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Abstract. The notion of top space as a generalization of Lie group is
defined in [1] and the case with finite number of identities was studied in [2,
3, 4]. In this paper we investigate top spaces whose right/left translations
are diffeomorphisms. These top spaces - called right/left top spaces may
have an infinite number of identities. A characterization of right top spaces
is given in Section 2, where we prove that left/right invariant vector fields
of this kind of top spaces form a Lie algebra, whose dimension is equal
to the rank of the left shift mapping lg, for any g from the top space.
In Section 3, a relation between the Lie algebra of a top space and the
Lie algebra of a spatial class of Lie groups is presented. In Section 4 the
quotient space of right top spaces and the generalized action of a top space
on a manifold are defined and discussed.
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1 Introduction

Lie groups were initially introduced as a tool to solve or simplify ordinary and partial
differential equations, and found numerous applications in Physics. The notion of
top space as a generalization of Lie group was considered in [1]. We recall first its
definition.

Definition 1.1. A top space T is a smooth manifold admitting an operation called
multiplication, subject to the following set of rules:

• (xy)z = x(yz) for all x, y, z ∈ T ;

• for each x ∈ T there exists a unique z ∈ T such that xz = zx = x (we denote z
by e(x));

• for each x ∈ T there exists y ∈ T such that xy = yx = e(x) (we denote y by
x−1);

• the mapping m1 : T → T is defined by m1(x) = x−1 and the mapping m2 :
T × T → T is defined by m2(x, y) = xy are smooth maps;

• e(xy) = e(x)e(y) for all x, y ∈ T .
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We denote the left translation and the right translation associated to an element
g ∈ T , the maps lg : T → T and rg : T → T , respectively defined by

lg(p) = gp; rg(p) = pg, ∀p ∈ T.

A vector field X on a top space T is called a left invariant vector field if (lg)∗(X(p)) =
X(lg(p)), where p, g ∈ T . Right invariant vector fields are similarly defined by sub-
stituting rg with lg.

Note that left and right translations in Lie groups are diffeomprphisms, while top
spaces don’t generally have this property. Suppose that T is a top space such that
Tt = T , for some t ∈ T , where Tt = {gt : g ∈ T}. The following theorem implies that
rt is a diffeomorphism for all t ∈ T . In particular, re(t) = id, for all t ∈ T .

Theorem 1.1. [1] If Tt ∩ Tg 6= f¡ , then Tt = Tg, where t, g ∈ T . In particular,
Tt = Te(t).

Definition 1.2. A top space T is called a right (left) top space if Tt = T (tT = T ),
for some t ∈ T .

There exist right(left) top spaces with an infinite number of identities.

Example 1.3. [1] The n- dimensional torus Tn = Rn/Zn with the product

((a1, a2, ..., an) +Zn, (b1, b2, ..., bn) +Zn) = (a1 + b1, a2 + b2, ..., an−1 + bn−1, an) +Zn

is a top space. We have e((a1, a2, ..., an) + Zn) = (0, 0, ..., 0, an) + Zn, and hence Tn

has an infinite number of identities. Moreover, Tna = Tn for all a ∈ Tn.

Example 1.4. Suppose that G is a Lie group and that two smooth manifolds Λ
and I are given. If p : I × Λ → G is a smooth mapping, then Λ × G × I with the
product (λ, g, i)(λ1, g1, i1) = (λ, gp(i, λ1)g1, i1) is a top space, which is called Rees
matrix top space, and which is denoted by M(G, I, Λ, p) [1]. Suppose that I is an
one point set; then Λ × G × I ' Λ × G is a right top space, which we call right
Rees matrix, denoted by M(G,Λ, p). Further, we have e((λ, g)) = (λ, p(λ)−1) and
consequently card(e(Λ×G)) = card(Λ).

2 Lie algebra of right top spaces

It was proved that the set of left invariant vector fields of a top space T with a finite
number of identities form a Lie algebra [1]. The following theorem shows that the
same statement holds for right top spaces. Its proof is similar to the one from [5,
Proposition 3.7].

