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Abstract. The Berwald – Lagrange curvature with respect to the vector
field in the two dimensional geometric dynamics of the Langmuir – Blod-
gett monolayer is determined. It is shown, that the metric of the monolayer
space is of the scalar curvature and the sign of the Berwald – Lagrange
curvature governs the growth of geodesic deviations within the monolayer,
which in turn gives qualitative information about the sign of compressibil-
ity. Computer-drawn graphics and physical illustrate the relation between
the geometric structure and the underlying physical background.
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1 Introduction

In the paper we utilize a geometrical approach to describe a structurization into
Langmuir – Blodgett (LB) monolayers [1, 6, 9]. We assume that the usual physical
time is defined on the interval [0,∞). Consider an open set D ⊂ R2, endowed with
the polar coordinates (r, ϕ), where r > 0 and ϕ ∈ [0, 2π). We further consider the
vector bundle

R× TR2 Id×π−→ R× R2,

where TR2 is the tangent bundle of the plane, which is locally endowed with the
bundle coordinates (t, x1, x2, y1, y2) := (t, r, ϕ, ṙ, ϕ̇). We remind that on the vector
bundle R × TR2 the transformation of coordinates are (the Einstein convention of
summation is used throughout this work, and the Latin letters i, j, k, l, q, s, ... take
values in the set {1, 2}):

(1.1) t̃ = t, x̃q = x̃q(xs), ỹq =
∂x̃q

∂xs
ys,
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where rank (∂x̃p/∂xq) = 2. Using the special function

f(z)
def
= −

∫ ∞

−z

e−t

t
dt,

we study several distinguished geometrical properties of the time-dependent Lagrangian
(governing the 2D-motion of a particle of the monolayer [4, 5, 10]) L : R× TR2 → R,
which is defined by

(1.2) L(t, r, ṙ, ϕ̇) =
m

2
ṙ2 +

mr2

2
ϕ̇2−pr5|V |e 2|V |t

r · ṙ−1 + U(t, r)︸ ︷︷ ︸
q

Us(t,r)

,

where we have the following physical meanings: (1) m is the mass of the particle; (2)
V is the LB-monolayer compressing rate; (3) p is a constant monolayer parameter
given by the physical formula

p =
π2q2

εε0

ρ2
0

R2
0

;

(4) Us(t, r) is an electro-capillarity potential energy, including the monomolecular
layer function

U(t, r) = p

{[
−4

3
r5 +

16
15

(|V |t)r4 +
1
30

(|V |t)2r3 +
1
45

(|V |t)3r2+

+
1
45

(|V |t)4r +
2
45

(|V |t)5
]

e
2|V |t

r − 4
45

(|V |t)6
r

f

(
2|V |t

r

)}
.

In what follows, we particularize several general geometrical ideas developed by Miron
and Anastasiei in classical Lagrangian geometry on tangent bundles (see [7]) to the
2D-monolayer physical Lagrangian (1.2). To this aim, we consider projections of the
tangent space regarded a 2D-slices which are spanned by a flag {y; X}. The considered
curvature of each slice is the Finsler space flag curvature [3]. The metric produced by
the 2D-monolayer Lagrangian is of Berwald-Lagrange curvature and is similar to the
flag curvature.

The goal of the paper is to show that the Berwald-Lagrange metric is of scalar
curvature and that the sign of the Berwald-Lagrange curvature governs the growth
of geodesic deviations in the monolayer, which in turn gives qualitative information
about the behavior of compressibility κ within the phase transition of first order.

2 The canonical nonlinear connection

The fundamental vertical metrical d-tensor produced by the 2D-monolayer Lagrangian
(1.2) is given by

gij =
1
2

∂2L

∂yi∂yj
.
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By direct computations, one gets the metrical d-tensor gij , whose associated matrix
has the form

(2.1) g =
(

g11 g12

g21 g22

)
=




m− 2pr5|V |e 2|V |t
r · ṙ−3

2
0

0
mr2

2


 .

Remark 2.1. In order to have det g 6= 0, we assume that g11 6= 0.

The matrix g = (gij) admits the inverse g−1 = (gjk), whose entries are

(2.2) g−1 =
(

g11 g12

g21 g22

)
=




2

m− 2pr5|V |e 2|V |t
r · ṙ−3

0

0
2

mr2


 .

