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Abstract. For any ` ≥ 3, k ≥ 2 and any permutation σ ∈ Sk on the
Cartesian power Ak of a group A which admits a normal subgroup B,
so that the factor group A/B be cyclic and having its order a divisor of
` − 1, we define the `-ary group 〈Ak, [ ]`,σ,k〉, endowed with the `-ary
operation [ ]`,σ,k. We study the properties of this `-ary operation on
Cartesian powers of conjugate group classes of the group A associated to
its subgroup B.
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1 Introduction

It is known that n-ary algebraic systems have numerous applications to various fields,
like: theory of automata ([9]), theory of quantum groups ([11]), Geometry ([14]),
Physics ([15]), Cryptology ([10]), etc. Within this framework, our paper aims to
derive specific properties of certain normal subgroups, factor groups of Cartesian
powers of groups and on polyadic groups of matrices.

We remind first several notions from the theory of n-ary groups, which we shall
use throughout the paper. According to V. Dërnte ([2]), we have the following

Definition 1.1. A universal algebra 〈A, [ ]〉 with an n-ary (n ≥ 2) operation [ ] :
An → A is called n-ary group, if the following conditions are fulfilled:

a) the n-ary operation [ ] on the set A is associative, i.e.,

[[a1 . . . an]an+1 . . . a2n−1] = [a1 . . . ai[ai+1 . . . ai+n]ai+n+1 . . . a2n−1],

for all i = 1, 2, . . . , n− 1 and all a1, a2, . . . , a2n−1 ∈ A;

b) each of the equations

[a1 . . . ai−1xiai+1 . . . an] = b, i = 1, 2, . . . , n

can be uniquely solved in A for xi, for all a1, . . . , ai−1, ai+1, . . . , an, b ∈ A.
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It is known (E. Post, [12]), that the requirement of unique solution in Dërnte’s
definition may be relaxed to require only solvability, and that the number of equations
can be reduced from n to two (i = 1, n), and for n ≥ 3 - just to one equation, where
i is arbitrary and fixed in {2, . . . , n− 1}.

We say that an n-ary group 〈A, [ ]〉 is said to be abelian, if ([2, 12]):

[a1a2 . . . an] = [aσ(1)aσ(2) . . . aσ(n)],

for all a1, a2, . . . , an ∈ A and any permutation σ of the set {1, . . . , n}, and semi-
abelian, if

[aa1 . . . an−2b] = [ba1 . . . an−2a],

for all a, a1, . . . , an−2, b ∈ A.

Definition 1.2. An n-ary subgroup 〈B, [ ]〉 of an n-ary group 〈A, [ ]〉 is said to be
invariant in A ([2, 12]), if

[xB . . . B︸ ︷︷ ︸
n−1

] = [Bx B . . . B︸ ︷︷ ︸
n−2

] = . . . = [B . . . B︸ ︷︷ ︸
n−2

xB] = [B . . . B︸ ︷︷ ︸
n−1

x]

for any x ∈ A. If
[xB . . . B︸ ︷︷ ︸

n−1

] = [B . . . B︸ ︷︷ ︸
n−1

x]

for any x ∈ A, then 〈B, [ ]〉 is said to be semi-invariant in 〈A, [ ]〉 ([2, 12]).

According to E.Post ([12]), and to [13], we have the following

Definition 1.3. The group A is said to be covering for the n-ary group 〈H, [ ]〉, if
it is generated by the set H, and the binary operation on the group A and the n-ary
operation [ ], are related by the condition

[x1x2 . . . xn] = x1x2 . . . xn,

for any x1, x2, . . . , xn ∈ H. The set

B = {a1 . . . an−1|a1, . . . , an−1 ∈ H}

is a normal subgroup of A, whose factor group A/B is cyclic, and has its order a
divisor of n− 1. The group B is called associated to the n-ary group 〈H, [ ]〉.

The converse Post Theorem on conjugate classes ([12, 13]) asserts that, if the factor
group A/B of the group A relative to its normal subgroup B is cyclic, admitting as
generator an element aB and has its order a divisor of n − 1, then 〈aB, [ ]〉 is an
n-ary group with the n-ary operation

[a1a2 . . . an] = a1a2 . . . an.

The covering group for 〈aB, [ ]〉 is A, and the corresponding group is the subgroup
B.
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2 Preliminary results

Definition 2.1. [3] Let A be a groupoid, k ≥ 2, ` ≥ 2, and let σ be a permutation
from Sk. We first define on Ak a binary operation

x
σ◦y = (x1, x2, . . . , xk)

σ◦(y1, y2, . . . , yk) = (x1yσ(1), x2yσ(2), . . . , xkyσ(k)),

and then an `-ary operation,

[x1x2 . . .x`]`,σ,k = x1
σ◦(x2

σ◦(. . . (x`−2
σ◦(x`−1

σ◦x`)) . . .)).

It is clear that the operation [ ]2,σ,k coincides with the operation
σ◦.