Theorem 2.1. The set of left invariant vector fields on the right top space T is a Lie
algebra under the Lie bracket operation.

Proof. We only need to show that a left invariant vector field is smooth. Let X be a
left invariant vector field and fix t ∈ T . X is determined by X(e(t)), since Te(t) = T .
If f ∈ C∞(T ) then

(2.1) Xf(g) = Xf(ge(t)) = (lg)∗X(e(t))f = X(e(t))(f ◦ lg).
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Let Y be a smooth vector field on T such that Y (e(t)) = X(e(t)). We define the
following smooth functions on T :

i1e(t) : T → T × T, i1e(t)(h) = (h, e(t))

i2g : T → T × T, i2g(h) = (g, h).

We note that (0, Y ) is a smooth vector field on T ×T . Consequently [(0, Y )(f ◦m2)]◦
i1e(t) is a smooth function. Then we have

[(0, Y )(f ◦m2)] ◦ i1e(t)(g) = (0, Y )(g, e(t))(f ◦m2)

= 0(g)(f ◦m2 ◦ i1e(t)) + Y (e(t))(f ◦m2 ◦ i2g)

= X(e(t))(f ◦m2 ◦ i2g) = X(e(t))(f ◦ lg).

Hence (2.1) implies that Xf is a smooth function, and consequently X is smooth. ¤

Theorem 2.2. Let T be a right top space. Then:

• rank(lt) is constant for all t ∈ T ;

• rank(lt) =rank(lt′) for all t, t′ ∈ T .

Proof. Suppose that rank(lt) = k at g and rank(lt′) = k′ at g′. Let Xi(g), i = 1, 2, ..., k
be independent tangent vectors such that their images under (lt)∗ remain indepen-
dent. We note that (lp)∗Xi(g), i = 1, 2, ..., k, for all p ∈ T are independent, since
if

∑
ai(lp)∗(Xi(g)) = 0 and then (ltp−1)∗

∑
ai(lp)∗(Xi(g)) =

∑
ai(lte(p))∗Xi(g) =∑

ai(lt)∗Xi(g) = 0, and consequently ai = 0 for i = 1, 2, ..., k. Hence (lg′g−1)∗Xi(g) ∈
Tg′(T ), i = 1, ..., k, are independent. If

∑
ai(lt′)∗((lg′g−1)∗Xi(g)) = 0, then

∑
ai(ltt′−1)∗(lt′)∗((lg′g−1)∗Xi(g)) =∑

ai(ltg′g−1)∗Xi(g) = 0, and consequently ai = 0 for i = 1, 2, ..., k. Therefore we have
k ≤ k′. In a similar way it can be proved that k′ ≤ k. Hence k = k′. ¤

Theorem 2.3. Let T be a right top space with its Lie algebra τ . Then dim(τ) =
rank(le(t)), for all t ∈ T .

Proof. Let α : τ → Te(t)(T ) be the map defined by α(X) = X(e(t)), for some t ∈ T .
We show that α is an one to one homorphism of Lie algebras and that img(α) =
img((le(t))∗). But α is injective, for if α(X) = α(Y ), then X(e(t)) = Y (e(t)). Since X
and Y are left invariant vector fields X(g) = (lg)∗X(e(t)) = (lg)∗Y (e(t)) = Y (g) for all
g ∈ T then consequently X = Y . Let X(e(t)) ∈ Te(t)(T ). If there exists a left invariant
vector field Y ∈ τ such that α(Y ) = X(e(t)), then Y (e(t)) = (le(t))∗Y (e(t)) = X(e(t)),
and consequently X(e(t)) ∈ img((le(t))∗). Conversely, if X(e(t)) ∈ img((le(t))∗),
then there exists Y (e(t)) ∈ Te(t)(T ) such that (le(t))∗Y (e(t)) = X(e(t)). Hence
(le(t))∗X(e(t)) = X(e(t)).

