Left invariant vector fields of a class of top spaces

N. Ebrahimi

Abstract. The notion of top space as a generalization of Lie group is
defined in [1] and the case with finite number of identities was studied in [2,
3, 4]. In this paper we investigate top spaces whose right/left translations
are diffeomorphisms. These top spaces - called right/left top spaces may
have an infinite number of identities. A characterization of right top spaces
is given in Section 2, where we prove that left /right invariant vector fields
of this kind of top spaces form a Lie algebra, whose dimension is equal
to the rank of the left shift mapping l,, for any g from the top space.
In Section 3, a relation between the Lie algebra of a top space and the
Lie algebra of a spatial class of Lie groups is presented. In Section 4 the
quotient space of right top spaces and the generalized action of a top space
on a manifold are defined and discussed.
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1 Introduction

Lie groups were initially introduced as a tool to solve or simplify ordinary and partial
differential equations, and found numerous applications in Physics. The notion of
top space as a generalization of Lie group was considered in [1]. We recall first its
definition.

Definition 1.1. A top space T is a smooth manifold admitting an operation called
multiplication, subject to the following set of rules:

(ry)z = z(yz) for all z,y,z € T}

for each z € T there exists a unique z € T such that xz = zx =  (we denote z
by e(x));

for each x € T there exists y € T such that zy = yz = e(x) (we denote y by
r1);

the mapping m; : T — T is defined by mi(z) = 27! and the mapping ms :
T x T — T is defined by my(z,y) = xy are smooth maps;

o e(zy) =e(x)e(y) for all z,y € T.
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We denote the left translation and the right translation associated to an element
g€ T, themaps!ly,:T — T and ry : T — T, respectively defined by

ly(p) = gp; re(p) = pg, VpeT.

A vector field X on a top space T is called a left invariant vector field if (I;)+(X (p)) =
X (l4(p)), where p,g € T. Right invariant vector fields are similarly defined by sub-
stituting r, with /.

Note that left and right translations in Lie groups are diffeomprphisms, while top
spaces don’t generally have this property. Suppose that T is a top space such that
Tt =T, for some t € T, where Tt = {gt : g € T'}. The following theorem implies that
r¢ is a diffeomorphism for all t € T'. In particular, r¢«) = id, for all t € T'.

Theorem 1.1. [1] If TtNTg # & , then Tt = Tg, where t,g € T. In particular,
Tt =Te(t).

Definition 1.2. A top space T is called a right (left) top space if Tt =T (tT =1T),
for some t € T.

There exist right(left) top spaces with an infinite number of identities.

Example 1.3. [1] The n- dimensional torus T™ = R™/Z™ with the product
((a/17 a2, ..., an) + Zn? (bla b27 eeey bn) + Z”) = (al + b17 as + bza vy p—1 + b’nfla an) + Zn

is a top space. We have e((ay,ag,...,a,) + Z") = (0,0,...,0,a,) + Z", and hence T"
has an infinite number of identities. Moreover, T"a = T™ for all a € T™.

Example 1.4. Suppose that G is a Lie group and that two smooth manifolds A
and I are given. If p: I x A — G is a smooth mapping, then A x G x I with the
product (A, g,%)(A1,91,91) = (A, gp(i,\1)g1,41) is a top space, which is called Rees
matriz top space, and which is denoted by M (G, I, A,p) [1]. Suppose that I is an
one point set; then A X G x I ~ A x G is a right top space, which we call right
Rees matriz, denoted by M (G, A,p). Further, we have e((\,g)) = (\,p(\)~!) and
consequently card(e(A x G)) = card(A).

2 Lie algebra of right top spaces

It was proved that the set of left invariant vector fields of a top space T with a finite
number of identities form a Lie algebra [1]. The following theorem shows that the
same statement holds for right top spaces. Its proof is similar to the one from [5,
Proposition 3.7].

Theorem 2.1. The set of left invariant vector fields on the right top space T is a Lie
algebra under the Lie bracket operation.

Proof. We only need to show that a left invariant vector field is smooth. Let X be a
left invariant vector field and fix t € T. X is determined by X (e(t)), since Te(t) =T.
If f € C°°(T) then

(2.1) X[f(g) = X [(ge(t)) = (lg)X(e(t))f = X(e(®))(f o ly)-
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Let Y be a smooth vector field on T such that Y(e(t)) = X(e(t)). We define the
following smooth functions on 7"

ié(t) T —>TxT, ii(t) (h) = (h,e(t))
ii:T—TxT, i2(h)=I(g,h).

