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Abstract. In this paper we prove that strongly Morita equivalent twisted
actions of a locally compact group on C∗-algebras have strongly Morita
equivalent twisted crossed products [4],[31]. We also present an elementary
proof that every twisted C∗-dynamical system is Morita equivalent to an
ordinary system [20] and we remind the notion of Morita equivalence of
twisted inverse semigroup actions introduced by N. Sieben in [31] and a
theorem that states that Morita equivalent actions have Morita equivalent
twisted crossed products [31].
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1 Introduction and preliminaries

The notion of strong Morita equivalence of C∗-algebras was introduced by Rieffel in
his study of induced representations of C∗-algebras [29]. Roughly speaking, two C∗-
algebras A and B are said to be strongly Morita equivalent if there is a full Hilbert
B-module X such that the algebra K(X) of compact operators is isomorphic to A.
Strong Morita equivalence is an equivalence relation on C∗-algebras and played an
important role in the study of transformation group C∗-algebras.

Strong Morita equivalence of crossed products by actions was discussed in [13],
[20], [14], [9], [34]. Let A and B be C∗-algebras which are strongly Morita equivalent
via a Banach A,B-imprimitivity bimodule X and let α and β be actions of a locally
compact group G on A and B. It was shown that if there is a strongly continuous
map τ : G → Iso(X) which is compatible with α and β, then the crossed products
A×α G and B ×β G are strongly Morita equivalent. In [4] Bui generalized this result
to the cases of twisted actions and Green’s twisted actions, introduced the notions
of strong Morita equivalence of twisted actions and of Green’s twisted actions and
in each case showed that the associated crossed products C∗-algebras are strongly
Morita equivalent.

Twisted actions were introduced by Busby and Smith [7], who constructed a
twisted Banach ∗-algebra L1(A,G, α, u) whose enveloping C∗-algebra is called the
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twisted-crossed-product of A by G under the action α relative to the multiplier u de-
noted by A×α,u G. Packer and Raeburn studied in [24] the twisted crossed products
of C∗-algebras by twisted actions of locally compact groups. They established that
every twisted action is stably exterior equivalent to an ordinary action and hence
every twisted crossed product is stably isomorphic to an ordinary crossed product.
The twisted crossed product A×α,u G was defined [24], [2], [21], [26] as a C∗-algebra
whose representation theory is the same as the covariant representation theory of
(A,G, α, u) on Hilbert space. In [25], Packer and Raeburn deduced a structure theo-
rem for twisted crossed products of C∗-bundles. They also showed that A×α,u G has
a universal property that any covariant representation (π, v) of (A,G, α, u) in a multi-
plier algebra M(C) gives rise to a homomorphism of A×α,uG into M(C). In fact, this
property gives a more satisfactory characterization of the twisted crossed product: it
is a triple (B, iA, iG), consisting of a C∗-algebra B and a covariant homomorphism
(iA, iG) of (A,G, α, u) into M(B) [10], [11], [12].

Echterhoff [14] showed that every twisted action in the original sense of Green [17]
is Morita equivalent to an ordinary action. The notion of Morita equivalent actions,
introduced by Combes [9], is a useful generalization of the notion of stably exterior
equivalence. In [14] it is proved that Morita equivalent twisted actions give rise to
Morita equivalent twisted crossed products and almost all important properties of
twisted actions are invariant under Morita equivalence.

In [3], Bui discussed strong Morita equivalence of crossed products by coactions
and twisted crossed products by coactions. Twisted coactions were introduced by
Phillips and Raeburn in [28]. If the group is abelian then a twisted coaction is
effectively the same as a Green’s twisted action [16]. Bui [3] introduced a natural
notion of strong Morita equivalence of twisted coactions which is sufficient to ensure
strong Morita equivalence of the associated twisted crossed product C∗-algebras.

Bui [3] proved that Morita equivalent systems (A, δA), (B, δB) have Morita equiv-
alent crossed products, by showing that, if X is an A − B imprimitivity bimodule
with a compatible coaction δX of G, then X ⊗B (B ×δB

G) is an A×δA
G−B ×δB

G
imprimitivity bimodule [18]. Echterhoff and Raeburn [15] obtained a symmetric ver-
sion of this result and also gave a relatively short proof of Bui’s main theorem, which
is the corresponding Morita equivalence for the twisted systems of [28].