Now let X be the left invariant vector field which is determined by X(e(t)). Then
α(X) = X(e(t)). It is trivial to check that α is linear and preserves the bracket
operation. Hence α : τ → img((le(t))∗ is an isomorphism and dim(τ) = rank(le(t)),
which concludes the proof. ¤

The following lemmas give a characterization of right top spaces.
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Lemma 2.4. Let T be a right top space. Then e(T ) is embedded in T .

Proof. If t, g ∈ e(T ), then (lt|gT )−1(t) = g. Since T = ∪g∈e(T )gT , we have l−1
t (t) =

∪g∈e(T )(lt|gT )−1(t) = e(T ). Moreover, by theorem 2.2 rank(lt) is constant and con-
sequently e(T ) is embedded in T . ¤

Lemma 2.5. The function e : T → T is a smooth map and has constant rank.

Proof. Since e = m2 ◦ (i×m1), then e is a smooth map. T is a right top space, and
hence e(p) = e(p)e(k) = e(pk) = e ◦ rk(p), for every p, k ∈ T and e∗(p) = e∗(pk) ◦
(rk)∗(p). Since rk is a diffeomorphism, rank(e)(p) = rank(e)(pk) and consequently
rank(e) is constant on e−1(e(p)) = pT . Lemma 2.4 implies that e : T → e(T ) is a
smooth map. Hence rank(e)(p) ≤ dim(e(T )), for all p ∈ T . In addition, e : e(T ) →
e(T ) is the identity map and consequently rank(e)(e(p)) = dim(e(T )), for all p ∈ T .
Hence e has constant rank on T . ¤

Lemma 2.6. Let T be a right top space. Then (tT, i) is embedded in T , for t ∈ T .
Moreover, tT is a Lie group.

Proof. Since tT = e−1(e(t)) and the function e has constant rank, it is an embedded
submanifold of T . Therefore the maps m2 ◦(i×i) : tT ×tT → tT and m1 ◦ i : tT → tT
are smooth and tT is a Lie group. ¤

Theorem 2.7. Let T be a right top space. Then T is isomorphic with a right Rees
matrix.

Proof. Let t ∈ e(T ) and let the map p : e(T ) → tT be defined by p(s) = t, for every
s ∈ e(T ). We prove that the right Rees matrix M(tT, e(T ), p) is isomorphic with T .
Let α : T → e(T )× tT be the map defined by α(g) = (e(g), tg), for every g ∈ T . α is
injective and surjective and α−1 : e(T )× tT → T is given by α−1(s, tg) = stg. α and
α−1 are smooth. In addition α(gg′) = α(g)α(g′), hence α is an isomorphism of top
spaces. ¤

3 One parameter subgroups of a right top space

We need to first introduce the definition of top space covering projection:

Definition 3.1. [2] Let T be a top space and let G be a topological group. Then a
covering projection P : T → G is called a top space covering projection, if P satisfies
the following conditions:

• P (t) = e, for all t ∈ e(T ), where e is identity element;

• P (t1t2) = P (t1)P (t2), for all t1, t2 ∈ T .

Theorem 3.1. [3] If T is a top space with a finite number of identities, then there
exists a topological group G and a top space covering P : T → G.

Let T be a top space with finite number of identities. Since e−1(e(t)), for every
t ∈ T , it is open and it is a Lie group. Theorem 2.3 of [3] implies that these Lie
groups are diffeomorphic. In addition, the proof of theorem 3.1 implies that P : T →
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e−1(e(t0)), P (t) = e(t0)te(t0) is a top space covering, for every t ∈ T . Hence the
following theorem shows that the Lie algebra of a top space T with a finite number
of identities and the Lie algebra of the Lie group e−1(e(t0)) are isomorphic.

Theorem 3.2. [2] If T is a top space with card(e(T )) < ∞, G is a Lie group and P :
T → G a top space covering projection, then there exists a one-to-one correspondence
between left invariant vector fields of G and left invariant vector fields of T . Moreover
the Lie algebra created by the Left invariant vector fields of T is isomorphic to the Lie
algebra of G.