We note that (0,Y") is a smooth vector field on T'x T'. Consequently [(0,Y)(foms)]o
ii( p Is a smooth function. Then we have

[(0,Y)(f oma)] odgyy(9) = (0,Y)(g,e(t))(f 0 m2)
=0(g)(f omz 0il,) +Y(e(t))(f omaoiy)
= X(e(t))(f omz 0iy) = X(e(t))(f oly).
Hence (2.1) implies that X f is a smooth function, and consequently X is smooth. O
Theorem 2.2. Let T be a right top space. Then:

o rank(ly) is constant for allt € T';
o rank(ly) =rank(ly) for all t,t' € T.

Proof. Suppose that rank(l;) = k at g and rank(ly) = k" at ¢’. Let X;(g),i=1,2,....k
be independent tangent vectors such that their images under (I;). remain indepen-
dent. We note that (I,).X;(g), ¢ = 1,2,...,k, for all p € T are independent, since
i 3 ai(ly). (Xi(9) = 0 and then () S ai(1,)+ (Xi(9) = 3 o) Xo(g) =
Zal(lt)*XZ( ) = 0, and consequently a; = 0 for i = 1,2, ..., k. Hence (Iy,-1).X;(g) €
Ty(T),i=1,...,k, are independent. If Y~ a;(ly ). ((1gg- ) Xi(g)) =0, then Y~ a;(lyp—1) (le)« ((Iyrg-1)+ Xi(g)) =
Z a;i(ligrg-1)+Xi(g9) = 0, and consequently a; = 0 for i = 1,2, ..., k. Therefore we have
k <K'. In a similar way it can be proved that k¥’ < k. Hence k = k' O

Theorem 2.3. Let T be a right top space with its Lie algebra 7. Then dim(7) =
rank(lewy), for allt € T.

Proof. Let a: 7 — T,4)(T) be the map defined by a(X) = X(e(t)), for some t € T'.
We show that « is an one to one homorphism of Lie algebras and that img(a) =
img((lety)«). But a is injective, for if a(X) = a(Y'), then X (e(t)) = Y (e(t)). Since X
and Y are left invariant vector fields X (g) = (1), X (e(t)) = (I5)+Y (e(t)) = Y (g) for all
g € T then consequently X =Y. Let X(e(t)) € Te)(T). If there exists a left invariant
vector field Y € 7 such that a(Y) = X (e(t)), then Y (e(t)) = (ler))+Y (e(t)) = X (e(t)),
and consequently X (e(t)) € img((lep))s). Conversely, if X(e(t)) € img((ler))«),
then there exists Y'(e(t)) € T.u)(T) such that (l)«Y (e(t)) = X(e(t)). Hence
(let) )« X (e(t)) = X(e(t))-

Now let X be the left invariant vector field which is determined by X (e(¢)). Then
a(X) = X(e(t)). It is trivial to check that « is linear and preserves the bracket
operation. Hence a : 7 — img((le())+ is an isomorphism and dim(7) = rank(l.)),
which concludes the proof. ([l

The following lemmas give a characterization of right top spaces.
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Lemma 2.4. Let T be a right top space. Then e(T) is embedded in T.

Proof. If t, g € e(T), then (I|yr)~*(t) = g. Since T = Ugee (g7, we have I t) =
Ugee(r)(lelgr) ™' (t) = e(T). Moreover, by theorem 2.2 rank(l;) is constant and con-
sequently e(7T) is embedded in T O

Lemma 2.5. The function e : T — T is a smooth map and has constant rank.

Proof. Since e = mg o (i X mq), then e is a smooth map. T is a right top space, and
hence e(p) = e(p)e(k) = e(pk) = e o ri(p), for every p,k € T and e.(p) = e.(pk) o
(ri)«(p). Since 1, is a diffeomorphism, rank(e)(p) = rank(e)(pk) and consequently
rank(e) is constant on e~ *(e(p)) = pT. Lemma 2.4 implies that e : T — ¢(T) is a
smooth map. Hence rank(e)(p) < dim(e(T)), for all p € T. In addition, e : e(T) —
e(T) is the identity map and consequently rank(e)(e(p)) = dim(e(T)), for all p € T.
Hence e has constant rank on 7. ]

Lemma 2.6. Let T be a right top space. Then (tT,i) is embedded in T, fort € T.
Moreover, tT' is a Lie group.