Remark 2.2. It is easy to remark that, if σ = (12 . . . k), then the operation
σ◦

coincides with the operation

x ◦ y = (x1, x2, . . . , xk) ◦ (y1, y2, . . . , yk) = (x1y2, x2y3, . . . , xk−1yk, xky1)

from [4, Definition 2.2.3], and the operation [ ]`,σ,k - with the operation [ ]`,k from
the same definition. The operations ◦ and [ ]`,k were first defined in [5], like the
operation [ ]`,σ,k for the cases of semigroups of A. We remark that the operation
[ ]n,n−1 is analogous to an n-ary operation, which E. Post constructed on the set of
all n-ary permutations in [12].

Theorem 2.1. [3] Let A be a semigroup,

xi = (xi1, xi2, . . . , xik) ∈ Ak, i = 1, 2, . . . , `.

Then [x1x2 . . .x`]`,σ,k = (y1, y2, . . . , yk), where

yj = x1jx2σ(j) . . . x(`−1)σ`−2(j)x`σ`−1(j), j = 1, 2, . . . , k.

Theorem 2.2. [4]

a) If A is a group and σ is a permutation from Sk, which satisfies the condition
σ` = σ, then 〈Ak, [ ]`,σ,k〉 is an `-ary group.

b) If the semigroup A contains the unity 1, and permutation σ ∈ Sk satisfies the
condition σ` = σ, then the `-ary semigroup 〈Ak, [ ]`,σ,k〉 is semi-Abelian if and
only if the semigroup A is Abelian.

c) Let the semigroup A contain more than one element, and let σ be a non-identity
permutation from Sk. Then the `-ary groupoid 〈Ak, [ ]`,σ,k〉 contains no unity.

Lemma 2.3. Let σ be a permutation from Sk, which satisfies the condition σ` = σ,
let B be a subgroup of the group A, and let x = (x1, . . . , xk) ∈ Ak. Then:

a) [Bk . . . Bk︸ ︷︷ ︸
i−1

x Bk . . . Bk︸ ︷︷ ︸
`−i

]`,σ,k = Bxσi−1(1)B × . . . × Bxσi−1(k)B, for any i =

2, . . . , `− 1;
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b) [xBk . . . Bk︸ ︷︷ ︸
`−1

]`,σ,k = x1B × . . .× xkB;

c) [Bk . . . Bk︸ ︷︷ ︸
`−1

x]`,σ,k = Bx1 × . . .×Bxk.

Proof. a) Since

[Bk . . . Bk︸ ︷︷ ︸
i−1

x Bk . . . Bk︸ ︷︷ ︸
`−i

]`,σ,k =

= {[h1 . . .hi−1xhi+1 . . .h`]`,σ,k|h1, . . .hi−1,hi+1, . . . ,h` ∈ Bk} =

= {[(b11, . . . , b1k) . . . (b(i−1)1, . . . , b(i−1)k)(x1, . . . , xk)(b(i+1)1, . . . , b(i+1)k) . . .
. . . (b`1, . . . , b`k)]`,σ,k|bij ∈ B} =

= {(b11b2σ(1) . . . b(i−1)σi−2(1)xσi−1(1)b(i+1)σi(1) . . . b`σ`−1(k), . . .

. . . , b1kb2σ(k) . . . b(i−1)σi−2(k)xσi−1(k)b(i+1)σi(k) . . . b`σ`−1(k))|bij ∈ B} =

= Bxσi−1(1)B × . . .×Bxσi−1(k)B,

then a) holds true.
b) Is proved similarly to a), using the definition of the coset and the operations [ ]`,σ,k.
c) First, using the definitions of the coset and of the operations [ ]`,σ,k we get the
equality

[Bk . . . Bk︸ ︷︷ ︸
`−1

x]`,σ,k = Bxσ`−1(1) × . . .×Bxσ`−1(k),

whence, in view of the identity of σ`−1, the claim follows. ¤
Considering ` = n, k = n− 1, and σ = (12 . . . n− 1) in Lemma 2.3, we get

Corollary 2.4. Let n ≥ 3, B be a subgroup of group A, and let x = (x1, . . . , xn−1) ∈
An−1. Then:

a) for any i = 2, . . . , n− 1, we have

[Bn−1 . . . Bn−1︸ ︷︷ ︸
i−1

x Bn−1 . . . Bn−1︸ ︷︷ ︸
n−i

]n,n−1 =

= BxiB × . . .×Bxn−1B ×Bx1B × . . .×Bxi−1B;

b) [xBn−1 . . . Bn−1︸ ︷︷ ︸
n−1

]n, n−1 = x1B × . . .× xn−1B;

c) [Bn−1 . . . Bn−1︸ ︷︷ ︸
n−1

x]n, n−1 = Bx1 × . . .×Bxn−1.

