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Abstract. We identify a class of quadratic Hamilton-Poisson systems
on the three-dimensional Euclidean Lie-Poisson space. Specifically, we
consider systems that are both homogeneous and for which the underlying
quadratic form is positive semidefinite. Any such system is shown to be
equivalent to one of four normal forms (of which two are parametrized
families of systems). For the cases with non-trivial dynamics, the stability
nature of the equilibrium states is fully investigated. Furthermore, we
find explicit expressions for the integral curves (in terms of Jacobi elliptic
functions).
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1 Introduction

The dual space g∗ of a Lie algebra g has a natural Poisson structure, the (minus) Lie-
Poisson structure of g∗; this Poisson space is denoted by g∗−. A quadratic Hamilton-
Poisson system on g∗− is given by HA,Q = p(A) + Q(p). Here A ∈ g and Q is a
quadratic form on g∗. Such Hamilton-Poisson systems have been studied in the last
few decades (see, e.g., [5, 6, 10, 7, 25, 26, 9, 11]).

In this paper we consider only quadratic Hamilton-Poisson systems on the Eu-
clidean Lie-Poisson space se (2)∗−. Moreover, we shall restrict to systems that are
both homogeneous (i.e., A = 0) and for which the quadratic form Q is positive
semidefinite. We show that any such system is equivalent to one of the systems

H0(p) = 0 H1(p) = 1
2 p2

1

H2,α(p) = 1
2

(
p2
2 + α p2

3

)
H3,α(p) = 1

2 α p2
3

for some α > 0. H0 and H1 have almost trivial dynamics and so we shall omit
any discussion of these systems. The stability nature of all equilibrium states of
(the Hamiltonian vector fields) ~H2,α and ~H3,α is investigated by the energy-Casimir
method. Furthermore, explicit expressions for the integral curves of these vector fields
are found in terms of Jacobi elliptic functions.
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A general left-invariant control affine system on the Euclidean group SE (2) has
the form ġ = g (A + u1B1 + · · ·+ u`B`), where A, B1, . . . , B` ∈ se (2), 1 ≤ ` ≤ 3.
(The elements B1, . . . , B` are assumed to be linearly independent.) Specific left-
invariant optimal control problems on SE (2), associated with the above mentioned
control systems, have been studied by several authors (see, e.g., [14, 13, 24, 22, 21, 23]).
One can associate to drift-free systems the following class of optimal control problems
(with quadratic cost)

(1.1)

ġ = g (u1B1 + · · ·+ u`B`) , g(0) = g0, g(T ) = g1

g ∈ SE (2), u = (u1, . . . , u`) ∈ R`, 1 ≤ ` ≤ 3

J = 1
2

∫ T

0

u(t)>Qu(t) dt → min .





Here Q is an `× ` positive definite matrix. Each of these problems is lifted, via the
Pontryagin Maximum Principle (cf. [3, 14]), to a homogeneous (positive semidefinite)
quadratic Hamilton-Poisson system on se (2)∗−. The extremal controls can then be
found in terms of integral curves of the associated Hamiltonian vector field. Hamilton-
Poisson systems corresponding to lifted optimal control problems on SE (2) have been
investigated in [1, 2].

2 Preliminaries

2.1 The Lie-Poisson structure

Let g be a (real) Lie algebra. The dual space g∗ has a natural Poisson structure,
the (minus) Lie-Poisson structure (see, e.g., [16, 17]). This structure is given by

{F, G} (p) = −p ([dF (p), dG(p)])

for p ∈ g∗ and F, G ∈ C∞(g∗). Here dF (p) is a linear function on g∗ and so is
(identified with) an element of g. A function C ∈ C∞(g∗) is a Casimir function if
{C, F} = 0 for all F ∈ C∞(g∗).

