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Abstract. This paper contains some results of the theory of spectral and
S-spectral systems of commuting operators. The restrictions and the quo-
tients of spectral systems with respect to invariant subspaces are studied
here and it proves that they are S-spectral systems. We also prove that
if a = (a1, a2, . . . , an) ⊂ B(X) is spectral system, then every operator
ai (1 ≤ i ≤ n) is spectral, respectively if a is S-spectral system, then
every operator ai (1 ≤ i ≤ n) is Si-spectral, where Si = πiS and πi is
the projection corresponding to the index. We remark that if a system
a = (a1, a2, ..., an) is S-spectral, then a is also S-decomposable.
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1 Introduction

In this paper we recall several notations and definitions from the specialized literature,
which will be further needed.

Let X be a Banach space, let B(X) be the algebra of all linear bounded operators
on X and let PX be the set of the projectors on X.

Let a = (a1, a2, ..., an) ⊂ B(X) be a system of commuting operators (i.e. aiaj =
ajai, 1 ≤ i, j ≤ n), let Y be a subspace of X invariant to a (i.e. ajY ⊂ Y , 1 ≤ j ≤ n),
let b = a|Y = (a1|Y, a2|Y, ..., an|Y ) be the restriction system of a to Y and let ȧ =
(ȧ1, ȧ2, ..., ȧn) be the quotient system induced by a on the quotient space Ẋ = X|Y .

The system a = (a1, a2, ..., an) ⊂ B(X) is said to be nonsingular on X if the
Koszul complex E(a,X) is exact, where

E(X, a) : 0 → X = Λn[σ,X] δn−→ Λn−1[σ,X]
δn−1−−−→ . . .

δ3−→ Λ2[σ,X] δ2−→ Λ1[σ,X] δ1−→
Λ0[σ,X] = X → 0
or, equivalently, the complex F (a,X) is exact, where

F (X, a) : 0 → X = Λ0[σ,X] δ0

−→ Λ1[σ,X] δ1

−→ Λ2[σ,X] δ2

−→ ...
δn−2

−−−→ Λn−1[σ,X] δn−1

−−−→
Λn[σ,X] = X → 0 (see [16], [20]).
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The complement in Cn of the set of those elements z = (z1, z2, . . . , zn) ∈ Cn for
which the system z − a = (z1 − a1, z2 − a2, . . . , zn − an) is nonsingular on X is said
to be the spectrum of a on X and is denoted by σ(a,X) ([17]). The complement
of the reunion of all open sets V in Cn having the property that there is a form
ϕ ∈ Λn−1[σ∪dz̄, C∞(V,X)] satisfying the equality sx = (α⊕∂)ϕ is called the spectrum
of x ∈ X with respect to a and is denoted by sp(a, x) ([17]). The complement in Cn

of the set of all z = (z1, z2, . . . , zn) ∈ Cn such that there are an open neighborhood
V of z and n X-valued analytic functions f1, f2, . . . , fn on V , satisfying the identity
x ≡ (ζ1−a1)f1(ζ)+ · · ·+(ζn−an)fn(ζ), ζ ∈ V is said to be the local analytic spectrum
of x with respect to a and is denoted by σ(a, x) ([17]). In [15], J. Eschmeier proved
that the local spectra of x with respect to a are equal, sp(a, x) = σ(a, x).

We shall say that the system a = (a1, a2, . . . , an) ⊂ B(X) verifies the cohomology
property (L) if Hn−1(C∞(G,X), α⊕∂) = 0, for any open set G ⊂ Cn ([16], [20]). We
take: X[a](F ) = {x ∈ X; sp(a, x) ⊂ F} and Xa(F ) = {x ∈ X; σ(a, x) ⊂ F}, where
F ⊂ Cn.

We denote by Sa the complement in Cn of the set of those points ω ∈ Cn for which
there is an open polydisc Dω 3 ω with the property that Hp(A(Dω, X), αa) = 0, for
0 ≤ p ≤ n − 1 (where αa(z) = z − a, z ∈ Cn, A(Ω, X) is the space of all X-valued
analytic functions on Ω, Ω ⊂ C open). The set Sa will be called the analytic spectral
residuum of the system a. If Sa = f¡ , then we say that the system a has the single-
valued extension property (or a verifies the cohomology property (L)) ([17], [23]).