Proof. Since tT = e~!(e(t)) and the function e has constant rank, it is an embedded
submanifold of T'. Therefore the maps mqo (i x14) : tT X tT — tT and mq o : tT — tT
are smooth and T is a Lie group. (Il

Theorem 2.7. Let T be a right top space. Then T is isomorphic with a right Rees
matriz.

Proof. Let t € e(T) and let the map p : e(T) — tT be defined by p(s) = t, for every
s € e(T). We prove that the right Rees matrix M (tT,e(T),p) is isomorphic with 7.
Let a: T — e(T) x tT be the map defined by a(g) = (e(g), tg), for every g € T. « is
injective and surjective and a=! : e(T) x tT — T is given by a~1(s,tg) = stg. o and
a~1 are smooth. In addition a(gg’) = a(g)a(g’), hence a is an isomorphism of top

spaces. O

3 One parameter subgroups of a right top space

We need to first introduce the definition of top space covering projection:

Definition 3.1. [2] Let T be a top space and let G be a topological group. Then a
covering projection P : T — @ is called a top space covering projection, if P satisfies
the following conditions:

o P(t) =e, for all t € e(T'), where e is identity element;
° P(tltg) = P(tl)P(tg), for all ti,to €T.

Theorem 3.1. [3] If T is a top space with a finite number of identities, then there
exists a topological group G and a top space covering P: T — G.

Let T be a top space with finite number of identities. Since e~!(e(t)), for every
t € T, it is open and it is a Lie group. Theorem 2.3 of [3] implies that these Lie
groups are diffeomorphic. In addition, the proof of theorem 3.1 implies that P : T —
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e L(e(ty)), P(t) = e(to)te(ty) is a top space covering, for every ¢t € T. Hence the
following theorem shows that the Lie algebra of a top space T" with a finite number
of identities and the Lie algebra of the Lie group e~!(e(to)) are isomorphic.

Theorem 3.2. [2] If T is a top space with card(e(T)) < oo, G is a Lie group and P :
T — G a top space covering projection, then there exists a one-to-one correspondence
between left invariant vector fields of G and left invariant vector fields of T'. Moreover
the Lie algebra created by the Left invariant vector fields of T is isomorphic to the Lie
algebra of G.

In the remainder of this section we show that the Lie algebra of a right top space
T and tT = e~ (e(t)) are isomorphic as well.

Definition 3.2. [2] Suppose that T is a top space. A curve ¢ : R :— T is called a
one parameter subgroup of T if it satisfies the condition ¢(t; + t2) = p(t1)p(t2), for
all t1, b5 € R.

Theorem 3.3. Suppose that T is a right top space then there is a correspondence
between one parameter subgroups of T and its left invariant vector fields.

Proof. Let ¢ : R — T be a one parameter subgroup. We have ¢(s) = p(0+ s) =
©(0)¢(s) = ¢(s)p(0). Hence e(p(s)) = ¢(0), for all s € R. Consequently, ¢(R) C
©(0)T and ¢ is a one parameter subgroup of the Lie group ¢(0)7T. Hence there exists
a left invariant vector field corresponding to .

Conversely, suppose that X is a left invariant vector field on T’; then X defines
a local one parameter group action 0 : W C R x T' — T, such that ¢(0,g) = g and
(ag)*(%b) = X(g). We define ¢ : (=9,0) — T by ¢(t) = o(t,p(0)), where ¢(0) €
e(T), and (=4, 6) is such that (—4,9) x p(0) C W. We show that if ¢, s,t+s € (=6, 0).

Then ¢(t + s) = ©(t)¢(s). If the parameter s is fixed and 7 (¢, (s)) = w(s)p(t),
then we have (0, p(s)) = ¢(s)p(0) = ¢(s), since p(0) € e(T) and T is a right top
space. In addition, & satisfies the same differential equation for o:

7@t e() = Fe(s)pt) = loeeps () = Lo« (X (2(1)))
= X(p(s)e(t)) = X(@(t, ¢(s))-

By the uniqueness theorem of ordinary differential equation, we conclude that:

p(t+s) =0a(t+s,0(0) =o(t,a(s,0(0))) =T(t 0(s)) = p(s)p(t).