To each function H ∈ C∞(g∗) we may associate a unique vector field ~H on
g∗ such that ~H[F ] = {F, H}. This vector field is called the Hamiltonian vector field
associated with H. Two vector fields ~F and ~G are compatible with a diffeomorphism
φ : g∗ → g∗ if the push-forward φ∗ ~F equals ~G (i.e., Tpφ· ~F (p) = ~G(φ(p)) for p ∈ g∗).
The diffeomorphism φ establishes a one-to-one correspondence between the integral
curves of ~F and ~G.

A linear automorphism ψ : g∗ → g∗ is a linear Poisson automorphism if {F, G} ◦
ψ = {F ◦ψ,G◦ψ} for all F, G ∈ C∞(g∗). Linear Poisson automorphisms are exactly
the dual maps of Lie algebra automorphisms. We say that two Hamilton-Poisson
systems are equivalent if the vector fields associated with them are compatible with
a linear Poisson automorphism.

Remark 2.1. Let H ∈ C∞(g∗) and let ψ be a linear Poisson automorphism. The
systems H ◦ ψ and H are equivalent as the associated vector fields are compatible
with ψ. For any Casimir function C and any function χ ∈ C∞(R), the vector fields
associated with H and H + χ(C), respectively, are identical. Hence the systems
H ◦ ψ and H + χ(C) are equivalent.
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2.2 The energy-Casimir method

The energy-Casimir method [12] gives sufficient conditions for Lyapunov stability of
equilibrium states of certain types of Hamilton-Poisson dynamical systems (cf. [17,
20]). The method is restricted to certain types of systems, since its implementation
relies on an abundant supply of Casimir functions.

The standard energy-Casimir method states that if ze is an equilibrium point of a
Hamiltonian vector field ~H (associated with an energy function H) and if there exists
a Casimir function C such that ze is a critical point of H + C and d2(H + C)(ze)
is (positive or negative) definite, then ze is Lyapunov stable.

Ortega and Ratiu have obtained a generalization of the standard energy-Casimir
method (cf. [18, 19]). This extended version states that if C = λ1C1 + · · · + λkCk,
where λ1, . . . , λk ∈ R and C1, . . . , Ck are conserved quantities (i.e., they Poisson
commute with the energy function H), then definiteness of d2(λ0H +C)(ze), λ0 ∈ R
is only required on the intersection (subspace) W = ker dH(ze) ∩ ker dC1(ze) ∩ · · · ∩
ker dCk(ze).

2.3 Jacobi elliptic functions

Given the modulus k ∈ [0, 1], the basic Jacobi elliptic functions sn(·, k), cn(·, k), and
dn (·, k) can be defined as

sn(x, k) = sin am(x, k)
cn(x, k) = cos am(x, k)

dn(x, k) =
√

1− k2 sin2 am(x, k)

where am(·, k) = F (·, k)−1 is the amplitude and F (ϕ, k) =
∫ ϕ

0
dt√

1−k2 sin2 t
· (For

the degenerate cases k = 0 and k = 1 we recover the circular functions and the
hyperbolic functions, respectively.) Simple elliptic integrals can be expressed in terms
of appropriate inverse (elliptic) functions. The following formulas hold true (see [4,
15]):

∫ b

x

dt√
(a2 + t2)(b2 − t2)

= 1√
a2+b2

cn−1
(

1
b x, b√

a2+b2

)
, 0 ≤ x ≤ b(2.1)

∫ a

x

dt√
(a2 − t2)(t2 − b2)

= 1
a dn−1

(
1
a x,

√
a2−b2

a

)
, b ≤ x ≤ a.(2.2)

3 Hamilton-Poisson systems on se (2)∗−
3.1 The Lie-Poisson space se (2)∗−
The Euclidean Lie algebra is given by

se (2) =








0 0 0
x1 0 −x3

x2 x3 0


 : x1, x2, x3 ∈ R



 .
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Let

E1 =




0 0 0
1 0 0
0 0 0


 , E2 =




0 0 0
0 0 0
1 0 0


 , E3 =




0 0 0
0 0 −1
0 1 0




be the standard basis of se (2). Then the bracket operation is given by [E2, E3] = E1,
[E3, E1] = E2, and [E1, E2] = 0. Let (E∗

1 , E∗
2 , E∗

3 ) denote the dual of the standard
basis. An element p = p1E

∗
1 + p2E

∗
2 + p3E

∗
3 will be written as p =

[
p1 p2 p3

]
.