2 Restrictions and quotients of spectral systems

Lemma 2.1. If a = (a1, a2, . . . , an) ⊂ B(X) is a commuting operator system, Y ⊂ X
a closed linear subspace invariant to a and ȧ = (ȧ1, ȧ2, . . . , ȧn) ⊂ B(Ẋ) is the system
induced by a on quotient space Ẋ = X/Y, then:

(1) σ(a,X) ⊂ σ(a, Y ) ∪ σ(ȧ, Ẋ)

(2) σ(a, Y ) ⊂ σ(a,X) ∪ σ(ȧ, Ẋ)

(3) σ(ȧ, Ẋ) ⊂ σ(a,X) ∪ σ(a, Y ).

Also we have

(4) σ(a,X) \ σ(a, Y ) = σ(ȧ, Ẋ) \ σ(a, Y )

(5) σ(a,X) \ σ(ȧ, Ẋ) = σ(a, Y ) \ σ(ȧ, Ẋ)

(6) σ(ȧ, Ẋ) \ σ(a,X) = σ(a, Y ) \ σ(a, X)

(7) σ(a,X) ∪ σ(a, Y ) = σ(a,X) ∪ σ(ȧ, Ẋ) = σ(a, Y ) ∪ σ(ȧ, Ẋ) =
= σ(a, X) ∪ σ(a, Y ) ∪ σ(ȧ, Ẋ).

Proof. The inclusions (1), (2) and (3) follow from Lemma 1.2. ([21]). The assertions
and the primary verifications for the case of a single operator have been proved in [6]
for the first time, independent of [21]. The equalities (4), (5), (6) and (7) are directly
consequences of the inclusions (1), (2), (3). ¤
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Remark 2.1. From the inclusions (1), (2), (3) of the previous lemma, one may easily
notice that if a point z ∈ Cn belongs to one of the spectrum, then it also belongs to at
least one more or to all the three ones, thus it can not belong to only one spectrum.

The previous inclusions have been extended for closed operators in [15].
For the unidimensional case, n = 1, a = T ∈ B(X), the result is significant for

both operators T and Ṫ (if it is properly formulated, we believe it is also true for
systems n > 1; see Proposition 2.11).

Definition 2.2. Let Bn
S be the family of all Borelian sets B of Cn that have the

property B ∩ S = f¡ or S ⊂ B, where S ⊂ Cn is a compact fixed set.
An application ES : Bn

S → PX is called a (Cn, X) type S-spectral measure if the
following conditions are verified:

(1) ES( f¡ ) = 0, ES(Cn) = I

(2) ES(B1 ∩B2) = ES(B1)ES(B2), B1, B2 ∈ Bn
S

(3) ES

( ∞⋃
m=1

Bm

)
x =

∞∑
m=1

ES(Bm)x, Bm ∈ Bn
S , Bp ∩Bm = f¡ , if p 6= m, x ∈ X.

A commuting system a = (a1, a2, . . . , an) ⊂ B(X) is called S-spectral if there is a
(Cn, X) type S-spectral measure ES such that:

(4) ajES(B) = ES(B)aj , B ∈ Bn
S , 1 ≤ j ≤ n

(5) σ(a,ES(B)X) ⊂ B, B ∈ Bn
S .

In case that S = f¡ , we have Bn
∅ = B(Cn) (the family of all Borelian sets of Cn),

f¡ -spectral measure is spectral measure and f¡ -spectral system is spectral system
(see [17]).

Remark 2.3. A commuting system a = (a1, a2, . . . , an) ⊂ B(X) is S-spectral if and
only if it is written as a direct sum a = b ⊕ c, where b ⊂ B(X) is a spectral system
and σ(c,X) ⊂ S.