Using the general semispray expression (cf., e.g., [7]), we infer the following geomet-
rical result:

Proposition 2.1. The energy action functional

E(t, r(t), ϕ(t)) =
∫ b

a

Ldt =
∫ b

a

[
m

2

(
dr

dt

)2

+
mr2

2

(
dϕ

dt

)2

−

−pr5|V |e 2|V |t
r ·

(
dr

dt

)−1

+ U(t, r)

]
dt,

associated to the 2D-monolayer Lagrangian (1.2), produces on the vector fibre bundle
R× TR2 the canonical semispray G =

(
Gi

)
i=1,2

, whose components are

G1 =
pr3|V |e 2|V |t

r

(
5rṙ−1 − 2|V |tṙ−1 + |V |rṙ−2

)− 1
2

∂U

∂r
− mr

2
ϕ̇2

m− 2pr5|V |e 2|V |t
r · ṙ−3

approx
≈

approx
≈ −1

2
|V |
r

ṙ +
( |V |t

r2
− 5

2r

)
ṙ2 − ṙ3

|V |
[
5
3
r−1 − 26(|V |t)

15
r−2+

+
61(|V |t)2

120
r−3 +

(|V |t)3
180

r−4 +
(|V |t)4

180
r−5 +

(|V |t)5
90

r−6−

− (|V |t)6
45

r−7e−
2|V |t

r f

(
2|V |t

r

)]
+

m

4p|V |r
−4e−

2|V |t
r ṙ3ϕ̇2, G2 =

ṙ

r
ϕ̇.

Proof. The Euler-Lagrange equations of the energy action functional E can be written
in the equivalent form

d2xi

dt2
+ 2Gi

(
t, xk, yk

)
= 0, yk =

dxk

dt
,

where the local components

Gi def
=

gis

4

[
∂2L

∂xq∂ys
yq − ∂L

∂xs
+

∂2L

∂t∂ys

]

represent a semispray on the vector bundle R× TR2. ¤
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The approximate polynomial form of the semispray G yields the canonical nonlin-
ear connection

N =
(

N i
j =

∂Gi

∂yj

)
.

Consequently, by direct computations, we obtain the following important geometrical
result:

Corollary 2.2. The canonical nonlinear connection produced by the 2D-monolayer
Lagrangian (1.2) has the following approximate components:

N1
1 = −1

2
|V |
r

+
(

2|V |t
r2

− 5
r

)
ṙ − U (t, r) ṙ2 +

3me−
2|V |t

r

4p|V |r4
ṙ2ϕ̇2,

N1
2 =

me−
2|V |t

r

2p|V |r4
ṙ3ϕ̇, N2

1 =
ϕ̇

r
, N2

2 =
ṙ

r
,

where

U (t, r) =
1
|V |

[
5r−1 − 26(|V |t)

5
r−2 +

61(|V |t)2
40

r−3 +
(|V |t)3

60
r−4+

+
(|V |t)4

60
r−5 +

(|V |t)5
30

r−6 − (|V |t)6
15

r−7e−
2|V |t

r f

(
2|V |t

r

)]
.

3 The Berwald-Lagrange curvature relative to the
vector field

The nonlinear connection from Corollary 2.2 is useful to construct the dual adapted
bases of distinguished vector fields

(3.1)
{

∂

∂t
;

δ

δr
;

δ

δϕ
;

∂

∂ṙ
;

∂

∂ϕ̇

}
⊂ X (E)

and distinguished covector fields

(3.2) {dt ; dr ; dϕ ; δṙ ; δϕ̇} ⊂ X ∗(E),

where E = R× TR2, and we set

δ

δr
=

∂

∂r
−N1

1

∂

∂ṙ
− ϕ̇

r

∂

∂ϕ̇
,

δ

δϕ
=

∂

∂ϕ
− me−

2|V |t
r

2p|V |r4
ṙ3ϕ̇

∂

∂ṙ
− ṙ

r

∂

∂ϕ̇
,

δṙ = dṙ + N1
1 dr +

me−
2|V |t

r

2p|V |r4
ṙ3ϕ̇dϕ, δϕ̇ = dϕ̇ +

ϕ̇

r
dr +

ṙ

r
dϕ.