The group of linear Poisson automorphisms of se (2)∗− is given by


p 7→ p




x y v
−ςy ςx w
0 0 ς


 : x, y, v, w ∈ R, x2 + y2 6= 0, ς = ±1



 .

Now consider a Hamiltonian H on se (2)∗−. The equations of motion take the
following form

ṗi = −p([Ei, dH(p)]), i = 1, 2, 3

or, explicitly, 



ṗ1 =
∂H

∂p3
p2

ṗ2 = −∂H

∂p3
p1

ṗ3 =
∂H

∂p2
p1 − ∂H

∂p1
p2·

We note that C : se (2)∗ → R, C(p) = p2
1 + p2

2 is a Casimir function.

3.2 Equivalence of systems

Consider a (homogeneous) quadratic Hamilton-Poisson system HQ(p) = pQp>,
where Q is a positive semidefinite 3× 3 matrix.

Theorem 3.1. Let H0(p) = 0, H1(p) = 1
2 p2

1, H2,α(p) = 1
2

(
p2
2 + α p2

3

)
, and H3,α(p) =

1
2 α p2

3. There exist a linear Poisson automorphism ψ and constants α, γ > 0 such
that

(HQ + C) ◦ ψ = H + γ C

for some H ∈ {H0,H1,H2,α,H3,α}.
Proof. Let

Q =




a1 b1 b2

b1 a2 b3

b2 b3 a3


 .

First, let us assume a3 = 0. The 2 × 2 principle minors of Q are then a1a2 −
b2
1, −b2

2, and −b2
3. As Q is positive semidefinite (shortly PSD), all principle minors

are nonnegative. Thus b2 = b3 = 0. Now,

ψ1 : p 7→ p Ψ1, Ψ1 =




1 y 0
−y 1 0
0 0 1



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is a linear Poisson automorphism for all y ∈ R. Also,

((HQ + C) ◦ ψ1) (p) = p Ψ1 (Q + C) Ψ>1 p>

Ψ1 (Q + C)Ψ>1 =




a′1,y b1 + y (a2 − a1)− y2b1 0
b1 + y (a2 − a1)− y2b1 a′2,y 0

0 0 0




for some a′1,y, a′2,y ∈ R. Furthermore, b1 + y (a2 − a1)− y2b1 = 0 has a real solution
for y. Thus there exists y ∈ R such that

((HQ + C) ◦ ψ1)(p) = a′1,yp2
1 + a′2,yp2

2.

Note that
[
a1 b1

b1 a2

]
is PSD and so

[
1 + a1 b1

b1 1 + a2

]
is positive definite (shortly

PD). We have

[
1 y
−y 1

] [
1 + a1 b1

b1 1 + a2

] [
1 y
−y 1

]>
=

[
a′1,y 0
0 a′2,y

]
.

Thus a′1,y, a′2,y > 0.
Suppose a′1,y − a′2,y = 0. Then (HQ + C) ◦ ψ1 = H0 + γ C, where γ = a′1,y > 0.

Now suppose a′1,y − a′2,y 6= 0. Then

ψ2 : p 7→ p Ψ2, Ψ2 =




1√
2|a′1,y−a′2,y|

0 0

0 1√
2|a′1,y−a′2,y|

0

0 0 1




is a linear Poisson automorphism such that

(
(HQ + C) ◦ (ψ1 ◦ ψ2)

)
(p) = a′1,y

2|a′1,y−a′2,y|p
2
1 + a′2,y

2|a′1,y−a′2,y|p
2
2

= a′1,y−a′2,y

2|a′1,y−a′2,y|p
2
1 + a′2,y

2|a′1,y−a′2,y|C(p).