Proof. Indeed, if a is S-spectral and ES is the corresponding S-spectral measure, then
one easily verifies that the map E : B(Cn) → PX defined by E(B) = ES(B ∩ {S),
B ∈ B(Cn), is a spectral measure of system b = a|ES({S)X, while c = a|ES(S)X,
σ(c,X) = σ(a,ES(S)X) ⊂ S. Conversely, if b = (b1, b2, . . . , bn) ⊂ B(X1) is spectral
and c = (c1, c2, . . . , cn) ⊂ B(X2) is non spectral, with σ(c,X2) + σ(b,X1), by putting
S = σ(c,X2), X = X1⊕X2, a = b⊕ c, it results that the map ES : Bn

S → PX defined
by the equalities ES(B) = E(B)⊕0, if B∩S = f¡ and ES(B) = E(B)⊕I2, if B ⊃ S,
B ∈ Bn

S , is an S-spectral measure of a (where E is the spectral measure of b and I2

is the identity operator in X2). ¤

Proposition 2.2. Let a = (a1, a2, . . . , an) ⊂ B(X) be a spectral system and let E be
its spectral measure. Then each operator ai (1 ≤ i ≤ n) is spectral and its spectral
measure Ei is given by the equality Ei(B) = E(π−1

i (B)), where B ∈ B(C) (the family
of all Borelian sets of C) and πi is the corresponding projection.
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Proof. Let us notice that π−1
i (B) ∈ B(Cn) if B ∈ B(C). Obviously, we have

Ei( f¡ ) = E(π−1
i ( f¡ )) = E( f¡ ) = 0, Ei(C) = E(π−1

i (C)) = E(Cn) = I,

Ei(B1 ∩B2) = E(π−1
i (B1 ∩B2)) = E(π−1

i (B1) ∩ π−1
i (B2)) =

= E(π−1
i (B1))E(π−1

i (B2)) = Ei(B1)Ei(B2),

for B1, B2 ∈ B(C).
If (Bk)k∈N ⊂ B(C) is a sequence of disjunct Borelian sets, then (π−1

i (Bk))k∈N ⊂
B(Cn) is also a sequence of disjunct sets, hence for any x ∈ X we have

Ei

( ∞⋃

k=1

Bk

)
x = E

(
π−1

i

( ∞⋃

k=1

Bk

))
x = E

( ∞⋃

k=1

(π−1
i (Bk))

)
x =

=
∞∑

k=1

E(π−1
i (Bk))x =

∞∑

k=1

Ei(Bk)x.

It further follows that

aiEi(B) = aiE(π−1
i (B)) = E(π−1

i (B))ai = Ei(B)ai

and

σ(ai|Ei(B)X) = πiσ(a,Ei(B)X) = πiσ(a, E(π−1
i (B))X) ⊂

⊂ πi(π−1
i (B)) ⊂ πi(π−1

i (B)) = B,

for any B ∈ B(C) (for the inclusion π−1
i (B) ⊂ π−1

i (B), see [18]), hence ai is a spectral
operator with spectral measure Ei (1 ≤ i ≤ n). ¤

Definition 2.4. For the Banach space X, let S(X) be the family of all closed linear
subspaces of X, let S ⊂ Cn be a compact set and let FS(Cn) be the family of all
closed sets F ⊂ Cn which have the property: either F ∩ S = f¡ or F ⊃ S.

We shall call S-spectral capacity an application ES : FS(Cn) → S(X) that satisfies
the following properties:

1. ES( f¡ ) = {0}, ES(Cn) = X

2. ES

( ∞⋂

i=1

Fi

)
=

∞⋂

i=1

ES(Fi), for any sequence {Fi}i∈N ⊂ FS(Cn)

3. for any finite open S-covering GS

⋃ {Gj}m
j=1 of Cn we have

X = ES(GS) +
m∑

j=1

ES(Gj).

A system of commuting operators a = (a1, a2, . . . , an) ⊂ B(X) is said to be S-
decomposable if there is an S-spectral capacity ES such that:
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4. ajES(F ) ⊂ ES(F ), for any F ∈ FS(Cn), 1 ≤ j ≤ n

5. σ(a, ES(F )) ⊂ F, for any F ∈ FS(Cn).

For S = f¡ , F∅(Cn) = F(Cn) is the family of all closed sets F ⊂ Cn, the f¡ -
spectral capacity is said to be spectral capacity and the f¡ -decomposable system is
decomposable (see [17]).

Proposition 2.3. Let a = (a1, a2, . . . , an) ⊂ B(X) be an S-spectral system and let
ES be its S-spectral measure. Then a is an S-decomposable system, where

ES(F ) = ES(F )X, F ∈ FS(Cn)

is the S-spectral capacity of a.

