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Abstract. By employing the concept of holomorphic flow, we establish
the existence solution of fractional parametric Cauchy problem in complex
Banach space of the form Dα

z ut(z) = fα(t, z, ut(z)), t ∈ [0,∞), 0 ≤ α <
1, subject to ut(0) = 0 in sense of Srivastava-Owa fractional operators.
Moreover, by using the concept of admissible functions in complex Banach
spaces, we show that the solution remains in the unit disk.
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1 Introduction

Fractional calculus and its applications (that is the theory of derivatives and integrals
of any arbitrary real or complex order) has importance in several widely diverse areas
of mathematical physical, control theory, mechanics and engineering sciences. It
generalized the ideas of integer order differentiation and n-fold integration. Fractional
derivatives introduce an excellent instrument for the description of general properties
of various materials and processes. This is the main advantage of fractional derivatives
in comparison with classical integer-order models, in which such effects are in fact
neglected. The advantages of fractional derivatives become apparent in modeling
mechanical and electrical properties of real materials, as well as in the description of
properties of gases, liquids and rocks, and in many other fields (see [2,14,15,16,18,22]).

The class of fractional differential equations of various types plays important roles
and tools not only in mathematics but also in physics, control systems, dynamical
systems and engineering to create the mathematical modeling of many physical phe-
nomena. Naturally, such equations required to be solved. Many studies on fractional
calculus and fractional differential equations, involving different operators such as
Riemann-Liouville operators [13], Erdlyi-Kober operators [5], Weyl-Riesz operators
[17], Caputo operators [12] and Grnwald-Letnikov operators [19], have appeared dur-
ing the past three decades. The existence of holomorphic solutions for different kind
of fractional differential equations in complex domain are imposed in [6-9].
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By employing the concept of holomorphic flow, we establish the existence solution
of fractional parametric Cauchy problem in sense of Srivastava-Owa fractional oper-
ators in complex domain. Moreover, by using the concept of admissible functions in
complex Banach spaces, we show that the solution remain in the unit disk.

2 Preliminaries

In [21], Srivastava and Owa, gave definitions for fractional operators (derivative and
integral) in the complex z-plane C as follows:

Definition 2.1. The fractional derivative of order α is defined, for a function
f(z), by

Dα
z f(z) :=

1
Γ(1− α)

d

dz

∫ z

0

f(ζ)
(z − ζ)α

dζ; 0 ≤ α < 1,

where the function f(z) is analytic in simply-connected region of the complex z-plane
C containing the origin and the multiplicity of (z − ζ)−α is removed by requiring
log(z − ζ) to be real when(z − ζ) > 0.

Definition 2.2. The fractional integral of order α is defined, for a function f(z),
by

Iα
z f(z) :=

1
Γ(α)

∫ z

0

f(ζ)(z − ζ)α−1dζ; α > 0,

where the function f(z) is analytic in simply-connected region of the complex z-plane
(C) containing the origin and the multiplicity of (z − ζ)α−1 is removed by requiring
log(z − ζ) to be real when(z − ζ) > 0.

Remark 2.1.

Dα
z zµ =

Γ(µ + 1)
Γ(µ− α + 1)

zµ−α, µ > −1; 0 ≤ α < 1

and

Iα
z zµ =

Γ(µ + 1)
Γ(µ + α + 1)

zµ+α, µ > −1; α > 0.

Definition 2.3. Let X be a topological space. A family of mappings ϕ ∈ C([0,∞)×
X, X) is called a flow on X if
(i) ϕ(0, x) = x, ∀x ∈ X,
(ii) ϕ(t + s, x) = ϕ(s, ϕ(t, x)), ∀x ∈ X, t, s ∈ [0,∞).

We also write ϕ(t, x) = ϕt(x). When ϕt is a flow of holomorphic mappings from a
domain G ⊆ C into itself we say that ϕt is a holomorphic flow on G. It was shown in
[10], every holomorphic flow on G is univalent. Furthermore, we have the following
result which can be found in [10,11]:

Lemma 2.1. If ϕt is a nontrivial holomorphic flow on C, then every ϕt can have
at most one fixed point in C. Moreover, if ϕt does not have fixed points in C, then
ϕt(z) = z + Kt for some K ∈ C,K 6= 0, i.e. ϕt is a translation flow.