Suppose a′1,y−a′2,y > 0. Then (HQ +C)◦ψ1 = H1 +γ C, where γ = a′2,y

2|a′1,y−a′2,y| > 0.
Suppose a′1,y − a′2,y < 0. Then

ψ3 : p 7→ p Ψ3, Ψ3 =




0 1 0
−1 0 0
0 0 1




is a linear Poisson automorphism such that

(
(HQ + C) ◦ (ψ1 ◦ ψ2 ◦ ψ3)

)
(p) = a′2,y

2|a′1,y−a′2,y|p
2
1 + a′1,y

2|a′1,y−a′2,y|p
2
2

= a′2,y−a′1,y

2|a′1,y−a′2,y|p
2
1 + a′1,y

2|a′1,y−a′2,y|C(p).

Therefore (HQ + C) ◦ (ψ1 ◦ ψ2 ◦ ψ3) = H1 + γ C, where γ = a′1,y

2|a′1,y−a′2,y| > 0.
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On the other hand suppose a3 6= 0. Then

ψ4 : p 7→ pΨ4, Ψ4 =




1 0 − b2
a3

0 1 − b3
a3

0 0 1




is a linear Poisson automorphism such that
(
(HQ + C) ◦ ψ4

)
(p) = p Ψ4 (Q + C)Ψ>4 p>

Ψ4 (Q + C)Ψ>4 =




1 + a1 − b22
a3

b1 − b2b3
a3

0

b1 − b2b3
a3

1 + a2 − b23
a3

0
0 0 a3


 .

Now Ψ4 (Q + C)Ψ>4 = Ψ4 QΨ>4 + C. Hence Ψ4 (Q + C)Ψ>4 is PD.
Let

Q′ = Ψ4 (Q + C)Ψ>4 =




a′1 b′1 0
b′1 a′2 0
0 0 a3




for some a′1, a
′
2, b

′
1 ∈ R. As before, there exists a linear Poisson automorphism ψ1

such that
(
(HQ + C) ◦ (ψ4 ◦ ψ1)

)
(p) = a′′1p2

1 + a′′2p2
2 + a3p

2
3

= (a′′2 − a′′1)p2
2 + a3p

2
3 + a′′1C(p)

for some a′′1 , a′′2 > 0.
Suppose a′′2−a′′1 = 0. Then (HQ+C)◦(ψ4◦ψ1) = H3,α+γ C, where α = 2a3 > 0

and γ = a′′1 > 0. Now suppose a′′2 − a′′1 6= 0. Then

ψ5 : p 7→ p Ψ5, Ψ5 =




1√
2|a′′2−a′′1 |

0 0

0 1√
2|a′′2−a′′1 |

0

0 0 1




is a linear Poisson automorphism such that

(
(HQ + C) ◦ (ψ4 ◦ ψ1 ◦ ψ5)

)
(p) = a′′2−a′′1

2|a′′2−a′′1 |p
2
2 + a3p

2
3 + a′′1

2|a′′2−a′′1 |C(p).

Suppose a′′2−a′′1 > 0. Then (HQ+C)◦(ψ4◦ψ1◦ψ5) = H2,α+γ C, where α = 2a3 > 0
and γ = a′′1

2|a′′2−a′′1 | > 0. Suppose a′′2 − a′′1 < 0. Then

(
(HQ + C) ◦ (ψ4 ◦ ψ1 ◦ ψ5 ◦ ψ3)

)
(p) = a′′1−a′′2

2|a′′2−a′′1 |p
2
2 + a3p

2
3 + a′′2

2|a′′2−a′′1 |C(p).

Therefore (HQ + C) ◦ (ψ4 ◦ ψ1 ◦ ψ5 ◦ ψ3) = H2,α + γ C, where α = 2a3 > 0 and
γ = a′′2

2|a′′2−a′′1 | > 0. ¤

Corollary 3.2. HQ is equivalent to H0, H1, H2,α, or H3,α.
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Accordingly, the integral curves of ~HQ are simply the images, under some linear
Poisson automorphism, of the integral curves of ~H0, ~H1, ~H2,α, or ~H3,α. The system
H0 is trivial, i.e., ~H0(p) = 0. The equations of motion for H1 are ṗ1 = ṗ2 = 0,
ṗ3 = −p1p2. On the other hand, the equations of motion for H2,α and H3,α are,
respectively,





ṗ1 = α p2p3

ṗ2 = −α p1p3

ṗ3 = p1p2

(3.1)





ṗ1 = α p2p3

ṗ2 = −α p1p3

ṗ3 = 0.