Proof. From Remark 2.3, it follows that a = b ⊕ c, where b = a|ES(Cn \ S)X is
a spectral system, hence decomposable (Proposition 3.1.3, [17]), c = a|ES(S)X,
σ(a, ES(S)) = σ(a,ES(S)X) = σ(c,X) ⊂ S.

It can be directly shown that the map ES : FS(Cn) → S(X) defined by

ES(F ) = ES(F )X

is an S-spectral capacity for a, since for every B ∈ Bn
S , we have ES(B) = ES(B∩B) =

E2
S(B), thus ES(B) are (linear bounded) projectors on X and ES(F ) = ES(F )X are

closed subspaces of X, for F ∈ FS(Cn). ¤

Proposition 2.4. Let a = (a1, a2, . . . , an) ⊂ B(X) be an S-spectral system and let
ES be its S-spectral measure. Then each operator ai (1 ≤ i ≤ n) is Si-spectral, where
Si = πiS and πi is the corresponding projection.

Proof. Since a is S-spectral system, then we have a = b⊕c (see the proof of Proposition
2.3), where b = a|ES({S)X is a spectral system, c = a|ES(S)X and σ(c, ES(S)X) ⊂
S. Then ai = bi⊕ ci, where bi = ai|ES({S)X is a spectral operator (Proposition 2.2)
and σ(ci|ES(S)X) ⊂ Si (1 ≤ i ≤ n). According to Remark 3.1, [8], each operator ai

is Si-spectral, for 1 ≤ i ≤ n. ¤

Lemma 2.5. Let X be a Banach space and let X1, X2 be two closed linear subspaces
of X such that X1 ∩ X2 = {0} and X1 + X2 closed. If Yi ⊂ Xi (i = 1, 2) are two
closed linear subspaces, then Y1 + Y2 is closed.
Moreover, if a = (a1, a2, . . . , an) ⊂ B(X) is a decomposable (spectral) system and Z1,

Z2 are two closed invariant subspaces to a such that σ(a, Z1) ∩ σ(a, Z2) = f¡ , then
Z1 + Z2 is closed.

Proof. Indeed, if (yn)n ⊂ Y1 + Y2, yn → y ∈ X, then yn = y1
n + y2

n, yi
n ∈ Yi (i = 1, 2).

Since X1 + X2 is closed, by the closed graph theorem, it follows that yi
n → yi ∈ Yi

(i = 1, 2), hence y = y1 + y2 ∈ Y1 + Y2, i.e. Y1 + Y2 is closed.
For the second part of the proof, we have Z1 ⊂ Xa(σ(a, Z1)), Z2 ⊂ Xa(σ(a, Z2)),

Xa(σ(a, Z1)) ∩Xa(σ(a, Z2)) ⊆ Xa(σ(a, Z1) ∩ σ(a, Z2)) = Xa( f¡ ) = {0}, while

Xa(σ(a, Z1))⊕Xa(σ(a, Z2)) = Xa(σ(a, Z1) ∪ σ(a, Z2))

is closed subspace (Proposition 2.2.8, [17]), hence, from the first part of the proof, it
results that Z1 + Z2 is closed. ¤
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Remark 2.5. Let a = (a1, a2, . . . , an) ⊂ B(X) be a decomposable (spectral) system
and Z1, Z2 ⊂ X two closed invariant subspaces to a, with σ(a, Z1) ∩ σ(a, Z2) = f¡ .
Let ȧ be the system induced by a on the quotient space Ẋ = X/Z1 and let ϕ : X → Ẋ
be the canonical application. Then Z1 + Z2 is closed, Z2 can be identified with
Ż2 = ϕ(Z2) (since Z2 and Ż2 are topologically isomorphic), a|Z2 and ȧ|Ż2 are similar
and σ(a, Z2) = σ(ȧ, Ż2).

Lemma 2.6. Let T ∈ B(X), let Y be an invariant subspace to T and let Ṫ be the
operator induced by T on the quotient space Ẋ = X/Y . If T and Ṫ have the single-
valued extension property, then XT (σ(T |Y ) \ σ(Ṫ )) ⊂ Y .
Similar, if a = (a1, a2, . . . , an) ⊂ B(X), Y is an invariant subspace to a, ȧ =
(ȧ1, ȧ2, . . . , ȧn) ⊂ B(Ẋ) is the system induced by a on Ẋ = X/Y with Sa = Sȧ = f¡ ,
we have X[a](σ(a, Y ) \ σ(ȧ, Ẋ)) ⊂ Y (where Sa, Sȧ are the analytic spectral residuum
of a, respectively ȧ; see [23]).