According to Theorem 2.2 - item a), if A is a group and σ is a permutation from
Sk which satisfies the condition σl = σ, then 〈Ak, [ ]`,σ,k〉 is an `-ary group. It is
clear, that if B is a subgroup of the group A, and if the permutation σ ∈ Sk satisfies
the condition σ` = σ, then 〈Bk, [ ]`,σ,k〉 is an `-ary subgroup of the `-ary group
〈Ak, [ ]`,σ,k〉.
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Proposition 2.5. Let σ be a permutation from Sk, which satisfies the condition
σ` = σ, and let B be a subgroup of the group A. Then:

a) The n-ary subgroup 〈Bk, [ ]`,σ,k〉 is semi-invariant in the `-ary group 〈Ak, [ ]`,σ,k〉
if and only if the subgroup B is normal in the group A;

b) If B 6= A, and σ is not the identity permutation, then 〈Bk, [ ]`,σ,k〉 is not invariant
in 〈Ak, [ ]`,σ,k〉.

Proof. a) ⇒. The semi-invariance of 〈Bk, [ ]`,σ,k〉 in 〈Ak, [ ]`,σ,k〉 means that

(2.1) [xBk . . . Bk︸ ︷︷ ︸
`−1

]`,σ,k = [Bk . . . Bk︸ ︷︷ ︸
`−1

x]`,σ,k

for any x = (x1, . . . , xk) ∈ Ak. Then, from Lemma 2.3, we have

(2.2) x1B × . . .× xkB = Bx1 × . . .× Bxk,

whence x1B = Bx1 for any x1 ∈ B, which means the normality of B in A.
⇐. From the normality of B in A, it follows

x1B = Bx1, . . . , xkB = Bxk

for any x1, . . . , xk ∈ A, which shows that (2.2) holds true. Then, according to Lemma
2.3, we infer (2.1), which means that 〈Bk, [ ]`,σ,k〉 is semi-invariant in 〈Ak, [ ]`,σ,k〉.

b) If σ is not the identical permutation, then σ(j) 6= j for some j ∈ {1, . . . , k},
and since B 6= A, then we can find an element u ∈ A, different from the unity e of
the group A, so that uB 6= B. We choose in Ak an element x = (x1, . . . , xk), so that
xj = u, xσ(j) = e, and all the other components can be arbitrary elements from A.
The condition σ(j) 6= j ensures that such a choice exists. For the case σ(j) = j, this
choice might not be achieved, since u 6= e. If we assume the invariance of 〈Bk, [ ]`,σ,k〉
in 〈Ak, [ ]`,σ,k〉, then

[xBk . . . Bk︸ ︷︷ ︸
`−1

]`,σ,k = [Bkx Bk . . . Bk︸ ︷︷ ︸
`−2

]`,σ,k

for the chosen element x. Since the invariance of the n-ary subgroup in the n-ary
group entails the semi-invariance in this n-ary group, then the assumption about the
invariance of 〈Bk, [ ]`,σ,k〉 in 〈Ak, [ ]`,σ,k〉 yields, considering a), the normality of B
in A. Applying to the left hand side of the last equality the assertion b) from Lemma
2.3, and to the right one-the assertion a) for i = 2, and using the normality of B in
A, we get

x1B × . . .× xjB × . . .× xkB = xσ(1)B × . . .× xσ(j)B × . . .× xσ(k)B.

Hence, xjB = xσ(j)B, and using the conditions xj = u, xσ(j) = e, we infer uB =
B, which conflicts to the choice uB 6= B. Then 〈Bk, [ ]`,σ,k is not invariant in
〈Ak, [ ]`,σ,k〉, and the claim is proved. ¤
Assuming in Proposition 2.5 that ` = n, k = n− 1 and σ = (12 . . . n− 1), we get
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Corollary 2.6. Let n ≥ 3 and let B be a subgroup of the group A. Then:

a) The n-ary subgroup 〈Bn−1, [ ]n,n−1〉 of the n-ary group 〈An−1, [ ]n,n−1〉 is semi-
invariant in it if and only if the subgroup B is normal in the group A;

b) If B 6= A, then 〈Bn−1, [ ]n,n−1〉 is not invariant in 〈An−1, [ ]n,n−1〉.
If σ is a non-identical permutation from Sk which satisfies the condition σ` = σ,

then according to Proposition 2.5, 〈{e}k, [ ]`,σ,k〉 contains one element and is semi-
invariant, but not an invariant `-ary subgroup of the `-ary group 〈Ak, [ ]`,σ,k〉. Since
the unity of the `-ary group represents an invariant `-ary subgroup, then the element
{e, . . . , e︸ ︷︷ ︸

k

} is not the unity of 〈Ak, [ ]`,σ,k〉. In fact, according to item c) of Theorem

2.2, the `-ary group 〈Ak, [ ]`,σ,k〉 has no unity at all.