This implies that ¢((—d,d)) C ¢(0)T. Now it suffices to prove that (—d,d) = R. But

¢ : (=94,0) — ©(0)T is smooth, since ¢(0)7T is imbedded in T. Hence X (p(s)) €

Ty (0)T. Consequently, X|¢o(0)T is a smooth left invariant vector field on the Lie
#(s)

group ¢(0)T and we have (—4,6) = R. O

Theorem 3.4. LetT be a right top space. Then there exists a correspondence between
one parameter subgroups of tT', for every t € e(T) and one parameter subgroups of T'.

Proof. Let t € e(T). Lemma 2.6 implies that ¢T" is Lie group and l; : T' — tT is a
smooth map. Then l;(g9) = t, for g € e(T) and l;(t1t2) = tti1ta = ttrtta = le(t1)l:(t2).
Hence if « is a one parameter subgroup of 7', then [; o « is a one parameter subgroup
of tT. In addition if o is a one parameter subgroup of T then I; *(a) = Ugee(r) 90
For every g € e(T), g, is a one parameter subgroup of T
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Theorem 3.5. Let T be a right top space. Then there is a one to one correspondence
between left invariant vector fields of T and left invariant vector fields of tT', for
t € e(T). Moreover, the Lie algebra created by the left invariant vector fields of T is
isomorphic to the Lie algebra of tT'.

Proof. If X is a left invariant vector field of T" then by theorem 3.3 there is a one
parameter subgroup of T' correspondence to X that ¢(0) = ¢. Theorem 3.4 implies
that tp is a one parameter subgroup of ¢T'. Since tT is a Lie group, then there exists
exactly one left invariant vector field in correspondence to tp. Conversely, if X is a
left invariant vector field on ¢7T, then its one parameter group is contained in 7" and
by theorem 3.3 there exists a left invariant vector field correspondence to this one
parameter subgroup. O

4 Quotient space of right top spaces

We begin this section with the definition of a sub-top space.
Definition 4.1. A couple (N, ¢) is a sub - top space of the top space T if:

e N is a top space;
e (N, ) is a submanifold of T

e ¢ : N — T is a homomorphism.

For a sub - top space N of the top space T, we set N, = NNe !(e(a)) and I'y =

{a € T|N, # & }. Note that a sub - top space N of a right top space T is a right
top space too.

Lemma 4.1. Let (N, ) be a sub - top space of the right top space T. Then I'y is a
sub - top space of T.

Proof. e(N) is an embedded submanifold of N by lemma 2.4. Since T is a right top
space we have T' ~ M (tT, e(T'), p) (see the proof of theorem 2.7 for details). Under this
isomorphism I'y and the top space M (tT,e(N),p) are in one to one correspondence.
(M(tT,e(N),p), (¢ o) x 1) is a submanifold of M (tT,e(T),p) and (poi) x i is a
homomorphism. Hence (M (tT,e(N), p), (poi)Xi) is a sub - top space of M (¢tT, e(T), p)
and consequently I'y is a sub - top space of T'. O

Remark 4.2. We recall that T/N = Uzepn)®N, [4]. Let T be a right top space
then N, = N, for if n € N and z € 'y, an = ze(x)n. Since T is a right top space
e(z)n € e7!(e(x)). In addition, e(x)n € N, since z € I'y. Hence zn = we(x)N €
xN,. The converse is trivial.

Theorem 4.2. Let (N, ) be a closed sub - top space of the right top space T. Then
T/N has a manifold structure such that:

e T is smooth.

e There exist local smooth sections of T/N in Ty, that is, if tN € T/N then
there are a meighborhood W of tN and a smooth map 7 : W — I'y such that
moT =1id.
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Proof. Theorem 2.7 implies that T ~“ M (nT,e(T),p) and N ~ M (nN,e(N),p), for
some n € e(N). In addition by using Lemma 4.1, a|r, : I'n — M(nT,e(N),p)
is an isomorphism. Note that nN = N, and nT = T,. N, is a closed sub-
group of the Lie group 7, since N is closed by assumption. Hence by theorem
3.58 of [5], T,,/N, has a manifold structure such that my : T,, — T,,/N,, is smooth
and for every gN,, € T,/N, there exists a local section i.e, there are a neighbor-
hood Wy of gN,, and a map 79 : Wy — T, such that w9 o 79 = id. A coset of
M(T,,e(T),p)/M(T,,e(N),p) is of form (m,gN,), where m € e(N) and g € T,.
Hence M (T,,e(T),p)/M(Ny,,e(N),p) = e(N) x T,,/N,, and consequently it has a
manifold structure. Under this manifold structure m; = id X 7y is smooth. In ad-
dition if (m,gN,) € M(T,,e(T),p)/M(N,,e(N),p) then we define 71 = (id, 79) on
W1 =e(N) x Wy. Now it is clear that 7 o m = id.