In the remainder of this section we show that the Lie algebra of a right top space
T and tT = e−1(e(t)) are isomorphic as well.

Definition 3.2. [2] Suppose that T is a top space. A curve ϕ : R :→ T is called a
one parameter subgroup of T if it satisfies the condition ϕ(t1 + t2) = ϕ(t1)ϕ(t2), for
all t1, t2 ∈ R.

Theorem 3.3. Suppose that T is a right top space then there is a correspondence
between one parameter subgroups of T and its left invariant vector fields.

Proof. Let ϕ : R → T be a one parameter subgroup. We have ϕ(s) = ϕ(0 + s) =
ϕ(0)ϕ(s) = ϕ(s)ϕ(0). Hence e(ϕ(s)) = ϕ(0), for all s ∈ R. Consequently, ϕ(R) ⊆
ϕ(0)T and ϕ is a one parameter subgroup of the Lie group ϕ(0)T . Hence there exists
a left invariant vector field corresponding to ϕ.

Conversely, suppose that X is a left invariant vector field on T ; then X defines
a local one parameter group action σ : W ⊆ R × T → T , such that σ(0, g) = g and
(σg)∗( d

dt |0) = X(g). We define ϕ : (−δ, δ) → T by ϕ(t) = σ(t, ϕ(0)), where ϕ(0) ∈
e(T ), and (−δ, δ) is such that (−δ, δ)×ϕ(0) ⊆ W . We show that if t, s, t+s ∈ (−δ, δ).

Then ϕ(t + s) = ϕ(t)ϕ(s). If the parameter s is fixed and σ(t, ϕ(s)) = ϕ(s)ϕ(t),
then we have σ(0, ϕ(s)) = ϕ(s)ϕ(0) = ϕ(s), since ϕ(0) ∈ e(T ) and T is a right top
space. In addition, σ satisfies the same differential equation for σ:

d
dt (σ(t, ϕ(s))) = d

dt (ϕ(s)ϕ(t)) = lϕ(s)∗ϕ∗( d
dt |t) = lϕ(s)∗(X(ϕ(t)))

= X(ϕ(s)ϕ(t)) = X(σ(t, ϕ(s)).

By the uniqueness theorem of ordinary differential equation, we conclude that:

ϕ(t + s) = σ(t + s, ϕ(0)) = σ(t, σ(s, ϕ(0))) = σ(t, ϕ(s)) = ϕ(s)ϕ(t).

This implies that ϕ((−δ, δ)) ⊆ ϕ(0)T . Now it suffices to prove that (−δ, δ) = R. But
ϕ : (−δ, δ) → ϕ(0)T is smooth, since ϕ(0)T is imbedded in T . Hence X(ϕ(s)) ∈
Tϕ(s)ϕ(0)T . Consequently, X|ϕ(0)T is a smooth left invariant vector field on the Lie
group ϕ(0)T and we have (−δ, δ) = R. ¤

Theorem 3.4. Let T be a right top space. Then there exists a correspondence between
one parameter subgroups of tT , for every t ∈ e(T ) and one parameter subgroups of T .

Proof. Let t ∈ e(T ). Lemma 2.6 implies that tT is Lie group and lt : T → tT is a
smooth map. Then lt(g) = t, for g ∈ e(T ) and lt(t1t2) = tt1t2 = tt1tt2 = lt(t1)lt(t2).
Hence if α is a one parameter subgroup of T , then lt ◦α is a one parameter subgroup
of tT . In addition if α is a one parameter subgroup of tT then l−1

t (α) =
⋃

g∈e(T ) gα.
For every g ∈ e(T ), gα, is a one parameter subgroup of T . ¤



42 N. Ebrahimi

Theorem 3.5. Let T be a right top space. Then there is a one to one correspondence
between left invariant vector fields of T and left invariant vector fields of tT , for
t ∈ e(T ). Moreover, the Lie algebra created by the left invariant vector fields of T is
isomorphic to the Lie algebra of tT .