3 Main results

According to Proposition 2.5, if the permutation σ ∈ Sk satisfies the condition σ` = σ
and B is a normal subgroup of the group A, then the Cartesian power Bk is a semi-
invariant `-ary subgroup of the `-ary group 〈Ak, [ ]`,σ,k〉. In fact, if we require that
the factor group A/B be cyclic, and if its order divides ` − 1, then not only the
Cartesian power Bk, but also the k-th Cartesian power of any element of A/B is a
semi-invariant `-ary subgroup of 〈Ak, [ ]`,σ,k〉.
Theorem 3.1. Let A be a group, B be a proper normal subgroup, let the factor
group A/B be cyclic and have the order a divisor of ` − 1, and let the permutation
σ from Sk satisfy the condition σ` = σ. Then for any element H of the factor group
A/B, the Cartesian power Hk is closed relative to the `-ary operation [ ]`,σ,k, and the
universal algebra 〈Hk, [ ]`,σ,k〉 is a semi-invariant `-ary subgroup of the `-ary group
〈Ak, [ ]`,σ,k〉. Moreover, if σ is a non-identity permutation, then 〈Hk, [ ]`,σ,k〉 is not
invariant in 〈Ak, [ ]`,σ,k〉.

Proof. Let the factor group A/B be generated by the coset aB, i.e., A/B =
{B, aB, . . . , at−1B}, where t divides ` − 1. We shall consider, for convenience, that
H = asB for some s = 0, 1, . . . , t − 1. Since (aB)t = atB = B, then at ∈ B, whence
considering that t divides `− 1, it follows that a`−1 ∈ B. Now, if

hi = (hi1, . . . , hik) = (asbi1, . . . , a
sbik), i = 1, . . . , `

are arbitrary elements from Hk, then using the normality of B in A, we shall have

[h1, . . . ,h`]`,σ,k = (y1, . . . , yk),

where
yj = asb1ja

sb2σ(j) . . . asb(`−1)σ`−2(j)a
sb`j = aslbj

for some bj ∈ B. But then, since al−1 ∈ B, we have yj = aslbj = as(al−1)sbj = asb′j
for some b′j ∈ B. Hence, yj ∈ H for any j = 1, . . . , k, and then

[h1, . . . ,h`]`,σ,k ∈ Hk,
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which proves that the set Hk is closed relative to the `-ary operation [ ]`,σ,k.

We shall examine now in 〈Ak, [ ]`,σ,k〉 the equation

(3.1) [xh2 . . .h`]`,σ,k = g,

where
g = (g1, . . . , gk) = (asc1, . . . , a

sck) ∈ Hk, (c1, . . . , ck) ∈ B.

The elements h2, . . . ,h` were defined above, and they belong to Hk. Since 〈Ak, [ ]`,σ,k〉
is an `-ary group, then equation (3.1) admits the solution

x = (a1, . . . , ak) ∈ Ak.

Substituting this solution into (3.1), and making equal the j-th order components
from left and right sides of the obtained equation, we get

aja
sb2σ(j) . . . asb(l−1)σl−2(j)a

sb`j = ascj .

Then due to the normality of B in A and of the condition a`−1 ∈ B, the left side of the
last equality gets the form aja

(`−1)sd = ajb for some d, b ∈ B, and the equality itself
becomes ajb = ascj . But then aj = ascjb

−1, where cjb
−1 ∈ B. Hence, aj ∈ asB = H,

i.e. x = (a1, . . . , ak) ∈ Hk. This shows that equation (3.1) may admit solutions in
〈Hk, [ ]`,σ,k〉. A similar proof can be provided for the solvability in 〈Hk, [ ]`,σ,k〉 of
the equation

[h1, . . . ,h`−1y]`,σ,k = g

for any h1, . . . ,h`−1,g ∈ Hk. In this way, according to the Post criterion ([12]),
〈Hk, [ ]`,σ,k〉 is an `-ary subgroup of 〈Ak, [ ]`,σ,k〉.

If x = (x1, . . . , xk) is an arbitrary element from Ak, then, using the normality of
B in A and the condition a`−1 ∈ B, we get

[xHk . . .Hk︸ ︷︷ ︸
`−1

]`,σ,k = {[xh2 . . .h`]`,σ,k|h2, . . . ,h` ∈ Hk} =

= {[(x1, . . . , xk)(asb21, . . . , a
sb2k) . . . (asb`1, . . . , a

sb`k)]`,σ,k|bij ∈ B} =

= {(x1a
sb2σ(1) . . . asb(`−1)σ`−2(1)a

sb`1, . . . , xkasb2σ(k) . . .

. . . asb(`−1)σl−2(k)a
sb`k)|bij ∈ B} =

= {(x1a
(l−1)sd1, . . . , xka(l−1)sdk)|d1, . . . , dk ∈ B} =

= {(x1b1, . . . , xkbk)|b1, . . . , bk ∈ B} = x1B × . . .× xkB,

i.e.,

(3.2) [xHk . . . Hk︸ ︷︷ ︸
`−1

]`,σ,k = x1B × . . .× xkB.