Let 8 : T/N — M(T,,e(T),p)/M(Ny,e(N),p) be the map defined by S(zN,) =
(e(x),nzN,). We prove that 3 is a one to one correspondence. It is well defined, for if
xN; = yN, then e(z) = e(y). Remark 4.2 implies that N = yN hence naN = nyN
and consequently G(xN;) = B(yN,). It is one to one, since if S(zN,) = B(yNy)
then e(z) = e(y) and naN = nyN. Consequently N = e(z)naN = e(z)nyN =
yN. In addition § is on to, sine if (m,gN,) € M(T,,e(T),p)/M(N,,e(N),p) then
B(mgN) = (m,ngN,). Now [ induces a manifold structure on T/N. Note that
moa = Borm. Hence 7 is a smooth map. In addition if one define 7 : 3=1(W;) — T/N
by T=a"'or of. Then 7 o7 = id and the proof is complete. O

Definition 4.3. A generalized left action of a top space T" on a manifold M is a
smooth map A : T x M — M such that:

e for each ¢; and ty € T, )\(tl, /\(tg,m)) = )\(tltg,m);
o for each m € M and t € T, A(e(t),m) = m.

Definition 4.4. Let A be an action on the top space T. Then H(m) = {t € T :
A(t,m) = m} is called the stabilizer of \.

Remark 4.5. Let )\ be a generalized left action of the top space T' on the manifold
M. One can define for each m € M and t € T two maps which are related to A:

o M\ : T — M N\ (s) = A(s,m) for every s € T}
e \: M — M, \(n) = \t,n) for every n € M.

Note that At o At = A" o At = id, and consequently A is a diffeomorphism for
every t € T. Moreover, H(m) = \,}(m). A generalized action ) is transitive if for

every n,m € M there is t € T such that \(¢,n) = m.

Theorem 4.3. Let T be a right top space and A be a left action of T on the manifold
M. Then H(m) is a sub - top space of T.

Proof. Since T is a right top space, se(t) = s, for every s,t € T. Hence A(e(s), A(s,m)) =
A(s, Ae(t),m)) and we have \() o), (s) = A%o,,,(e(t)). Consequently (A*(*)), (A (s))o
Am)«(8) = (A%)u(Amle(t)) o (An)s(e(t)). Since A*(*) and A* are diffeomorphisms
rank(A\y) in e(t) and s is equal. Hence rank(\,,) is constant and consequently
H(m) = X\,}(m) is an embedded submanifold. In addition it is a generalized group
and consequently it is a sub - top space. O
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Theorem 4.4. [5] Let n: G x M — M be a transitive action of the Lie group G on
the manifold M on the left. Let mg € M, and let H be the stabilizer of my. Define a
mapping 5 : G/H — M by 8(gH) = n(g, mo). Then B is a diffeomorphism.

Theorem 4.5. Let T be a right top space and 0 : T ' x M — M be a transitive left
action. If H is the stabilizer of my, then there exists a diffeomorphism between T /H
and e(H) x M.

Proof. Since H is closed, theorem 4.2 implies that T'/H is diffeomorphic with e(H) x
T,./Hy, for h € e(H). We define 0y : T, x M — M, 6y(g,m) = 6(g,m), for every
g € Ty, and m € M. 6 is a transitive left action, for if m, mo € M there is t € T that
0(t,m) = mo. But the second condition of definition 4.2 implies that 8(ht,m) = mg.
Hence 6y (ht,m) = 0(ht,m) = mg. Hj is the stabilizer of my for the action 5. Now
theorem 4.4 implies that G(e(h),gHp) = (e(h), 0o(g, mp)) is a diffeomorphism. O
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