Proof. If X is a left invariant vector field of T then by theorem 3.3 there is a one
parameter subgroup of T correspondence to X that ϕ(0) = t. Theorem 3.4 implies
that tϕ is a one parameter subgroup of tT . Since tT is a Lie group, then there exists
exactly one left invariant vector field in correspondence to tϕ. Conversely, if X is a
left invariant vector field on tT , then its one parameter group is contained in T and
by theorem 3.3 there exists a left invariant vector field correspondence to this one
parameter subgroup. ¤

4 Quotient space of right top spaces

We begin this section with the definition of a sub-top space.

Definition 4.1. A couple (N, ϕ) is a sub - top space of the top space T if:

• N is a top space;

• (N, ϕ) is a submanifold of T ;

• ϕ : N → T is a homomorphism.

For a sub - top space N of the top space T , we set Na = N ∩ e−1(e(a)) and ΓN =
{a ∈ T |Na 6= f¡ }. Note that a sub - top space N of a right top space T is a right
top space too.

Lemma 4.1. Let (N, ϕ) be a sub - top space of the right top space T . Then ΓN is a
sub - top space of T .

Proof. e(N) is an embedded submanifold of N by lemma 2.4. Since T is a right top
space we have T ' M(tT, e(T ), p) (see the proof of theorem 2.7 for details). Under this
isomorphism ΓN and the top space M(tT, e(N), p) are in one to one correspondence.
(M(tT, e(N), p), (ϕ ◦ i) × i) is a submanifold of M(tT, e(T ), p) and (ϕ ◦ i) × i is a
homomorphism. Hence (M(tT, e(N), p), (ϕ◦i)×i) is a sub - top space of M(tT, e(T ), p)
and consequently ΓN is a sub - top space of T . ¤

Remark 4.2. We recall that T/N = ∪x∈Γ(N)xNx [4]. Let T be a right top space
then xNx = xN , for if n ∈ N and x ∈ ΓN , xn = xe(x)n. Since T is a right top space
e(x)n ∈ e−1(e(x)). In addition, e(x)n ∈ N , since x ∈ ΓN . Hence xn = xe(x)N ∈
xNx. The converse is trivial.

Theorem 4.2. Let (N, ϕ) be a closed sub - top space of the right top space T . Then
T/N has a manifold structure such that:

• π is smooth.

• There exist local smooth sections of T/N in ΓN , that is, if tN ∈ T/N then
there are a neighborhood W of tN and a smooth map τ : W → ΓN such that
π ◦ τ = id.
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Proof. Theorem 2.7 implies that T 'α M(nT, e(T ), p) and N ' M(nN, e(N), p), for
some n ∈ e(N). In addition by using Lemma 4.1, α|ΓN

: ΓN → M(nT, e(N), p)
is an isomorphism. Note that nN = Nn and nT = Tn. Nn is a closed sub-
group of the Lie group Tn, since N is closed by assumption. Hence by theorem
3.58 of [5], Tn/Nn has a manifold structure such that π0 : Tn → Tn/Nn is smooth
and for every gNn ∈ Tn/Nn there exists a local section i.e, there are a neighbor-
hood W0 of gNn and a map τ0 : W0 → Tn such that π0 ◦ τ0 = id. A coset of
M(Tn, e(T ), p)/M(Tn, e(N), p) is of form (m, gNn), where m ∈ e(N) and g ∈ Tn.
Hence M(Tn, e(T ), p)/M(Nn, e(N), p) = e(N) × Tn/Nn and consequently it has a
manifold structure. Under this manifold structure π1 = id × π0 is smooth. In ad-
dition if (m, gNn) ∈ M(Tn, e(T ), p)/M(Nn, e(N), p) then we define τ1 = (id, τ0) on
W1 = e(N)×W0. Now it is clear that τ1 ◦ π1 = id.
Let β : T/N → M(Tn, e(T ), p)/M(Nn, e(N), p) be the map defined by β(xNx) =
(e(x), nxNn). We prove that β is a one to one correspondence. It is well defined, for if
xNx = yNy then e(x) = e(y). Remark 4.2 implies that xN = yN hence nxN = nyN
and consequently β(xNx) = β(yNy). It is one to one, since if β(xNx) = β(yNy)
then e(x) = e(y) and nxN = nyN . Consequently xN = e(x)nxN = e(x)nyN =
yN . In addition β is on to, sine if (m, gNn) ∈ M(Tn, e(T ), p)/M(Nn, e(N), p) then
β(mgN) = (m,ngNn). Now β induces a manifold structure on T/N . Note that
π1◦α = β◦π. Hence π is a smooth map. In addition if one define τ : β−1(W1) → T/N
by τ = α−1 ◦ τ1 ◦ β. Then π ◦ τ = id and the proof is complete. ¤