Analogously, it can be proved the equality

(3.3) [Hk . . .Hk︸ ︷︷ ︸
`−1

x]`,σ,k = Bx1 × . . .×Bxk.
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From the normality of B in A it follows the equality between the right hand sides
of (3.2) and (3.3), and hence the equality of their left sides as well, for any x ∈ Ak,
which implies the semi-invariance of 〈Hk, [ ]`,σ,k〉 in 〈Ak, [ ]`,σ,k〉.

If σ is a non-identical permutation, then σ(j) 6= j for some j ∈ {1, . . . , k}, and
since B 6= A, then we can find an element u ∈ A, different from the unity e of the
group A, so that uB 6= B. We choose in Ak the element x = (x1, . . . , xk), which
satisfies

(3.4) xj = u, xσ(j) = (a−1)(`−1)s,

where all the remaining components are arbitrary from A. The condition σ(j) 6= j
allows such a choice. If σ(j) = j, the choice might not have been possible - e.g., for
u 6= (a−1)(`−1)s. If we assume the invariance of 〈Hk, [ ]`,σ,k〉 in 〈Ak, [ ]`,σ,k〉, then

[xH . . . H︸ ︷︷ ︸
`−1

]`,σ,k = [HxH . . . H︸ ︷︷ ︸
`−2

]`,σ,k

for the chosen x ∈ Ak. We apply (3.2) to the left hand side of the obtained equality
and in the right side we use the normality of B in A, and perform a calculation similar
to the one used for obtaining (3.2). As a result, we get

x1B × . . .× xjB × . . .× xkB =

= asxσ(1)a
(`−2)sB × . . .× asxσ(j)a

(`−2)sB × . . .× asxσ(k)a
(`−2)sB.

Hence, xjB = asxσ(j)a
(`−2)sB, which, in view of (3.4), leads to uB = B, which con-

tradicts with uB 6= B. We conclude that 〈Hk, [ ]`,σ,k〉 is not invariant in 〈Ak, [ ]`,σ,k〉.
¤

Corollary 3.2. Let A be a group, let B be a proper normal subgroup, let the fac-
tor group A/B be cyclic, generated by the coset aB and having the order divisor
of ` − 1. Then the Cartesian power (aB)k is closed relative to the `-ary operation
[ ]`,σ,k, and the universal algebra 〈(aB)k, [ ]`,σ,k〉 is a semi-invariant `-ary subgroup
of the `-ary group 〈Ak, [ ]`,σ,k〉. Moreover, if σ is a non-identity permutation, then
〈(aB)k, [ ]`,σ,k〉 is not invariant in 〈Ak, [ ]`,σ,k〉.

Setting ` = n, k = n− 1, and σ = (12 . . . n− 1) in Theorem 3.1, we get

Corollary 3.3. [7] Let n ≥ 3, let A be a group, let B be a proper normal subgroup of
A, let the factor group A/B be cyclic and having its order a divisor of n−1. Then for
any element H of the factor group A/B, the Cartesian power Hn−1 is closed relative
to the n-ary operation [ ]n,n−1, and the universal algebra 〈Hn−1, [ ]n,n−1〉 is a semi-
invariant, but not an invariant n-ary subgroup of the n-ary group 〈An−1, [ ]n,n−1〉.

Any semi-invariant n-ary subgroup 〈B, [ ]〉 of the n-ary group 〈A, [ ]〉 defines
on it a congruence ρB , whose classes coincide with the elements of the n-ary factor
group 〈A/B, [ ]〉 (e.g., see [6, Prop. 7.4]). The following Theorem establishes the
link between the congruences of the n-ary group 〈An−1, [ ]n,n−1〉, which are defined
by the semi-invariant n-ary subgroups, which are constructed by means of different
elements of the factor group A/B from Theorem 3.1.
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Theorem 3.4. Let H be an arbitrary element of the factor group A/B from Theorem
3.1. Then:

a) 〈Ak/Hk, [ ]`,σ,k〉 = 〈Ak/Bk, [ ]`,σ,k〉 = 〈(A/B)k, [ ]`,σ,k〉;

b) ρHk = ρBk .

Proof. a) Replacing H = B in (3.2), we get

(3.5) [xBk . . . Bk︸ ︷︷ ︸
`−1

]`,σ,k = x1B × . . .× xkB,

where x = (x1, . . . , xk) ∈ Ak, whence using (3.2), we infer

[xHk . . .Hk︸ ︷︷ ︸
`−1

]`,σ,k = [xBk . . . Bk︸ ︷︷ ︸
`−1

]`,σ,k

for any x ∈ Ak. Therefore the `-ary factor groups 〈Ak/Hk, [ ]`,σ,k〉 and
〈Ak/Bk, [ ]`,σ,k〉 coincide. If [xHk . . .Hk︸ ︷︷ ︸