In [5], Bui presented a new proof for Theorem 3.3, [3] based on the notion of crossed
products of Hilbert C∗-modules introduced in [6]. Crossed products of Hilbert C∗-
modules in [6] were defined as subspaces of adjointable operators between Hilbert
C∗-modules.

In [1] the main result is related to the concept of strong Morita equivalence [29],
that is, considering two crossed products by Hilbert C∗-bimodules A×XZ and B×Y Z
in which the underlying algebras A and B are known to be strongly Morita equivalent
to each other, under an imprimitivity bimodule M , are also strongly Morita equiva-
lent. This is a generalization obtained independently by Curto, Muhly and Williams
[13] on the one hand and Combes [9] on the other, in which a necessary condition
is given for two strongly Morita equivalent C∗-algebras to remain strongly Morita
equivalent, after one takes their crossed products by a locally compact group.

In this section we remind some basic definitions and notations about Busby-Smith
twisted actions, twisted crossed products and strong Morita equivalence of twisted
crossed products.
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Let A be a C∗-algebra and let G be a locally compact group. We denote by Aut(A)
the automorphism group of A and by UM(A) the group of unitary elements in the
multiplier algebra M(A) of A. If u ∈ UM(A), then Adu is the inner automorphism
a 7−→ uau∗.

Definition 1.1. ([7], [24]) A Busby-Smith twisted action of G on A is a pair (α, u) of
maps α : G → A, u : G×G → UM(A) satisfying :

(a) u is strictly Borel measurable and for each a ∈ A, s 7−→ αs(a) is Borel measur-
able;

(b) αe = id, u(e, s) = u(s, e) = 1 for all s ∈ G;

(c) αs ◦ αt = Adu(s, t) ◦ αst for all s, t ∈ G;

(d) αr(u(s, t))u(r, st) = u(r, s)u(rs, t) for all r, s, t ∈ G.

The quadruple (A,G, α, u) is called a (Busby-Smith)(separable) twisted dynamical sys-
tem.

If the cocycle u is trivial (i.e. identically 1) we say that (A,G, α, u) is an ordinary
dynamical system and write (A, G, α) for short.

Definition 1.2. ([7], [24]) A covariant representation of a twisted dynamical system
(A,G, α, u) is a pair (π, U) consisting of a non-degenerate representation π of A on a
Hilbert space H and a Borel measurable map U : G → U(H) such that

(a) UsUt = π(u(s, t))Ust for all s, t ∈ G;

(b) π(αs(a)) = Usπ(a)U∗
s for all a ∈ A, ∈ G.

Definition 1.3. ([7], [24]) Let (A,G, α, u) be a twisted dynamical system. A twisted
crossed product for (A,G, α, u) is a C∗-algebra B together with a non-degenerate
homomorphism iA : A → (B) and a strictly Borel map iG : G → UM(B) satisfying :

(a) (iA, iG) is covariant in the sense that for a ∈ A, s, t ∈ G we have

iA(αs(a)) = iG(s)iA(a)iG(s)∗,

iG(s)iG(t) = iA(u(s, t))iG(st);

(b) for any covariant representation (π, U) of (A, G, α, u) on a Hilbert space H, there
is a non-degenerate representation π×U of B on H such that π = (π×U) ◦ iA
and U = (π × U) ◦ iG (π × U is called the integrated form of (π,U));

(c) the set
{
iA × iG(z); z ∈ L1(G,A)

}
is a dense subspace of B, where

iA × iG(z) denotes the strictly defined Bochner integral
∫

iA(z(s))iG(s)ds.

We denote the twisted crossed product by A×α,u G.

The set Bc(G,A) of (equivalence classes of) bounded measurable functions from
G into A with compact support is a ∗-algebra with the convolution and the involution
defined by

(f ∗ g)(y) =
∫

f(x)[αx(g(x−1y))]u(x, x−1y)dx,

f∗(y) = ∆G(y)−1u(y, y−1)∗[αy(f(y−1))∗].