(3.2)

4 Stability

We investigate the stability nature of the dynamical system (3.1), i.e., ~H2,α. The
equilibrium states are

eν
1 = (ν, 0, 0), eν

2 = (0, ν, 0) and eµ
3 = (0, 0, µ)

where µ, ν ∈ R, ν 6= 0.

Theorem 4.1. The equilibrium states have the following behaviour.

(i) Each equilibrium state eν
1 is stable.

(ii) Each equilibrium state eν
2 is unstable.

(iii) Each equilibrium state eµ
3 is stable.

Proof. The linearization of the system is given by



0 α p3 α p2

−α p3 0 −α p1

p2 p1 0


 ·

Let Hχ = H2,α + χ(C) be an energy-Casimir function, i.e.,

Hχ(p1, p2, p3) = 1
2 p2

2 + 1
2 α p2

3 + χ(p2
1 + p2

2)

where χ ∈ C∞(R). The derivative is given by

dHχ =
[
2p1χ̇(p2

1 + p2
2) p2 + 2p2χ̇(p2

1 + p2
2) α p3

]
.

The derivative dHχ vanishes at eν
1 if and only if χ̇(ν2) = 0. Then the Hessian (at

eν
1)

d2Hχ(ν, 0, 0) = diag
(
4ν2χ̈(ν2), 1, α

)

is positive definite if and only if χ̈(ν2) > 0. The function χ(x) = 1
2x2 − xν2 satisfies

these requirements. Hence, by the standard energy-Casimir method, eν
1 is stable.
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The linearization of the system at eν
2 has eigenvalues λ1 = 0, λ2,3 = ±√α. Thus

eν
2 is unstable.

Let Hλ = λ0H2,α + λ1C, where λ0 = 0, λ1 = 1. Suppose µ 6= 0. Then
dHλ(0, 0, µ) =

[
2p1 2p2 0

]
(0,0,µ)

= 0 and d2Hλ(0, 0, µ) = diag (2, 2, 0). Also,

W = ker dH2,α(eµ
3 ) ∩ ker dC(eµ

3 ) = span {(1, 0, 0), (0, 1, 0)}

and so d2Hλ(0, 0, µ)
∣∣
W×W

= diag (2, 2) is positive definite. Hence, by the extended
energy-Casimir method, eµ

3 , µ 6= 0 is stable. On the other hand, suppose µ = 0. We
have d (H + C)(e0

3) = 0 and d2 (H + C)(e0
3) = diag (2, 3, α). Thus the state e0

3 is
stable. ¤

The equilibrium states for the dynamical system (3.2), i.e., ~H3,α, are

eµ,ν
1 = (µ, ν, 0) 6= 0 and eµ

3 = (0, 0, µ)

where µ, ν ∈ R. We have the following result.

Theorem 4.2. The equilibrium states have the following behaviour.

(i) Each equilibrium state eµ,ν
1 is unstable.

(ii) Each equilibrium state eµ
3 is stable.

5 Explicit integration

The equations of motion (3.1) and (3.2) can be integrated by Jacobi elliptic functions.
We obtain explicit expressions for the integral curves of ~H2,α and ~H3,α (but shall
omit any discussion of constant solutions).

Consider an integral curve p(·) : (−ε, ε) → se (2)∗ of ~H2,α. Let c0 = C(p(0)) > 0
and h0 = H2,α(p(0)) > 0. (If c0 = 0 or h0 = 0, then p(·) is a constant solution.)
There are three typical cases for the integral curves of ~H2,α corresponding to (a)
c0 < 2h0, (b) c0 = 2h0, and (c) c0 > 2h0. In Figure 1, we graph the level sets
of H2,α and C and their intersection for some suitable values of h0, c0, and α.
The stable equilibrium points (illustrated in blue) and unstable equilibrium points
(illustrated in red) are also plotted in each case.