`−1

]`,σ,k is an arbitrary coset from

〈Ak/Bk, [ ]`,σ,k〉, then, taking into consideration (3.2), we get [xHk . . . Hk︸ ︷︷ ︸
`−1

]`,σ,k ∈

(A/B)k, i.e., it holds the inclusion Ak/Hk ⊆ (A/B)k.
If x1B×. . .×xkB is an arbitrary element from (A/B)k, then again, using (3.2), we

get x1B× . . .×xkB ∈ Ak/Bk, and we infer (A/B)k ⊆ Ak/Bk. From the proved inclu-
sions we obtain that the `-ary factor groups 〈Ak/Hk, [ ]`,σ,k〉 and 〈(A/B)k, [ ]`,σ,k〉
coincide.

b) From [7, Prop. 7.4], we have

〈Ak/ρBk , [ ]`,σ,k〉 = 〈Ak/Bk, [ ]`,σ,k〉, 〈Ak/ρHk , [ ]`,σ,k〉 = 〈Ak/Hk, [ ]`,σ,k〉,
and, using a), we get

〈Ak/ρHk , [ ]`,σ,k〉 = 〈Ak/ρBk , [ ]`,σ,k〉,
which shows that the congruences ρHk and ρBk coincide. ¤

Setting ` = n, k = n− 1 and σ = (12 . . . n− 1) in Theorem 3.4, we get

Corollary 3.5. [6] Let H be an arbitrary coset from Corollary 3.3. Then:

a) 〈An−1/Hn−1, [ ]n,n−1〉 = 〈An−1/Bn−1, [ ]n,n−1〉 = 〈(A/B)n−1, [ ]n,n−1〉;

b) ρHn−1 = ρBn−1 .

Theorem 3.4 and Corollary 3.5 can be rephrased in the following different, more
concrete way:

Theorem 3.6. Let the permutation σ ∈ Sk satisfy the condition σ` = σ, let A
be a group, let B be a proper normal subgroup of A, let the factor group A/B be
cyclic, generated by the element aB and having the order t, divisor of `− 1: A/B =
{B, aB, . . . , at−1B}. Then:
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a) 〈Ak/Bk, [ ]`,σ,k〉 = 〈Ak/(aB)k, [ ]`,σ,k〉 = . . . = 〈Ak/(at−1B)k, [ ]`,σ,k〉 = 〈(A/B)k, [ ]`,σ,k〉;
b) ρBk = ρ(aB)k = . . . = ρ(at−1B)k .

Corollary 3.7. [6] Let n ≥ 3, let A be a group, let B be a proper normal subgroup
of A, let the factor group A/B be cyclic, generated by the element aB and having its
order t a divisor of n− 1: A/B = {B, aB, . . . , at−1B}. Then:

a) 〈An−1/Bn−1, [ ]n,n−1〉 = 〈An−1/(aB)n−1, [ ]n,n−1〉 = . . .

= 〈An−1/(at−1B)n−1, [ ]n,n−1〉 = 〈(A/B)n−1, [ ]n,n−1〉;
b) ρBn−1 = ρ(aB)n−1 = . . . = ρ(at−1B)n−1 .

4 Polyadic matrices

The ordered set (A1, A2, . . . , Am−1) of matrices of the same order n over the field
of complex numbers C was called by E. Post as being m-ary (or polyadic) matrix
over C ([12]). On the set of all m-ary matrices whose determinants of all the matrix
components are nonzero, E. Post defined the m-ary operation

(4.1)
[A1 . . . Am] = [(A11, . . . , A1(m−1)) . . . (Am1, . . . , Am(m−1))] =

= (Y1, . . . , Ym−1),

where

Yj = A1jA2(j+1) . . . A(n−j)(n−1)A(n−j+1)1 . . . A(n−1)(j−1)Anj , j = 1, . . . , m− 1.

E. Post showed that this set, together with the m-ary operation (4.1) is an m-ary
group, which he called m-ary linear group. Operation (4.1) coincides with the oper-
ation [ ]`,σ,k for ` = m, k = m − 1, and σ = (12 . . . m − 1), i.e., with the operation
[ ]m,m−1.

We shall examine the ordered sets of matrices of same order over an arbitrary
field. The family of all the ordered sets A = (A1, . . . , Ak) of matrices of the same
order n over the field F , the whose determinant of each component Aj is different
from the zero of the field F , will be denoted GL(n, k, F ). The elements of this family,
according to E. Post, will be called k-component polyadic matrices over F .

It is clear that the family GL(n, k, F ) coincides with the k-th Cartesian power
of the full linear group GL(n, F ) : GL(n, k, F ) = (GL(n, F ))k. Therefore, putting
A = GL(n, F ) in item a) of Theorem 2.2, we get

Proposition 4.1. If the permutation σ from Sk satisfies the condition σ` = σ, then
the family GL(n, k, F ) is closed relative to the `-ary operation [ ]`,σ,k, and the uni-
versal algebra 〈GL(n, k, F ), [ ]`,σ,k〉 is an `-ary group.