Definition 2.4. Let G(t) ⊆ C be a family of simply connected domains such that
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(i) 0 ∈ G(s) ⊆ G(t) if 0 ≤ s < t < ∞,
(ii) G(tn) → G(t) if tn → t, and G(tn) → C if tn →∞.

Let U = {z : |z| < 1} be the open unit disk, and f(z, t) : U × [0,∞) → G(t) be the
univalent function such that f(0, t) = 0 and f ′(0, t) > 0. Then

f(z, s) ¹ f(z, t) 0 ≤ s < t < ∞.

i.e. there exists a univalent map ϕ(z, s, t) from the disk into the disk, fixing 0, so that
f(z, s) = f(ϕ(z, s, t), t) with the flow property

ϕ(z, s, τ) = ϕ(ϕ(z, s, t), t, τ) := ϕs,τ (z), ϕt,t(z) = idU ,

where 0 ≤ s ≤ t ≤ τ < ∞. The family f(z, t) is called a Loewner chain.

3 The fractional Cauchy problems

In this section, we establish the solution for the fractional parametric Cauchy problem
of the form

(3.1) Dα
z ut(z) = fα(t, z, ut(z)), z ∈ U, 0 ≤ α < 1, t ∈ [0,∞),

where ut(0) = 0. Here, we concern about functions of the form

(3.2) fα(t, z, ut(z)) =
1

Γ(2− α)

(
etz1−α + b2(t)z2−α + ...

)
,

such that bj(0) = 0, ∀j = 2, 3, ... . These functions ( for every fixed t and for some α)
are holomorphic univalent map of U onto any subset of C containing the origin.

Theorem 3.1. Let the function fα : [0,∞)× U ×C→ C be a Loewner chain for
some α. Then the problem (3.1) has a solution in C.

Proof. Assume that U is a topological space containing absolutely converge ana-
lytic functions. Let B be a complex Banach space of all holomorphic bounded func-
tions on the unit disk endow with the sup norm. Define an operator Φt : B −→ B
by

(3.3) (Φu)t(z) = Iα
z fα(t, z, ut(z)), z ∈ U, t ∈ [0,∞).

This operator is bounded

|(Φu)t(z)| = | 1
Γ(α)

∫ z

0

(z − ζ)α−1fα(t, ζ, ut(ζ))dζ|

≤ |fα|| 1
Γ(α)

∫ z

0

(z − ζ)α−1dζ|

≤ |fα|
Γ(α + 1)

:= r.

Thus Φu is bounded in the set Sr := {w ∈ B : ‖w‖ ≤ r, r > 0}. By continuity of f,
we have Φt is continuous on U. Our aim is to apply Lemma 2.1; we prove that Φt is
holomorphic flow. In view of Remark 2.1, a computation implies

(Φu)0(z) = Iα
z fα(0, z, u0(z)) = z.



Existence of fractional parametric Cauchy problem 77

Since f is a a Loewner chain, then from Definition 4.1, yields that Φt is a holomorphic
flow; thus in virtue of Lemma 2.1, Φt has at most one fixed point on U. By formula
(3.2), we pose that

(Φu)t(z) = etz +
Γ(3− α)
2Γ(2− α)

b2(t)z2 + ... ;

hence Φt has a fixed point corresponding to the solution of the problem (3.1). This
completes the proof. ¤

Remark 3.1. Problem (3.1) has a locally univalent solution on U. This solution
satisfies the following properties:
(i) It takes the form

u(t, z) = etz + a2(t)z2 + ....;

(ii) It is absolutely continuous in t ≥ 1 for all z ∈ U ;

Definition 3.1. Let ut(z) be a solution for the problem (3.1). Then it is called a
stable on U, if there exists a positive function Ψ : [0,∞)×U ×U −→ [0,∞) such that

|ut(z)− ut(w)| ≤ Ψ(t, z, w), z, w ∈ U.

Theorem 3.2. Let ut be a solution of problem (3.1). Then ut is stable on U.

Proof. By Remark 3.1, we have

|ut(z)− ut(w)| = |et(z − w) + a2(t)(z2 − w2) + ....|
≤ et|z − w|+ |a2(t)|z2 − w2|+ ...

≤ et|z − w|+ |a2(t)||z − w|2 + ...

