting rop = 0 into
(4.12), we get

(4.14) s0(A+~*B;) =0,
where
By = 2a2(1 +b%)(1 + e7).

If A+~2B; =0, then the term of A +~2B; = 0 which does not contain a? is —43*.
Thus there exists hp(2) : V, such that

_464 = O[Q‘/Qa

Hence we have Vo = 0, which leads to a contradiction. Therefore, we must have
A+ 2By # 0. Therefore, we have so = 0 from (4.14). Substituting sy = 0 and
roo = 0 into (4.9), we get

(4.15) A(shy’ — shy') = 0.
If A =0, then from (4.10), we have

B8
o

(4.16) A= (-2a" —4b’a* + 6a%3% — 2b*a* + 4b*a?B? — 23*) (1 +e~) = 0.
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The term of (4.16) which does not contain o? is —43*. Thus there exists hp(2) : Va
such that

74ﬁ4 = QQ‘/Q;

from which we have Vo = 0. It is a contradiction, therefore we must have A # 0.
Therefore, from (4.15) we obtain

séyj - séyi =0.

Transvecting the above equation by y; gives sy = 0, which imply s;5 = 0. Conse-
quently, we have r;; = s;; = 0, that is, b;;; = 0.

Case (ii). The equation (4.13) shows that there exists a function k = k(z) satisfying

roo = k(z)a?.

Thus we have the term of (4.12) does not contain o? is included in the term —3°rg.

Hence we get 799 = 0. From (4.15), we have A(shy! — siy’) = 0. If A =0, then it is a
contradiction. Hence A # 0. Therefore, we obtain sy’ — shy’ = 0. Transvecting this
equation by y; we get sj = 0. Hence both the cases (i) and (ii) lead to r;; = 0 and
Sij = 07 that iS, bi;j =0.

Conversely if b;,; = 0, then F™ is a Berwald space, so F'" is a Douglas space.

Thus we have the following

Theorem 4.2. The Randers change of exponential metric is of Douglas type if and
only if &® £ 0 (mod (3) and b;.; = 0.

From Theorem 4.1 and Theorem 4.2, we have

Theorem 4.3. If the Randers change of exponential metric is of Douglas type, then
it is Berwaldian.

References

[1] T. Aikou, M. Hashiguchi and K. Yamaguchi, On Matsumoto’s Finsler space with
time measure, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chem), 23 (1990),
1-12.

[2] S. Bdcsé and M. Matsumoto, On the Finsler spaces of Douglas type. A general-
ization of the notion of Berwald space, Publ. Math. Debrecen 51 (1997), 385-406.

[3] S.S. Chern and Z. Shen, Riemann-Finsler Geometry, Singopore. World Scientific,
2005.

[4] G. Hamel, Uber die Geometrien in denen die Geraden die Kurzesten sind, Math.
Ann., 57 (1903), 231-264.

[6] M. Matsumoto, A slope of a mountain is a Finsler surface with respect to time
measure, J. Math. Kyoto Univ., 29 (1989), 17-25.

[6] M. Matsumoto, Projective changes of Finsler metric and projective flat Finsler
space, Tensor, N. S.; 34 (1980), 303-315.

[7] M. Matsumoto, Projective flat Finsler spaces with (a, 3)-metric, Rep. on Math.
Phys., 30 (1991), 15-20.



On Randers change of exponential metric 103

8]

[9]
[10]
[11]
[12]
[13]
[14]

[15]

M. Matsumoto, The Berwald connection of Finsler space with an (o, 3)-metric,
Tensor, N. S., 50 (1991), 18-21.

H. S. Park and 1. Y. Lee, On projectively flat Finsler spaces with (a, 3)-metric,
Commun. Korean Math. Soc., 14(2)(1999), 373-383.

H. S. Park, I. Y. Lee and C. K. Park, Finsler space with the general approrimate
Matsumoto metric, Indian J. Pure and Appl. Math., 34(1)(2002), 59-77.

Z. Shen, Projectively flat Randers metrics with constant flag curvature, Math.
Ann., 325 (2003), 19-30.

Z. Shen, On Projectively flat («, 8)-metrics, Canadian Mathematical Bulletin,
52(1) (2009), 132-144.

Z. Shen and G. C. Yildirim, On a class of projectively flat metrics with constant
flag curvature, Canadian Journal of Mathematics, 60(2) (2008), 443-456.

Y. Shen and L. Zhao, Some projectively flat (o, 8)-metrics, Science in China,
Series A, 49 (2006), 838-851.

Y. Yu, Projectively flat exponential Finsler metrics, J. of Zhejiang Univ. Science
A, 6 (2006) 1068-1076.

Author’s address:

Gauree Shanker and Ravindra

Department of Mathematics and Statistics, Banasthali University,
Banasthali, Rajasthan-304022, India.

Email: gsp.math.1978@gmail.com , yadav.ravindra28@gmail.com