Proof. If x ∈ XT (σ(T |Y ) \ σ(Ṫ )), we have σT (x) ⊂ σ(T |Y ) \ σ(Ṫ ) and

σṪ (ẋ) ⊂ σT (x) ∩ σ(Ṫ ) ⊂ (σ(T |Y ) \ σ(Ṫ )) ∩ σ(Ṫ ) = f¡ ,

hence ẋ = 0̇ and consequently x ∈ Y (because ST = f¡ and SṪ = f¡ imply that
γT (x) = σT (x), γṪ (ẋ) = σṪ (ẋ) and σṪ (ẋ) ⊂ σT (x); see Proposition 2.1, [6]).

J. Eschmeier proved in [15] that the local spectra of x with respect to a are equal,
i.e. σ(a, x) = sp(a, x), for any x ∈ X.

Let now suppose that x ∈ X[a](σ(a, Y ) \ σ(ȧ, Ẋ)), hence sp(a, x) = σ(a, x) ⊂
σ(a, Y ) \ σ(ȧ, Ẋ). We make the notation ζ = (ζ1, ζ2, . . . , ζn) ∈ Cn and from

(ζ1 − a1)f1(ζ) + (ζ2 − a2)f2(ζ) + ... + (ζn − an)fn(ζ) ≡ x

with fj analytic functions (j = 1, 2, . . . , n), it follows that

(ζ1 − ȧ1)ḟ1(ζ) + (ζ2 − ȧ2)ḟ2(ζ) + ... + (ζn − ȧn)ḟn(ζ) ≡ ẋ

hence σ(ȧ, ẋ) ⊂ σ(a, x) ⊂ σ(a, Y ) \ σ(ȧ, Ẋ). Then

σ(ȧ, ẋ) ⊂ (σ(a, Y ) \ σ(ȧ, Ẋ)) ∩ σ(ȧ, Ẋ) = f¡
hence ẋ = 0̇ and thus X[a](σ(a, Y ) \ σ(ȧ, Ẋ)) ⊂ Y . ¤

Lemma 2.7. Let a = (a1, a2, . . . , an) ⊂ B(X) be a spectral system with its spectral
measure E and let A ⊂ Cn be Borelian. Then the restriction b = a|E(A)X is a
spectral system with the spectral measure EA given by EA(B) = E(A ∩ B), for any
B ⊂ Cn Borelian.

Proof. One easily verifies that EA is a spectral measure of b; the fact that EA is a
spectral measure for b follows by the equalities

bjEA(B) = bjE(A ∩B) = E(A ∩B)bj = EA(B)bj , 1 ≤ j ≤ n

where bj = aj |Y , Y = E(A)X and from the relations

σ(b, EA(B)Y ) = σ(b, E(A ∩B)X) = σ(a,E(A ∩B)X) ⊂ B

for B ⊂ Cn Borelian. ¤
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Proposition 2.8. Let a = (a1, a2, . . . , an) ⊂ B(X) be a spectral system with the spec-
tral measure E, let Y be a linear closed subspace invariant to a, let ȧ = (ȧ1, ȧ2, . . . , ȧn)
be the system induced by a on Ẋ = X/Y and let ϕ : X → Ẋ be the canonical ap-
plication. Then ȧ = ḃ ⊕ ċ, where ḃ = ȧ|ϕ(E(σ′)X) is spectral, ċ = ȧ|ϕ(E(σ)X),
σ = σ(a, Y ), σ′ = σ(ȧ, Ẋ) \ σ(a, Y ) and σ(ċ, ϕ(E(σ)X)) ⊂ S = σ(ȧ, Ẋ) ∩ σ(a, Y ).

Proof. The system a|E(σ′)X is spectral (Lemma 2.7) and since Y ⊂ X[a](σ) = E(σ)X
(Proposition 3.1.3 and Theorem 2.2.1, [17]), we have Y ∩ E(σ′)X = {0}. Because
E(σ′)X +Y is closed (Lemma 2.5), then E(σ′)X +Y = E(σ′)X⊕Y and according to
Remark 2.5, ϕ(E(σ′)X) can be identified with E(σ′)X, respectively ḃ = ȧ|ϕ(E(σ′)X)
with a|E(σ′)X, meaning ḃ is spectral.