:= Ψ(t, z, w), z, w ∈ U.

Hence ut is stable. ¤

4 Extension to Banach spaces

In this section, we shall provide an extension of the solution to holomorphic vector-
valued function. Let X, Y represent complex Banach spaces. The class of admissible
functions G(X, Y ), consists of those functions g : [0,∞)×U ×X → Y that satisfy the
admissibility conditions:

(4.1) ‖gt(z, x)‖ ≥ 1, when ‖x‖ = 1, z ∈ U, x ∈ X.

We need the following results:

Lemma 4.1. [4] If f : D → X is holomorphic, then ‖f‖ is a subharmonic of
z ∈ D ⊂ C. It follows that ‖f‖ can have no maximum in D unless ‖f‖ is of constant
value throughout D.

Theorem 4.1. Let f ∈ G(X,Y ). If ut : U → X is a holomorphic vector-valued
solution for (3.1) defined in the unit disk U, with u(0) = Θ (the zero vector in X),
then

(4.2) ‖f(z, x)‖ < 1 =⇒ ‖u(z)‖ < 1.
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Proof. Assume that ‖u(z)‖ ≮ 1 for z ∈ U. Thus, there exists a point z0 ∈ U for
which ‖ut(z0)‖ = 1. According to Lemma 4.1, we have

‖ut(z)‖ < 1, z ∈ Ur0 = {z : |z| < |z0| = r0},

and
max
|z|≤|z0|

‖ut(z)‖ = ‖ut(z0)‖ = 1.

Hence from equation (4.1), we deduce ‖f(z0, xΘ)‖ ≥ 1, which contradicts the hypoth-
esis in (4.2), we must have ‖ut(z)‖ < 1. ¤

Theorem 4.2. Let fα be a contraction holomorphic mapping for the hyperbolic
metric space. Then there exists a constant R < 1 (depends on α, t and r ) such that

(4.3) |ut(z)| < R, |z| < r < 1, 0 ≤ t < ∞.

Proof. It is enough to show that fα is bounded in U. Assume this is not true. Then
there exist two sequences {zn}, {tn} such that |zn| < r, zn → z0, tn ∈ [0,∞), tn → t0,
and |fα(tn, zn, utn(zn))| → 1. Since the map fα is a contraction for the hyperbolic
metric, we have that

ρU

(
fα(tn, zn, utn(zn)), fα(tn, z0, utn(z0))

)
≤ ρU

(
zn, z0

)
,

this implies that
|fα(tn, z0, utn(z0))| → 1.

In addition, we have

ρU

(
fα(t, z0, u0(z0)), fα(tn, z0, utn(z0))

)
≤ ρU

(
fα(t, z0, u0(z0)), z0

)
< ∞.

This yields that
|fα(t, z0, utn(z0))| −→ 1;

but
fα(tn, z0, utn(z0)) −→ fα(t, z0, ut(z0)) ∈ U,

which contradicts the assumption of the theorem; hence there is a constant R < 1
satisfying (4.3). ¤

Theorem 4.3. Let fα(t, z, ut(z)) be measurable in t ∈ [0,∞) for all z ∈ U,
holomorphic in z ∈ U for all t ∈ [0,∞) and for any compact set U1 ∈ U and for all
T > 0 there exists a non-negative function k ∈ Ld([0, T ],R), d ∈ [1,∞] (depends on
T,U1) such that

|fα(t, z, ut(z))| ≤ k(t), t ∈ [0, T ].

Then there exists a non-negative function k̃ ∈ Ld([0, T ],R), d ∈ [1,∞] such that

(4.4) |fα(t, z, ut(z))− fα(t, w, ut(w))| ≤ k̃(t)|ut(z)− ut(w)|

for almost every t ∈ [0, T ].
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Proof. Fix compact sets U1 := {z : |z| ≤ r < 1} and U2 := {u : |u| ≤ R1 < R < 1}.
Assume that fα is holomorphic in U1 and U2 and continuous in ∂U1 and ∂U2. Denote
by Ũ := ∂U1 × ∂U2. Taking z, w ∈ U1 and ut(z), ut(w) ∈ U2, by Cauchy integral’s
formula, we have

|fα(t, z, ut(z))− fα(t, w, ut(w))|

=
∣∣∣( 1

2πi
)2

∫ ∫

Ũ

fα(t, ζ, ut(ζ))
(ζ − z)(ut(ζ)− ut(z))

dζ − fα(t, ζ, ut(ζ))
(ζ − w)(ut(ζ)− ut(w))

dζ
∣∣∣

=
∣∣∣( 1

2πi
)2

∫ ∫

Ũ

fα(t, ζ, ut(ζ))