We denote this ∗-algebra by Bc(A,G, α, u) or Ac for short and we view it as a dense
∗-subalgebra of A×α,u G.
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Definition 1.4. [29] a) Let B be a pre-C∗-algebra. A right B-rigged space is a
right B-module X, which is a pre-B-Hilbert space (with compatible multiplication by
complex numbers on B and X), with preinner product conjugate linear in the first
variable such that

〈x, yb〉B = 〈x, y〉Bb

for all x, y ∈ X and b ∈ B, which implies that

〈xb, y〉B = b∗〈x, y〉B
and such that the range of 〈, 〉B generates a dense subalgebra of B. Left B-rigged
spaces are defined similarly except that we require that B acts on the left of X, that
the preinner product be conjugate linear in the second variable and that

〈bx, y〉B = b〈x, y〉B .

b) Let E and B be pre-C∗-algebras. An E − B-imprimitivity bimodule is a left-E-
right-B-bimodule, X, which is equipped with an E-valued and B-valued preinner
product with respect to which X is a left E-rigged space and a right B-rigged space
such that

(1) 〈x, y〉Ez = x〈y, z〉B for all x, y, z ∈ X;

(2) 〈ex, ex〉B ≤ ‖e‖2〈x, x〉B for all x ∈ X and e ∈ E;

(3) 〈xb, xb〉E ≤ ‖b‖2〈x, x〉E for all x ∈ X and b ∈ B.

c) Let X̃ denote the additive group X with the conjugate operations of E, B and the
complex numbers and the corresponding preinner products. When an element x ∈ X
is viewed as an element of X̃, we write it as x̃. Then these conjugate operations and
preinner products on X̃ are defined by

bx̃ = x̃b∗, x̃e = ẽ∗x

〈x̃, y〉B = 〈x, y〉B , 〈x̃, y〉E = 〈x, y〉E ,

for x, y ∈ X, b ∈ B, e ∈ E. We we also let x̃ denote the corresponding element of
HomB(X, B) defined by x̃(y) = 〈x̃, y〉B . We call X̃ the dual of the imprimitivity
bimodule X.

Definition 1.5. [4] Let (A,G, α, u) and (B,G, β, v) be separable twisted dynamical
systems. Suppose that X is a Banach A,B-imprimitivity bimodule. Let Iso(X) denote
the set of all bijective linear isometries of X. An (α, u), (β, v)-compatible action of G
on X is a map τ : G → Iso(X) satisfying the following conditions :

(i) for each x ∈ X, the map s 7−→ τs(x) from G into X is Borel;

(ii) A〈τs(x)|τs(y)〉 = αs(A〈x|y〉), ∀x, y ∈ X, ∀s ∈ G,
〈τs(y)|τs(x)〉B = βs(〈y|x〉B), ∀x, y ∈ X, ∀s ∈ G;

(iii) τe(x) = x, ∀x ∈ X,
τr(τs(x)) = u(r, s)τrs(x)v(r, s)∗, ∀x ∈ X, ∀∀r, s ∈ G.

The twisted actions (α, u) and (β, v) are called strongly Morita equivalent by means
of the imprimitivity system (X, τ).
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The relation of strongly Morita equivalence is an equivalence relation ([4]). We
assume that (α, u) is strongly Morita equivalent to (β, v) by means of (X, τ). The
map τ̃s(x̃) = τ̃s(x) for all s ∈ G and x̃ ∈ X̃ is a (β, v), (α, u)-compatible action of G

on X̃.

2 Morita equivalence of twisted crossed products

In this section we prove that the associated twisted crossed products C∗-algebras
of strong Morita equivalence of twisted actions and of Green’s twisted actions are
strongly Morita equivalent [4], [31]. We also present an elementary proof that every
twisted C∗-dynamical system is Morita equivalent to an ordinary system [20].

Theorem 2.1. [4] Let (A,G, α, u) and (B, G, β, v) be separable twisted dynamical sys-
tems. If the twisted actions (α, u) and (β, v) are strongly Morita equivalent by means
of an imprimitivity system (X, τ), then Bc(G, X) is a Bc(A,G, α, u), Bc(B, G, β, v)-
imprimitivity bimodule. Therefore the twisted crossed products A×α,u G and B×β,v G
are strongly Morita equivalent.