Remark 3.1. Under a change of coordinates (1.1), the elements of the adapted bases
(3.1) and (3.2) transform as classical tensors.
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According to the geometrical framework developed in [7], the Berwald N -linear
connection produced by the 2D-monolayer Lagrangian (1.2) on the vector bundle
R× TR2 is defined by the local components (for more details, see [7] and [8])

BΓ (N) =
(
Li

jk := Bi
jk, Ci

jk = 0
)
,

where (i, j, k = 1, 2),

(3.3) Bi
jk =

∂N i
j

∂yk
.

Using the formulas (3.3), by direct partial derivation, we get

Proposition 3.1. The Berwald N -linear connection of the 2D-monolayer Lagrangian
(1.2) has the following approximate components:

(3.4)

B1
11 =

[
2|V |t
r2

− 5
r
− 2U(t, r)ṙ +

3me−
2|V |t

r

2p|V |r4
ṙϕ̇2

]
,

B1
12 = B1

21 =
3me−

2|V |t
r

2p|V |r4
ṙ2ϕ̇, B1

22 =
me−

2|V |t
r

2p|V |r4
ṙ3,

B2
12 = B2

21 =
1
r
, B2

11 = B2
22 = 0.

Corollary 3.2. The Berwald N -linear connection BΓ(N) of the 2D-monolayer La-
grangian (1.2) has the following approximate adapted local (hv)-curvature d-tensors:

B2
111 = B1

222 = B2
222 = B2

112 = B2
121 = B2

211 = B2
122 = B2

212 = B2
221 = 0,

(3.5)

B1
111 =

3me−
2|V |t

r

2p |V | r4
ϕ̇2 − 2U(t, r),

B1
112 = B1

121 = B1
211 =

3me−
2|V |t

r

p |V | r4
ṙϕ̇,

B1
122 = B1

212 = B1
221 =

3me−
2|V |t

r

2p |V | r4
ṙ2.

Proof. The Berwald N -linear connection BΓ(N) is characterized by the following six-
teen (hv)-curvature d-tensors:

Bi
jkl =

∂Bi
jk

∂yl
=

∂2N i
j

∂yk∂yl
=

∂3Gi

∂yj∂yk∂yl
,

where (y1, y2) = (ṙ, ϕ̇). Consequently, using the connection components (3.4), we find
the local Berwald (hv)-curvature d-tensors (3.5). ¤

Now, one can define a natural Lagrangian extension K of the flag curvature from
Finsler spaces by means of (see [8, p. 54]):

K := K (t, r, ϕ, ṙ, ϕ̇; X) = K (t, x, y ; X)
def
=

BhijkyhXiyjXk

(ghjgik − ghkgij) yhXiyjXk
,(3.6)
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which is called the Berwald–Lagrange curvature with respect to the vector field X:

X(t, r, ϕ) = Xr
∂

∂r
+ Xϕ

∂

∂ϕ
6= 0,

where Bhijk = gisB
s
hjk, X1 = Xr and X2 = Xϕ.

4 The Berwald–Lagrange curvature in monolayer
compressibility

In this section we establish the relation between certain Finsler geometric invariants
and matter parameters in the phase transition of first order.

Proposition 4.1. The Berwald-Lagrange curvature K(x, y; X) with respect to the
monolayer field X does not depend on X(r, φ) and may be approximated by the ex-
pressions
(4.1)

K (t, r, ϕ, ṙ, ϕ̇; X) =





∞, for X = ṙ ∂
∂r + ϕ̇ ∂

∂ϕ ; ṙ, ϕ̇ 6= 0;[
18

pr6|V |e
2|V |t

r

− 4U(t,r)
mr2ϕ̇2

]
· ṙ2, for X = Xr

∂
∂r , Xr 6= 0;

0, for X = Xϕ
∂

∂ϕ , Xϕ 6= 0.

Proof. Using the formulas Bhijk = gisB
s
hjk, where Bs

hjk are given by (3.5), direct
computations yield

B1211 = B1212 = B1221 = B1222 = B2211 = B2212 = B2221 = B2122 = B2222 = 0,

B1111 =
m− 2pr5|V |e 2|V |t

r · ṙ−3

2
·
[

3me−
2|V |t

r

2p |V | r4
ϕ̇2 − 2U(t, r)

]
,

B1112 = B1121 = B2111 =
m− 2pr5|V |e 2|V |t

r · ṙ−3

2
· 3me−

2|V |t
r

p |V | r4
ṙϕ̇,

B1122 = B2112 = B2121 =
m− 2pr5|V |e 2|V |t

r · ṙ−3

4
· 3me−

2|V |t
r

p |V | r4
ṙ2.