× (ζ − w)(ut(ζ)− ut(w))− (ζ − z)(ut(ζ)− ut(z))
(ζ − z)(ut(ζ)− ut(z))(ζ − w)(ut(ζ)− ut(w))

dζ
∣∣∣

≤ 1
(2π)2

∫ ∫

Ũ

|fα(t, ζ, ut(ζ))|

× |(ζ − w)(ut(ζ)− ut(w))− (ζ − z)(ut(ζ)− ut(z))|
|(ζ − z)(ut(ζ)− ut(z))(ζ − w)(ut(ζ)− ut(w))| |dζ|

≤ 1
π2

∫ ∫

Ũ

k(t)
|ut(z)− ut(w)|

(1− r)2(1−R1)2
|dζ|

≤ k(t)|ut(z)− ut(w)|
(1− r)2(1−R1)2

:= k̃(t)|ut(z)− ut(w)|,

which completes the proof. ¤

Theorem 4.4. Let the assumptions of Theorem 4.3 hold. Then there exists a
non-negative function k̂ ∈ Ld([0, T ],R), d ∈ [1,∞] such that

(4.5) |fα(t, z, ut(z))− fα(t, z, vt(z))| ≤ k̂(t)|ut(z)− vt(z)|

for almost every t ∈ [0, T ].

Proof. In the same manner of the Proof of Theorem 4.3, we obtain

|fα(t, z, ut(z))− fα(t, z, vt(z))|

=
∣∣∣( 1

2πi
)2

∫ ∫

Ũ

fα(t, ζ, ut(ζ))
(ζ − z)(ut(ζ)− ut(z))

dζ − fα(t, ζ, vt(ζ))
(ζ − z)(vt(ζ)− vt(z))

dζ
∣∣∣

≤ 1
(2π)2

∫ ∫

Ũ

k(t)
|(vt(ζ)− vt(z))− (ut(ζ)− ut(z))|

|(ζ − z)(ut(ζ)− ut(z))(vt(ζ)− vt(z))| |dζ|

≤ 1
π2

∫ ∫

Ũ

k(t)
|ut(z)− vt(z)|

(1− r)(1−R1)2
|dζ| ≤ k(t)|ut(z)− vt(z)|

(1− r)(1−R1)2

:= k̂(t)|ut(z)− vt(z)|,

whence the claim follows. ¤

Corollary 4.1. Let the hypotheses of Theorem 4.4 hold. If k̂(t)
Γ(α+1) < 1, then

problem (3.1) has a unique solution.
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5 Conclusion

We conclude from the Schwarz-Pick lemma that a non-identity self-map φ of the unit
disk can have at most one fixed point in U. If such a unique fixed point in U exists, it
is called the Denjoy-Wolff point . The sequence of iterates {φn} of φ converges to it
uniformly on the compact subsets of U whenever φ is not a disk automorphism. If φ
has no fixed points in U, the Denjoy-Wolff theorem (see [1]) guarantees the existence
of a unique point ω on the unit circle ∂U which is the attractive fixed point, that
is, the sequence of iterates φn converges to ω uniformly on the compact subsets of
U. Such ω is again called the Denjoy-Wolff point of φ. When ω ∈ ∂U is the Denjoy-
Wolff point of φ, then φ′(ω) is actually real-valued and 0 < φ′(ω) < 1(see [20]). The
holomorphic self-maps of the disk can be classified into three categories according
to their behavior near the Denjoy-Wolff point: (a) elliptic: the ones with a fixed
point inside the disk ; (b) hyperbolic: the ones with the Denjoy-Wolff point such that
φ′(ω) < 1; (c) parabolic: the ones with the Denjoy-Wolff point such that φ′(ω) = 1.
In addition, if φ is a univalent analytic function that maps the unit disk into itself,
then the fixed point set of φ has capacity zero (see [3]).
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