The proof of the theorem will result from the following three lemmas.
We denote Hc = Bc(G,X), Yc = Bc(G, X̃).

Lemma 2.2. [4] Let T : Hc → Yc be defined by

(Tξ)(s) = ∆G(s−1)[τs(ξ(s−1))v(s, s−1)]̃, ∀ξ ∈ Hc,∀s ∈ G.

Then T is conjugate linear and

(i) T (f · ξ) = (Tξ) · f∗, ∀ξ ∈ Hc, ∀f ∈ Ac;

T (ξ · g) = g∗ · (Tξ), ∀ξ ∈ Hc,∀g ∈ Bc

(ii) 〈Tξ|Tη〉Ac =Ac 〈ξ|η〉, ∀ξ, η ∈ Hc

Bc〈Tη|Tξ〉 = 〈η|ξ〉Bc , ∀ξ, η ∈ Hc

Also T is bijective and its inverse T−1 is given by

(T−1φ)(s) = ∆G(s−1)[τ̃s(φ(s−1))u(s, s−1)]̃, ∀φ ∈ Yc, ∀s ∈ G.

Lemma 2.3. [4] The following statements hold:

(i) For each ξ ∈ Hc, 〈ξ|ξ〉Bc is a positive element in B.

(ii) The linear span of the range of 〈·|·〉Bc is dense in Bc.

(iii) For any f ∈ Ac and ξ ∈ Hc, we have in B

〈f · ξ|f · ξ〉Bc ≤ ‖f‖2A〈ξ|ξ〉Bc .
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Proof. (i) Let (π, L,H) be a covariant representation of the twisted system (B,G, β, v)
such that the integrated form (π×L,H) is faithful. For any η, η′ ∈ Hc and h, h′ ∈ H,
we have

(2.1) 〈(π × L)(〈η|η′〉Bc)h|h′〉 =
∫ ∫

〈π(〈η(t)|η′(s)〉B)Lsh|Lth
′〉dsdt.

Let η =
p∑

i=1

λi ¯ xi ∈ Bc(G)¯X. By [33], Lemma IV.3.2, the matrix (〈xi|xj〉B) is a

positive element of Mp(B) and therefore there is a matrix (bij) ∈ Mp(B) such that

〈xi|xj〉B =
p∑

m=1

b∗mibmj , ∀i, j = 1, . . . , p.

We then obtain

(2.2) 〈η(t)|η(s)〉B =
p∑

m=1

(
p∑

i=1

λi(t)bmi

)∗


p∑

j=1

λj(s)bmj




It now follows from (1) and (2) that for any h ∈ H

〈(π × L)(〈η|η〉Bc)h|h〉 =
p∑

m=1

∥∥∥∥∥∥

∫ 


p∑

j=1

λj(s)bmj


Lshds

∥∥∥∥∥∥
.

Therefore 〈η(t)|η(s)〉Bc is a positive element of B. Since

‖〈ξ|ξ〉Bc − 〈η|η〉Bc‖B ≤ ‖ξ‖1‖ξ − η‖1 + ‖ξ − η‖1‖η‖1,

we deduce that ‖〈ξ|ξ〉Bc is also a positive element of B.
(ii) Suppose that the linear span Ic of the range of 〈·|·〉Bc is not dense in Bc. Let

I be the closure of Ic and let (π, L,H) be a covariant representation of (B,G, β, v)
such that ker(π × L) = I and π × L 6= 0. Since the linear span of elements 〈x|x′〉B
with x, x′ ∈ X is dense in B, there are λ¯〈x|x′〉B ∈ Bc(G)¯B and h ∈ H such that
‖(π × L)(λ¯ 〈x|x′〉B)h‖2 6= 0. Put η = λ¯ x〈x|x′〉B and ξ = λ¯ x′. We have

‖(π × L)(λ¯ 〈x|x′〉B)h‖2 = 〈(π × L)(〈η|ξ〉Bc)h|h〉

Hence (π × L)(〈η|ξ〉Bc) 6= 0. This is a contradiction.
(iii) Let ω be a state of B. Put

〈η|η′〉ω = ω(〈η|η′〉Bc), ∀η, η′ ∈ Hc.