Taking into account only the non-zero components of Bhijk and the fact that g12 =
g21 = 0, we get

K =
B1111ṙ

2Xr
2 + 2B1112ṙϕ̇Xr

2 + B1122ϕ̇
2Xr

2 + B1112ṙ
2XrXϕ + 2B1122ϕ̇ṙXrXϕ

g11g22 (Xϕṙ −Xrϕ̇)2
.

The substitution of B1111, B1112, B1122, g11 and g22 in explicit form into the previous
expression leads to

(4.2) K =
ṙXr

(Xϕṙ −Xrϕ̇)2

[(
18ϕ̇2

pr6|V |e 2|V |t
r

− 4U(t, r)

mr2

)
ṙXr +

12

pr6|V |e 2|V |t
r

ṙ2ϕ̇Xϕ

]
.

The numerator in the left hand side of (4.2) is zero at X = ( ∂
∂r , ∂

∂ϕ ), while subjected
to the 1-form ω = (ṙ, ϕ̇). Therefore K = ∞ for the field X.
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The right hand side of the expression (4.2) equals to zero at Xr = 0, and therefore
K = 0 for the field X = (0, Xφ).

At X = (Xr, 0), the expression (4.2) reduces to

Kflag1 =

(
18

pr6|V |e 2|V |t
r

− 4U(t, r)
mr2ϕ̇2

)
ṙ2.(4.3)

Since any tangent 2D-vector (ṙ, ϕ̇) can be decomposed into (Xr, 0) and (0, Xφ):

(4.4) X = (ṙ, ϕ̇) = (Xr, 0) + (0, Xφ),

we find all the curvatures of slices over all the flags {y0, X0}. We note that the
curvature K(x, y0;X0) ≡ K(x; {y0, X0}) is everywhere infinite, except at the slices
of the tangent space given by the flags flagi, i = 1, 2: flag1 = {ϕ̇,Xr} and flag2 =
{ṙ, Xφ}. Moreover, since any tangent 2D-vector can be split by (Xr, 0) and (0, Xφ)
via the formula (4.4), the expression (4.1) becomes the curvature for the slices for all
the flags:

(4.5)
K (t, r, ϕ, ṙ, ϕ̇; X~r) = lim{y0, X0}→{~̇r,X~r}K(x; {y0, X0})

= lim{y0, X0}→{~̇r,X~r}
{

ṙXr

(Xϕṙ−Xrϕ̇)2
Θ

}∣∣∣
t→t0

,

where

Θ =

(
18ϕ̇2

pr6|V |e 2|V |t
r

− 4U(t, r(t))
mr2

)
ṙXr +

12

pr6|V |e 2|V |t
r

ṙ2ϕ̇Xϕ.

Hence, the monolayer curvature K(x, y0; X0) does not depend on the vector X0 ∈ T̃M

of the slit tangent space T̃M = TM \ {0}, and it becomes of scalar type. ¤

Now, since the Berwald–Lagrange curvature K(x, y;X) with respect to the mono-
layer field is of scalar type, we may try to unify the expressions of all the curvatures of
slices of all flags {y, X} into one single expression. We note that properties similar to
(4.5), are exhibited as well by the generalized Dirac function δD(~̇r(t)− ~̇r(t0)), which
also takes infinite values under the increase of ~̇r(t) at any arbitrary moment of time
t, except at t0. For this reason, the flag limit from (4.5) can be regarded by means of
the Dirac δ-function:

K (t, r, ϕ, ṙ, ϕ̇; X) = lim
{y0, X0}→{~̇r, X~r}

K(x; {y0, X0})

=

{
ṙXr

1

(Xϕṙ −Xrϕ̇)2

[(
18ϕ̇2

pr6|V |e 2|V |t
r

− 4U(t, r(t))

mr2

)
ṙXr +

12

pr6|V |e 2|V |t
r

ṙ2ϕ̇Xϕ

]}∣∣∣∣∣
t→t0

×δD(ṙ(t)− ṙ(t0)).(4.6)