It is easily to verify that ϕ(X[a](σ)) = Ẋ[ȧ](σ) = Ẋ[ȧ](S) is spectral maximal space
of ȧ, consequently

σ(ċ, ϕ(E(σ)X)) = σ(ȧ, Ẋ[ȧ](S)) ⊂ S.

¤

Proposition 2.9. Let a = (a1, a2, . . . , an) ⊂ B(X) be a spectral system having the
spectral measure E, let Y be a closed invariant subspace to a with Xa(σ) ⊂ Y, where
σ = σ(a, Y ) \ σ(ȧ, Ẋ). Let also S = σ(a, Y ) ∩ σ(ȧ, Ẋ) and b = a|Y . Then b|E(σ)Y
and b|Xa(σ) are spectral systems and b = (b|E(σ)Y )⊕(b|E(S)Y ), with σ(b, E(S)Y ) ⊂
S ∩ σ(b, Y ).

Proof. σ being open in σ(b, Y ) and also in σ(a,X) (because σ = σ(a, Y ) \ σ(ȧ, Ẋ) =
σ(a,X) \ σ(ȧ, Ẋ); see Lemma 2.1), there is a growing sequence of closed sets (σn)n∈N
with σ =

⋃

n∈N
σn. From the continuity of the measure E(·)x, it results that E(σ) =

lim
n→∞

E(σn), therefore E(σn)X = Xa(σn) ⊂ Xa(σ) ⊂ Y (Proposition 3.1.3, [17])

implies that E(σ)X ⊂ Xa(σ) ⊂ Y . The closed subspaces E(σ)X and Xa(σ) are
invariant to a and to spectral measure E, thus a|E(σ)Y and a|Xa(σ) are spectral
systems. E(σ)|Y and E(S)|Y are projectors on Y , E(σ)Y and E(S)Y are closed
subspaces and Y = E(σ(a, Y ))Y = E(σ)Y ⊕ E(S)Y . We also obtain the relations

b = (b|E(σ)Y )⊕ (b|E(S)Y )

σ(b, E(S)Y ) ⊂ σ(b, E(S)X) ∩ σ(a, Y ) ⊂ S̃ ∩ σ(a, Y )

(if A ⊂ C is bounded, we denote Ã = C\D∞, where D∞ is the unbounded component
of C \A). ¤

Theorem 2.10. Let a = (a1, a2, . . . , an) ⊂ B(X) be a spectral system, with its spec-
tral measure E, let Y be a closed subspace invariant to a such that Xa(σ) ⊂ Y, where
σ = σ(a, Y ) \ σ(ȧ, Ẋ), S = σ(a, Y ) ∩ σ(ȧ, Ẋ). Then the systems a|Y and ȧ are
S-spectral.

Proof. The assertions follow easily by Propositions 2.8, 2.9 and Remark 2.3. ¤
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Proposition 2.11. Let T ∈ B(X), let Y be a linear closed subspace invariant to T
and let Ṫ be the quotient operator induced by T on the quotient space Ẋ = X/Y . If
D∞ is the unbounded component and (Dn)n∈N are the bounded components of ρ(T ),
where ρ(T ) is the resolvent set of T , then D∞ ∩ σ(Ṫ ) = f¡ and Dn ⊂ σ(Ṫ ) if and
only if Dn ⊂ σ(T |Y ) (i.e. if and only if there is λ0 ∈ Dn such that R(λ0, T )Y * Y ,
where R(λ, T ) = (λI − T )−1 is the resolvent of T ).

Proof. I.E. Seroggs (Duke Math. I. 21, 1, 95-111, 1959) proves that D∞∩σ(T |Y ) = f¡
and Dn ⊂ σ(T |Y ) if and only if there is λ0 ∈ Dn such that R(λ0, T )Y * Y . According
to Lemma 2.1 and Remark 2.1, Dn ⊂ σ(Ṫ ) if only if Dn ⊂ σ(T |Y ) and λ ∈ D∞ implies
λ /∈ σ(Ṫ ) (if λ ∈ σ(Ṫ ), λ /∈ σ(T ) then λ ∈ σ(T |Y ), contradictions!). ¤
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