Definition 4.3. A generalized left action of a top space T on a manifold M is a
smooth map λ : T ×M → M such that:

• for each t1 and t2 ∈ T , λ(t1, λ(t2,m)) = λ(t1t2,m);

• for each m ∈ M and t ∈ T , λ(e(t),m) = m.

Definition 4.4. Let λ be an action on the top space T . Then H(m) = {t ∈ T :
λ(t,m) = m} is called the stabilizer of λ.

Remark 4.5. Let λ be a generalized left action of the top space T on the manifold
M . One can define for each m ∈ M and t ∈ T two maps which are related to λ:

• λm : T → M, λm(s) = λ(s,m) for every s ∈ T ;

• λt : M → M , λt(n) = λ(t, n) for every n ∈ M .

Note that λt ◦ λt−1
= λt−1 ◦ λt = id, and consequently λt is a diffeomorphism for

every t ∈ T . Moreover, H(m) = λ−1
m (m). A generalized action λ is transitive if for

every n,m ∈ M there is t ∈ T such that λ(t, n) = m.

Theorem 4.3. Let T be a right top space and λ be a left action of T on the manifold
M . Then H(m) is a sub - top space of T .

Proof. Since T is a right top space, se(t) = s, for every s, t ∈ T . Hence λ(e(s), λ(s,m)) =
λ(s, λ(e(t),m)) and we have λe(s)◦λm(s) = λs◦λm(e(t)). Consequently (λe(s))∗(λm(s))◦
(λm)∗(s) = (λs)∗(λm(e(t)) ◦ (λm)∗(e(t)). Since λe(s) and λs are diffeomorphisms
rank(λm) in e(t) and s is equal. Hence rank(λm) is constant and consequently
H(m) = λ−1

m (m) is an embedded submanifold. In addition it is a generalized group
and consequently it is a sub - top space. ¤
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Theorem 4.4. [5] Let η : G×M → M be a transitive action of the Lie group G on
the manifold M on the left. Let m0 ∈ M , and let H be the stabilizer of m0. Define a
mapping β : G/H → M by β(gH) = η(g, m0). Then β is a diffeomorphism.

Theorem 4.5. Let T be a right top space and θ : T ×M → M be a transitive left
action. If H is the stabilizer of m0, then there exists a diffeomorphism between T/H
and e(H)×M .

Proof. Since H is closed, theorem 4.2 implies that T/H is diffeomorphic with e(H)×
Tn/Hh, for h ∈ e(H). We define θ0 : Th × M → M , θ0(g, m) = θ(g, m), for every
g ∈ Th and m ∈ M . θ0 is a transitive left action, for if m, m0 ∈ M there is t ∈ T that
θ(t,m) = m0. But the second condition of definition 4.2 implies that θ(ht, m) = m0.
Hence θ0(ht,m) = θ(ht, m) = m0. Hh is the stabilizer of m0 for the action θ0. Now
theorem 4.4 implies that β(e(h), gHh) = (e(h), θ0(g, m0)) is a diffeomorphism. ¤
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