Let Nω =
{
η ∈ Hc; 〈η|η〉ω

}
, let qω : Hc → Hc/Nω be the quotient map and let

Hω be the Hilbert space obtained by completing the space Hc/Nω. The linear map
qω : Hc → Hω is bounded with respect to the L1-norm on Hc. For any a ∈ A, s ∈ G
and η ∈ Hc, we put

(lA(a)η)(t) = aη(t), (lG(s)η)(t) = τs(η(s−1t))v(s, s−1t)
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and define
π(a)(qω(η)) = qω(lA(a)η), Ls(qω(η)) = qω(lG(s)η).

Then (π, L,Hω) is a covariant representation of (A, G, α, u) . Observe that

f · ξ =
∫

lA(f(s))lG(s)ξds

qω(f · ξ = (π × L)(f)qω(ξ).

It then follows that

ω(〈f ·ξ|f ·ξ〉Bc) = ‖qω(f ·ξ)‖2 = ‖(π×L)(f)qω(ξ)‖2 ≤ ‖f‖2A‖qω(ξ)‖2 = ‖f‖2Aω(〈ξ|ξ〉Bc)

Since this is true for all states of B, the inequality in (iii) holds. ¤

Lemma 2.4. The following statements are true:

(i) For each ξ ∈ Hc, Ac〈ξ|ξ〉 is a positive element in A.

(ii) The linear span of the range of Ac〈·|·〉 is dense in Ac.

(iii) For any g ∈ Bc and ξ ∈ Hc, we have

Ac〈ξ · g|ξ · g〉 ≤ ‖g‖2B Ac〈ξ|ξ〉

in A.

Proof. We apply first Lemma 2.3 to Yc in place of Hc and 〈·|·〉Ac in place of 〈·|·〉Bc .
Then we use Lemma 2.2 to get the desired results. ¤

Definition 2.1. [20] Let (B, G, β, v) and (A,G, α, u) be twisted systems and X is
a B − A equivalence bimodule. Let Aut(X) denote the set of bicontinuous linear
bijections φ of X which satisfy the ternary homomorphism identity φ(x · 〈y, z〉A) =
φ(x) · 〈φ(y), φ(z)〉A.(The analogous identity using B-valued inner products is equiv-
alent.) We say that (B, G, β, v) and (A, G, α, u) are Morita equivalent if there is a
strongly Borel map γ : G → Aut(X) such that for s, t ∈ G and x, y ∈ X:

1. αs(〈x, y〉A) = 〈γs(x), γs(y)〉A;

2. βs(B〈x, y〉) =B 〈γs(x), γs(y)〉;
3. γs ◦ ◦γt(x) = v(s, t) · γst(x) · u(s, t)∗.

We write (B, G, β, v) ∼X,γ (A,G, α, u) and call (X, γ) a system of imprimitivity im-
plementing the equivalence.

Theorem 2.5. [20] Let (A,G, α, u) be a twisted dynamical system and let K denote
the compact operators on H = L2(G). Then there is an ordinary action β of G on
A⊗K and a map δ : G → Aut(A⊗H) such that
(A⊗K, G, β) is Morita equivalent with (A,G, α, u).
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Proof. By Packer-Raeburn stabilization trick (Theorem 3.4, [24]), we have a Borel
map w : G → UM(A ⊗ K) which implements an exterior equivalence between an
ordinary action (β, 1) of G on A⊗K and (α⊗ idK, u⊗ 1).

Let A⊗H have the canonical A⊗K−A equivalence bimodule structure; so A⊗H
is the completion of the algebraic tensor product A ¯ H with respect to the norm
induced by the A-valued inner product 〈a ⊗ ξ, b ⊗ η〉A = 〈η, ξ〉Ha∗b. For s ∈ G, the
rule a⊗ ξ 7−→ αs(a)⊗ ξ defines an automorphism of A¯H which satisfies condition
1 in Definition 2.1 for this inner product, so is isometric with respect to the induced
norm and thus extends to a map αs ⊗ idH of A⊗H into itself. Then for x ∈ A⊗H,
the map s 7−→ αs⊗ idH(x) is Borel, using the fact that s 7−→ αs(a) is Borel for a ∈ A,
together with a routine density argument.