This approximation holds true, while describing the beginning of the compression
process:

(4.7) ṙ → 0, t → t0 = 0, r À |V |t.
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We can plot the 4-dimensional hypersurfaces of constant flag curvature (which depend
on the four variables (t, r, ṙ, ϕ̇))

Σ :

[
18

pr6|V |e 2|V |t
r

− 4U(t, r)
mr2ϕ̇2

]
ṙ2 = Kflag1 ,

where Kflag1 ∈ {−1, 0, 1}, m = 47× 10−26 kg, p = 8.93× 109, |V | = 0.3× 10−3 m/s,
r = 0.1 m, t = 0.01 s. In Fig. 1 we plot the hypersurfaces (curves) of constant

K=0

K=1
K=-1

Figure 1: Curves of constant flag curvature Kflag1 = K ∈ {0,±1}.

scalar curvature of Berwald-Lagrange type Kflag1 relative to the radial vector field for
Kflag1 = −1, 0, 1. We see, that the space may be split into regions with positive and
negative curvature, while the curvature Kflag1 is negative only over a finite interval
of values taken by ϕ̇, at whose extremities it changes its sign into the opposite one.

As it can be seen in Fig. 2, the magnitude of the curvature Kflag1 increases with the
increase of the absolute value of the radial component of the velocity ṙ. Moreover,
the expression of Kflag1 may diverge for ϕ̇ → 0 and ṙ 6= 0.

We shall find the expression of Kflag1 at the examined limit (4.7):

(4.8) lim
ṙ→0

Kflag1 =
1

|V |r3

[
18
pr3

− 20
mϕ̇2

]
ṙ2.

From the expression (4.8) we see, that in the given physical situation, the curvature
Kflag1 , remaining small: Kflag1 → 0, may change its sign. It follows that we can
assume that at the beginning of the structurization process of the monolayer one can
observe a change of sign of the scalar Berwald – Lagrange curvature for decreasing
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Figure 2: The dependence of the flag curvature Kflag1 =: K on the velocity.

monolayer area (see Fig. 3) at the point whose coordinate r is:

r = 3

√
9mϕ̇2

10p
.

The shape of the dependence of the scalar curvature Kflag1 on the time is represented

0.1 0.2 0.3 0.4
S

-3

-2

-1

1

2

3

K

Figure 3: The dependence of the flag curvature Kflag1 , denoted by K on the area
of the monolayer S.

in Fig. 4. From the previous considerations, we can conclude that the motion of
particles along closed trajectories (Kflag1 > 0) changes into motion along diverging
ones (Kflag1 < 0).

We assume, that there exists a relation between the scalar curvature of the mono-
layer and the thermodynamical parameters – in particular, the matter compressibility
κ, which is always positive. The change of sign for κ shows that the system loses its
stability and passes to another equilibrium state. Then we may conclude that in the
neighborhood of the phase transition, the monolayer may lose its stability and pass
to a metastable state.
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200 400 600 800 1000
t

-2

-1

1

2

3

K

Figure 4: The dependence of the flag curvature Kflag1 , denoted by K, on time.

In [2] the total trace of Berwald curvature tensor

BC(x, y, V ) = gijBk
ikj

has been studied for the monolayer space. It was observed that the integral of BC

at large values of V diverges and differs by sign for stable and metastable states
respectively. Hence, it behaves like the compressibility κ, as first order derivative ∂s

∂π̃
of the s − π̃–isotherm with respect to π̃ in a region of phase transition. This allows
us to assume the following relation between BC and π̃ in a neighborhood of phase
transition [2]:

κ = −1
s

∂s

∂π̃
∝ −1

s

∫
BC d2r.(4.9)

We note that BC is everywhere 0, except for the region of phase transition, which
occurs at the moment t0. Therefore the expression (4.9) can be decomposed into
series in the neighborhood of phase transition:

κ ∝ −
∫

∂

∂~r
BC d2r.(4.10)

By using the Fourier transform, we examine the expression (4.10) in T̃M :

κ ∝ −
∫

BC(X~r)e
iX~r·~rXr d~r dX~r = −2π

∫
ṙXrBC(Xr)e

i ~X~r·~r dt dX~r.(4.11)