We begin with case (a).

Theorem 5.1. Suppose p(·) : (−ε, ε) → se(2)∗ is an integral curve of ~H2,α such
that H2,α(p(0)) = h0 > 0, C(p(0)) = c0 > 0, and c0 < 2h0. Then there exist t0 ∈ R
and σ ∈ {−1, 1} such that p(t) = p̄(t + t0) for t ∈ (−ε, ε), where





p̄1(t) =
√

c0 cn (Ω t, k)
p̄2(t) = σ

√
c0 sn (Ω t, k)

p̄3(t) = −σ
√

2h0
α dn (Ω t, k) .

Here k =
√

c0
2h0

and Ω =
√

2αh0.
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(b) c0 = 2h0

-2
0

2 E1
*

-2

0

2

E2
*

-2

0

2

E3
*

-2
0

2 E1
*

-2

0

2

E2
*

-2

0

2

E3
*

(c) c0 > 2h0

Figure 1: Typical cases for ~H2,α

Proof. Suppose p̄(·) is an integral curve of ~H2,α satisfying the conditions of the
theorem. Then, as C and H2,α are constants of motion, we get

p̄2(t)2 = c0 − p̄1(t)2 and p̄2
3(t) = 1

α (p̄1(t)2 − 2h0 − c0).

Substituting these expressions into the equation
(

d
dt p̄1(t)

)2
= α2p̄2(t)2p̄3(t)2 yields a

separable differential equation. Hence we have

√
α t =

∫
dp̄1√

(p̄2
1 + 2h0 − c0)(c0 − p̄2

1)
·

Applying the integral formula (2.1) we get p̄1(t) =
√

c0 cn (Ω t, k), where k =
√

c0
2h0

and Ω =
√

2αh0. Then c0 cn (Ω t, k)2 + p̄2(t)2 = c0 and so p̄2(t) = σ
√

c0 sn (Ω t, k)
for some σ ∈ {−1, 1}. Thus d

dt p̄3(t) = σ c0 cn (Ω t, k) sn (Ω t, k) and so p̄3(t) =

−σ
√

2h0
α dn (Ω t, k). An easy calculation shows that d

dt p̄(t) = ~H2,α(p̄(t)) for σ ∈
{−1, 1}. Thus p̄(· ) is an integral curve of ~H2,α for any 0 < c0 < 2h0 and α > 0.

We claim that any integral curve p(·) (as described in the statement of the the-
orem) must be of the form p(t) = p̄(t + t0) for some σ ∈ {−1, 1} and t0 ∈ R (see
Figure 1a). Let σ = sgn(p3(0)). We may assume σ 6= 0. Note that (p̄1(t), p̄2(t))
parametrizes the circle S = {(x, y) : x2 + y2 = c0}. We have p1(0)2 + p2(0)2 = c0,
i.e., (p1(0), p2(0)) ∈ S. Therefore, there exists t0 ∈ R such that p̄1(t0) = p1(0) and
p̄2(t0) = p2(0). Accordingly, we get

p3(0)2 = 2
α (h0 − 1

2p2(0)2) = 2
α (h0 − 1

2 p̄2(t0)2) = p̄3(t0)2.
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Hence, as sgn(p3(t0)) = σ = sgn(p3(0)), we have p3(0) = p̄3(t0). Thus the integral
curves t 7→ p(t) and t 7→ p̄(t+ t0) solve the same Cauchy problem, and therefore are
identical. ¤

By utilizing formula (2.2), a similar argument can be made for case (c).