Now define δs : A⊗H → A⊗H by δs(x) = w∗s · αs ⊗ idH(x).
Then straightforward calculations on elementary tensors in A ⊗ H verify that

each δs satisfies the ternary homomorphism identity and the map s 7−→ δs satisfies
conditions 1-3 in Definition 2.1. For example, for any s, t ∈ G and a⊗ ξ ∈ A⊗H we
have

δs ◦ δt(a⊗ ξ) = w∗s · αs ⊗ idH(w∗s · αs ⊗ idH(a⊗ ξ))

= w∗sαs ⊗ idK(wt)∗ · αs ◦ αt(a)⊗ ξ

= (w∗sαs ⊗ idK(wt)∗u(s, t)⊗ 1) · αst ⊗ idH(a⊗ ξ) · u(s, t)∗

= w∗st · αst ⊗ idH(a⊗ ξ) · u(s, t)∗ = δst(a⊗ ξ) · u(s, t)∗

In particular, condition 1 (or 2) implies each δs is isometric and therefore bicontinuous
since each δs is invertible. Thus each δs belongs to Aut(A⊗H).

It remains to show that the map s 7−→ δs is strongly Borel. Fix x ∈ A and let
{
ei

}
be a countable approximate identity for A ⊗ K). Thus each of the maps s 7−→ w∗sei

and s 7−→ αs ⊗ idH(x) are Borel, so that s 7−→ w∗sei · αs ⊗ idH(x) is Borel for each
i. Since s 7−→ δs is the pointwise limit of these Borel maps, it too is Borel and the
theorem follows. ¤

3 Morita equivalence of twisted crossed products
by inverse semigroup

In this section we remind the notion of Morita equivalence of twisted inverse semi-
group actions introduced by N. Sieben in [31] and a theorem that states that Morita
equivalent actions have Morita equivalent twisted crossed products.

Definition 3.1. [30] If AXB is an imprimitivity bimodule then there is a bijective
correspondence, called the Rieffel correspondence, between closed subbimodules of
X and closed ideals of A. If I is a closed ideal of A then I ·X is a closed subbimodule
of X. Similarly X · J is a closed subbimodule of X if J is a closed ideal of B. On the
other hand, if Y is a closed subbimodule of X then IYJ is an imprimitivity bimodule,
where I is the closed span of A〈Y, Y 〉 and J is the closed span of 〈Y, Y 〉B . We call
IYJ an imprimitivity subbimodule of X.

Definition 3.2. [31] A partial automorphism of the imprimitivity bimodule AXB is
an isomorphism between two imprimitivity subbimodules of X.

We denote the set of partial automorphisms by PAut(X).
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Definition 3.3. [32] Let A be a C∗-algebra and let S be a unital inverse semigroup
with idempotent semilattice E and unit e. A Busby-Smith twisted action of S on A
is a pair (β, v), where for all s ∈ S, βs : As∗ → As is a partial automorphism, that
is, an isomorphism between closed ideals of A and for all s, t ∈ S, vs,t is a unitary
multiplier of Ast, such that for all r, s, t ∈ S we have :

1. Ae = A;

2. βsβt = Advs,t ◦ βst;

3. vs,t = 1M(Ast) if s or t is an idempotent;

4. βr(avs,t)vr,st = βr(a)vr,svrs,t for all a ∈ Ar∗Ast

Definition 3.4. [31] The Busby-Smith twisted actions (A, S, α, u) and (B,S, β, v)
are Morita equivalent if there is an imprimitivity bimodule AXB and a map s 7−→
(αs, φs, βs) : S −→ PAut(X) such that φs : Xs∗ → Xs, where Xs := As ·X = X · Bs

and for all s, t ∈ S we have

φsφt = us,t · φst(·) · v∗s,t.

We say that (X, φ) is a Morita equivalence between (α, u) and (β, v) and we write
(A,S, α, u) ∼X,φ (B, S, β, v).

Remark 3.5. [31] Morita equivalence of Busby-Smith twisted actions is an equiva-
lence relation.

Remark 3.6. [31] If the actions (A,S, α, u) and (B, S, β, v) are Morita equivalent,
then the C∗-algebras A and B are Morita equivalent.