According to the definition of K (3.6) we may assume that the divergence of the
flag curvature is conditioned by an anomaly in the behavior of the Fourier spectrum
of Bc(X~r) in the region of the phase transition. Therefore, the comparison of the
expressions (4.6) and (4.11) allows us to propose the following expression for the
compressibility κ:

κ ∝ −2π

∫
ṙXr

1

(Xϕṙ −Xrϕ̇)2

[(
18ϕ̇2

pr6|V |e 2|V |t
r

− 4U(t, r)

mr2

)
ṙXr +

12

pr6|V |e 2|V |t
r

ṙ2ϕ̇Xϕ

]

× δD(ṙ(t)− ṙ(t0)) dt dX~r.(4.12)

According to the chosen approximation (4.7), we express the tangent vector ~̇r by
means of the acceleration au: ṙ = aut. Therefore, by using the properties of the
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function δ, we can re-express (4.12) as

κ ∝ −2π

au

∫
ṙXr

1

(Xϕṙ −Xrϕ̇)2

[(
18ϕ̇2

pr6|V |e 2|V |t
r

− 4U(t, r)

mr2

)
ṙXr +

12

pr6|V |e 2|V |t
r

ṙ2ϕ̇Xϕ

]

× δD(t− t0) dt dX~r.(4.13)

By integration of (4.13) by t, we infer:

κ ∝ −2π

au

×
∫ {

ṙXr
1

(Xϕṙ −Xrϕ̇)2

[(
18ϕ̇2

pr6|V |e 2|V |t
r

− 4U(t, r)

mr2

)
ṙXr +

12

pr6|V |e 2|V |t
r

ṙ2ϕ̇Xϕ

]}∣∣∣∣∣
t→t0

×dX~r.(4.14)

According to (4.4), the integration over the tangent space of d ~X~r may be replaced by
the summation over the flags flagi, i = 1, 2:

(4.15) κ ∝ −2π

au

2∑

i=1

K(x; flagi).

Since the curvature Kflag2 vanishes, we finally obtain the compressibility in the neigh-
borhood of the phase transition:

κ ∝ −2π

au
Kflag1 = −2π

au

[(
18

pr6|V |e 2|V |t
r

− 4U(t, r)
mr2ϕ̇2

)
ṙ2

]∣∣∣∣∣
t→t0

.(4.16)

In Fig. 5 there are represented the regions of values of ϕ, t, in which the matter is in
stable and metastable states, with positive or negative compressibility κ, accordingly.
Fig. 5. allow a qualitative characterization of the behavior of the trajectories during
the process of phase transition of first kind. In region I in Fig. 5 the phase variation
∆ϕ for t → −∞ migrates towards high values. In this case the phase increase is
always positive, since the tangent to the trajectory vector trigonometrically rotates.
The positivity of κ infers the stability of the motion along such a trajectory.

In region III in Fig. 5, the phase variation ∆ϕ for t → +∞ migrates towards
small values. This means that the phase increase is always negative, and the tangent
to trajectory vector rotates clockwise. Due to the positivity of κ, the motion along
such a trajectory is stable as well.

In region II of Fig. 5 the phase variation ∆ϕ changes sign due to a jump in its
values: from −1 × 1016 for t → −∞ to +1 × 1016 for t → +∞. As it can be seen in
Fig. 5, the trajectories within this region have an instanton-like character. The phase
increase changes sign and, accordingly, the tangent to the trajectory vector changes
its sense by a jump. Since κ is negative, the matter is in metastable state. Hence,
in metastable state, the trajectories of the matter particles have an instanton-like
character.
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Figure 5: The contour graph of the compressibility κ in the neighborhood of the
phase transition of the first kind. The thin vertical lines separate the regions
which have compressibility of opposite signs.

5 Conclusion

The present work studies the Berwald-Lagrange curvature associated to a monolayer.
It is shown that the metric of the monolayer space is of scalar curvature. It is shown
that the sign of the Berwald–Lagrange curvature governs the growth of geodesic de-
viations within the monolayer, which in turn gives qualitative information about the
sign of compressibility κ. In the region of phase transition of first kind, the trajec-
tories of the matter particles have an instanton-like character, and the matter is in
metastable state.
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