Theorem 5.2. Suppose p(·) : (−ε, ε) → se(2)∗ is an integral curve of ~H2,α such
that H2,α(p(0)) = h0 > 0, C(p(0)) = c0 > 0, and c0 > 2h0. Then there exist t0 ∈ R
and σ ∈ {−1, 1} such that p(t) = p̄(t + t0) for t ∈ (−ε, ε), where





p̄1(t) = σ
√

c0 dn (Ω t, k)

p̄2(t) =
√

2h0 sn (Ω t, k)

p̄3(t) = −σ
√

2h0
α cn (Ω t, k) .

Here k =
√

2h0
c0

and Ω =
√

αc0.

Next we consider case (b).

Proposition 5.3. Suppose p(·) : (−ε, ε) → se(2)∗ is an integral curve of ~H2,α such
that H2,α(p(0)) = h0 > 0, C(p(0)) = c0 > 0, and c0 = 2h0. Then there exist t0 ∈ R
and σ1, σ2 ∈ {−1, 1} such that p(t) = p̄(t + t0) for t ∈ (−ε, ε), where





p̄1(t) = σ1
√

c0 sech (
√

αc0 t)
p̄2(t) = σ1σ2

√
c0 tanh (

√
αc0 t)

p̄3(t) = −σ2

√
c0
α sech (

√
αc0 t) .

Proof. By limiting h0 → 1
2c0 in Theorem 5.1 (or Theorem 5.2), and allowing for

possible changes in sign, we obtain the following prospective integral curve for ~H2,α

p̄1(t) = ς1
√

c0 sech (Ω t)
p̄2(t) = ς2

√
c0 tanh (Ω t)

p̄3(t) = ς3

√
c0
α sech (Ω t)

where Ω =
√

αc0 and ς1, ς2, ς3 ∈ {−1, 1}. We investigate under which conditions
p̄(·) is an integral curve. Now

d

dt
p̄1(t)− α p̄2(t)p̄3(t) = − (ς1 + ς2ς3)

√
c0 Ωsech(Ω t) tanh(Ω t).

Therefore, if ς1 = σ1, ς2 = σ1σ2, ς3 = −σ2, and σ1, σ2 ∈ {−1, 1}, then d
dt p̄1(t) =

α p̄2(t)p̄3(t). It is easy to verify that in this case p̄(·) is indeed an integral curve. Any
integral curve p(·) (as described in the statement of the theorem) is then of the form
p(t) = p̄(t + t0) for some σ1, σ2 ∈ {−1, 1} and t0 ∈ R (see Figure 1b). ¤

Finally, let us consider the integral curves of ~H3,α. There is only one typical case.
As before, we graph the level sets of H3,α and C and their intersection in Figure 2.
A straightforward computation gives the solutions.
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Figure 2: Typical case for ~H3,α

Proposition 5.4. Suppose p(·) : (−ε, ε) → se(2)∗ is an integral curve of ~H3,α such
that H3,α(p(0)) = h0 > 0 and C(p(0)) = c0 > 0. Then there exist t0 ∈ R and
σ ∈ {−1, 1} such that p(t) = p̄(t + t0) for t ∈ (−ε, ε), where





p̄1(t) =
√

c0 sin(
√

2αh0 t)

p̄2(t) = σ
√

c0 cos(
√

2αh0 t)

p̄3(t) = σ
√

2h0
α ·

6 Concluding remark

Quadratic Hamilton-Poisson systems on Lie-Poisson spaces can be linked to invariant
optimal control problems on Lie groups (with affine dynamics and quadratic cost).
The Pontryagin Maximum Principle provides necessary conditions for optimality of
trajectory-control pairs (g(·), u(·)). For an optimal control problem (1.1), it turns
out that every (normal) extremal control is given by u(t) = Q−1 B> p(t)> ([8]). Here
B =

[
B1 · · · B`

]
is a 3× ` matrix and p(·) : [0, T ] → se (2)∗ is an integral curve

of the system H(p) = 1
2 pBQ−1 B> p>. Notice that 1

2 BQ−1 B> is a 3× 3 positive
semidefinite matrix of rank `. Thus each extremal control is the image (under a linear
map) of an integral curve of one of the systems considered in this paper.
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