The crossed product A×α,u S of a Busby-Smith twisted action (A, S, α, u) is the
Hausdorff completion of the Banach ∗-algebra

Lα =
{
x ∈ l1(S,A) : x(s) ∈ As for all s ∈ S

}

with operations (x ∗ y)(s)
∑
rt=s

αr(αr−1(x(r))y(t))ur,t and x∗(s) = us,s(∗αs(x(s∗)∗) in

the C∗-seminorm ‖ · ‖α defined by

‖ · ‖α = sup
{‖(π × V )(x))‖ : (π, V ) is a covariant representation of (A,S, α, u)

}
.

Theorem 3.1. [31] If (A,S, α, u) and (B, S, β, v) are Morita equivalent actions, then
the crossed products A×α,u S and B ×β,v S are also Morita equivalent.

References

[1] B. Abadie, S. Eilers, R. Exel, Morita equivalence for crossed products by Hilbert
C∗-bimodules, Trans. Amer. Math. Soc. 350 (8) (1998), 3043-3054.

[2] D. Bagio, J. Lazzarin, A. Paques, Crossed products by twisted partial actions: sep-
arability, semisimplicity, and Frobenius properties, Comm. in Alg. 38 (2) (2010).

[3] H. H. Bui, Morita equivalence of twisted crossed products by coactions, J. Funct.
Anal. 123 (1994) , 59-98.



A note on Morita equivalence of twisted crossed products 35

[4] H. H. Bui, Morita equivalence of twisted crossed products, Proc. Amer. Math.
Soc. 123, 9 (1995) , 2771-2776.

[5] H. H. Bui, A Hilbert C∗-module method for morita equivalence of twisted crossed
products, Proc. Amer. Math. Soc. 125 (7) (1997), 2109-2113.

[6] H. H. Bui, Crossed products of Hilbert C∗-modules, Proc. Amer. Math. Soc. 125
(5) (1997), 1341-1348.

[7] R. C. Busby, H. A. Smith, Representations of twisted group algebras, Trans.
Amer. Math. Soc. 149 (1970), 503-537.

[8] Yu Chen, K. Shum, Morita Equivalence for factorisable semigroups, Acta Math.
Sinica 17 (3) (2001), 437-454.

[9] F. Combes, Crossed products and Morita equivalence, Proc. London Math. Soc.
49 (1984), 289-306.

[10] T.-L. Costache, Extensions on twisted crossed products of completely positive in-
variant projective u-covariant multi-linear maps, BSG Proceedings 17, Geometry
Balkan Press, Bucharest 2010, 56-67.

[11] T.-L. Costache, On the projective covariant representations of C∗- dynamical
systems associated with completely multi-positive projective u-covariant maps,
UPB Sci. Bull., Series A, 72 (4) (2010), 185-196.

[12] T.-L. Costache, Mariana Zamfir, Mircea Olteanu, On projective regular represen-
tations of discrete groups and their infinite tensor products, Appl. Sci. 13 (2011),
22-27.

[13] R. E. Curto, P. S. Muhly, D. P. Williams, Crossed products of strongly Morita
equivalent C∗-algebras, Proc. Amer. Math. Soc. 90 (1984), 528-530.

[14] S. Echterhoff, Morita equivalent twisted actions and a new version of the Packer-
Raeburn stabilization trick, J. London Math. Soc. (2), 50 (1994), 170-186.

[15] S. Echterhoff, I. Raeburn, Multipliers of imprimitivity bimodules and Morita
equivalence of crossed products, Math. Scand. 76 (1995), 289-309.

[16] S. Echterhoff, I. Raeburn, Induced C∗-algebras, coactions and equivariance in
the symmetric imprimitivity theorem, Math. Proc. Camb. Phil. Soc. 128 (2000),
327-342.

[17] P. Green, The local structure of twisted covariance algebras, Acta Math. 140
(1978), 191-250.

[18] A. an Huef, I. Raeburn, D.P. Williams, An equivariant Brauer semigroup and
the symmetric imprimitivity theorem, Trans. Amer. Math. Soc. 352 (10) (2000),
4759-4787.
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