Since GL(n,m − 1,C) = (GL(n,C))m−1, the operation (4.1), as shown before,
coincides with the operation [ ]m,m−1, and hence from Proposition 4.1 it follows
Post’s mentioned result.
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Corollary 4.2. [12] The set GL(n,m−1,C) is closed relative to the m-ary operation
[ ]m,m−1, and the universal algebra 〈GL(n,m− 1,C), [ ]m,m−1〉 is an m-ary group.

In the set GL(n, k, F ) we pay a special attention to the subset SL(n, k, F ) of
all the k-component polyadic matrices, where the determinant of each component is
equal to the unity of the field F . Since SL(n, k, F ) = (SL(n, F ))k, then, applying
again item a) of Theorem 2.2, we get

Proposition 4.3. If the permutation σ ∈ Sk satisfies the condition σ` = σ, then the
set SL(n, k, F ) is closed relative to the `-ary operation [ ]`,σ,k, and the universal alge-
bra 〈SL(n, k, F ), [ ]`,σ,k〉 is an `-ary subgroup of the `-ary group 〈GL(n, k, F ), [ ]`,σ,k〉.

The polyadic group 〈SL(n, k, F ), [ ]`,σ,k〉, similarly to the binary case, can be
naturally called the special polyadic linear group.

It is clear that for k = 1 and ` = 2, the 1-component matrices are the usual ma-
trices, and that the polyadic groups GL(n, 1, F ) and SL(n, 1, F ) respectively coincide
with the full linear group GL(n, F ) and the special linear group SL(n, F ).

We shall further use the standard notations: Fq or GF (q) - for the Galois field,
i.e., a finite field with q = pα elements, where p is a prime number; GL(n, q) - for
the full linear group over the field GF (q), i.e., the group of all the invertible matrices
of order n over GF (q); SL(n, q) - for the special linear group of order n over the
field GF (q), i.e., the subgroup of all the matrices from GL(n, q) whose determinant
is equal to the unity of the field GF (q).

Theorem 4.4. Let p be a prime number, q = pα, n ≥ 2, k ≥ 2, ` ≥ 3; let q−1 divide
`− 1, and let the permutation σ ∈ Sk satisfy the condition σ` = σ. Then:

a) 〈GL(n, k, Fq), [ ]`,σ,k〉 and 〈SL(n, k, Fq), [ ]`,σ,k〉 are non-semi-Abelian `-ary groups;

b) if σ is a non-identity permutation, then the `-ary groups 〈GL(n, k, Fq), [ ]`,σ,k〉
and 〈SL(n, k, Fq), [ ]`,σ,k〉 contain no unity;

c) the k-th Cartesian power of each element H0 = SL(n, q),H1, . . . ,Hq−2 of the factor
group GL(n, q)/SL(n, q) is closed relative to the `-ary operation [ ]`,σ,k, and the
universal algebras

(4.2) 〈Hk
0 , [ ]`,σ,k〉, 〈Hk

1 , [ ]`,σ,k〉, . . . , 〈Hk
q−2, [ ]`,σ,k〉

are semi-invariant `-ary subgroups in 〈GL(n, k, Fq), [ ]`,σ,k〉; in particular,
〈SL(n, k, Fq), [ ]`,σ,k〉 is a semi-invariant `-ary subgroup of 〈GL(n, k, Fq), [ ]`,σ,k〉;

d) if σ is a non-identity permutation, then all the semi-invariant `-ary subgroups
(4.2) are not invariant `-ary subgroups of 〈GL(n, k, Fq), [ ]`,σ,k〉; in particular,
〈SL(n, k, Fq), [ ]`,σ,k〉 is not invariant in 〈GL(n, k, Fq), [ ]`,σ,k〉;

e) all the semi-invariant `-ary subgroups (4.2) define on 〈GL(n, k, Fq), [ ]`,σ,k〉 the
same congruence ρ = ρHk

0
= ρHk

1
= . . . = ρHk

q−2
;

f) the following `-ary factor groups coincide

〈GL(n, k, Fq)/SL(n, k, Fq), [ ]`,σ,k〉, 〈GL(n, k, Fq)/Hk
1 , [ ]`,σ,k〉, . . .

〈GL(n, k, Fq)/Hk
q−2, [ ]`,σ,k〉, 〈(GL(n, q)/SL(n, q))k, [ ]`,σ,k〉.
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Proof. For the brevity of notation, we write A = GL(n, q), and B = SL(n, q).
Then

Ak = (GL(n, q))k = GL(n, k, Fq), Bk = (SL(n, q))k = SL(n, k, Fq).

a) Propositions 4.1 and 4.2 show that 〈Ak, [ ]`,σ,k〉 and 〈Bk, [ ]`,σ,k〉 are l-ary groups.
Their non-Abelianity follows from the non-Abelianity of the groups A and B and from
item b) of Theorem 2.2.
b) Follows from item c) of Theorem 2.2;
c) and d) Follow from Theorem 3.1, since the factor group A/B = GL(n, q)/SL(n, q)
is isomorphic to the multiplicative group F ∗q of the field Fq, which is cyclic and has
its order q − 1. Moreover, q − 1 divides `− 1;
e) Follows from the assertion b) of Theorem 3.4;
f) Follows from the assertion a) of Theorem 3.4. ¤

Setting ` = q, k = q − 1, and σ = (12 . . . q − 1) in Theorem 4.4, we get

Corollary 4.5. [6] Let p be a prime number, q = pα, q ≥ 3, and n ≥ 2. Then:

a) 〈GL(n, q − 1, Fq), [ ]q,q−1〉 and 〈SL(n, q − 1, Fq), [ ]q,q−1〉 are non-semi-Abelian
q-ary groups with empty center, and hence, without units;

b) any element H of the factor group GL(n, q)/SL(n, q) is closed relative to the q-ary
operation [ ]q,q−1, and the universal algebra 〈Hq−1, [ ]q,q−1〉 is semi-invariant,
but a non-invariant q-ary subgroup in 〈GL(n, q − 1, Fq), [ ]q,q−1〉; in particular,
〈SL(n, q−1, Fq), [ ]q,q−1〉 is a semi-invariant, but not an invariant q-ary subgroup
of 〈GL(n, q − 1, Fq), [ ]q,q−1〉;

c) the semi-invariant q-ary subgroups 〈Hq−1, [ ]q,q−1〉, and 〈SL(n, q−1, Fq), [ ]q,q−1〉
from b) define on 〈GL(n, q − 1, Fq), [ ]q,q−1〉 the same congruence: ρHq−1 =
ρSL(n,q−1,Fq);

d) for any element H of the group GL(n, q)/SL(n, q), the following q-ary factor
groups coincide:

〈GL(n, q − 1, Fq)/Hq−1, [ ]q,q−1〉,
〈GL(n, q − 1, Fq)/SL(n, q − 1, Fq), [ ]q,q−1〉,
〈(GL(n, q)/SL(n, q))q−1, [ ]q,q−1〉.

5 Particular cases. Applications

The n-ary operations considered in the paper - as well as the polyadic matrix struc-
tures, for the trivial case n = 1, are tightly related to the Berwald-Moor, Chernov
and Bogoslovski multilinear forms defined on the Cartesian powers of the field of real
numbers, which are used in Relativity Theory ([8]).

In particular, for a group G, the induced n−ary operation µn,m = [ · , . . . , · ]n,m :
(Gm)n → Gm, given by

µn,m(x1, . . . xn) not= [x1, . . . xn]n,m
def= (p1, . . . pm),
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for all xk = (xk1, . . . , xkm) ∈ Gm, k ∈ 1, n, where

pk =
n∏

j=1

xjτ(j,k), τ(j, k) = modm(j + k − 2) + 1, k ∈ 1,m.

provides, in the particular case of positive reals (R∗+ = (0,∞), · ), by means of the
mapping θ : Gm → G,

(5.1) θ(p) = p1 + . . . + pm,∀p = (p1, . . . , pm) ∈ G,

the positive n−multilinear composition θ ◦ µn,m : (Gm)n → G. Then, denoting
by σ the cycle (1 . . . m) ∈ σm (the roll-left operator), this leads by extension to
V = Rm ⊃ Gm to a tensor Ag ∈ T 0

n (V ) = ⊗nV ∗ whose coefficients are

(5.2) Ag
i1...in

=

{
1, if ∃j ∈ 1,m, ik = σj(modm(k − 1) + 1), ∀k = 1, n,

0, the rest.

As notable particular cases, one gets the generating multilinear tensors ([8]):

a) the Bogoslovsky tensor Ag
B = θ ◦µn,n−1 on Rn−1, which generates the m−root

Finsler norm on (R∗+)n−1:

FB(y) = Ag
B(y, . . . , y) =

[
y1 · . . . · yn−1 · (y1 + . . . + yn−1)

]1/n
;

b) the Berwald-Moor tensor Ag
rBM = θ ◦µn,n on Rn, which generates the m−root

Finsler norm on (R∗+)n−1:

FBM (y) = Ag
BM (y, . . . , y) = n

√
y1 · . . . · yn;

c) the Chernov tensor Ag
C = θ ◦µn−1,n on Rn which generates the m−root Finsler

norm on (R∗+)n:

FC(y) = Ag
C(y, . . . , y) =

(
n∑

k=1

y1 · . . . · ŷk · . . . · yn

)1/(n−1)

,

where the symbol ”hat” denotes absence of the corresponding factor.
The algebraic properties of these tensors represent a proficient subject of recent

research, especially due to the existing interrelation between the properties of their
attached algebras and the Finsler geometry which lies beyond the related physical
models ([1]).
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