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Abstract. We present a new algorithm which determines the payoff-space
of certain normal-form C1 parametric games, and - more generally - of
continuous families of normal-form C1 games. This algorithm was imple-
mented in MATLAB, and was applied to several real-life cases. It has
the merit of providing the parametric expressions of the critical zone for
any game in the considered family both in the bistrategy space and in
the payoff space, and it allows to both graphically illustrate the disjoint
union (with respect to the parameter set of the parametric game) of the
family of all payoff spaces, and parametrically represent the union of all
the critical zones. One of the main motivations of our paper is that, in the
applications, many normal-form games naturally appear in a parametric
form; moreover, some efficient models of coopetition are parametric games
of the considered type. Specifically, our developed algorithm provides the
parametric and graphical representation of the payoff space and of the
critical zone of a parametric game in normal-form, supported by a finite
family of compact intervals of the real line. It is a valuable tool in the
study of simple normal-form C1-parametric games in two dimensions.
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1 Introduction and motivations

Our study determines the payoff space of normal-form C1-games in n dimensions, for
n-players normal-form games, whose payoff functions are defined on compact intervals
of the real line and are of class at least C1. In the particular case of two dimensions,
the payoff space of normal-form C1-games is determined. We establish an appropriate
procedure for the representation of the payoff space in normal-form C1 parametric
games.

The complete study of C1 parametric games is strongly motivated not only by
theoretical and pure mathematical reasons, but especially by their applications to
Economics, Finance and Social Sciences. Indeed, many real interactions - between
competitive or cooperative subjects - are modeled by games with time dependence
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of strategy sets and of payoff functions. Moreover, recently, one operative and par-
ticularly efficient model of coopetition has been proposed and applied by D. Carf̀ı et
al. ([3]-[5]). The model is given by a particular type of parametric game, in which
the parameter set is the cooperative strategy set of the game (see [7, 8]). This is the
basic object which allows to pass from the standard normal-form definition of game
(cf. [1, 2, 10, 11]) to their coopetitive extension. Our algorithm provides a general
vision on the payoff space of a parametric game and of the Nash paths, which are of
fundamental importance in applications.

2 Preliminaries on normal-form C1 games

We shall consider n-person games in normal-form, as follows:

Definition 2.1 (of game in normal-form). Let E = (Ei)n
i=1 be an ordered family

of non-empty sets. We call n-person game in normal-form with support E, any func-
tion f : ×E → Rn, where ×E denotes the Cartesian product ×n

i=1Ei of the family
E. The set Ei is called the strategy set of player i, for every index i of the family E,
and the product ×E is called the strategy profile space, or the n-strategy space, of the
game.

We introduce the following terminology:

• the set {i}n
i=1 of the first n positive integers is called the set of the players of

the game;

• each element of the Cartesian product ×E is called a strategy profile of the
game;

• the image of the function f , i.e., the set f(×E) of all real n-vectors of type f(x),
with x in the strategy profile space ×E, is called the n-payoff space, or simply
the payoff space, of the game f .

We further recall, for the sake of completeness, the definitions of usual order of the
Euclidean n-space and of the Pareto boundary of a subset in Rn, which are used
throughout the paper.

Definition 2.2 (of natural order of Rn). The natural order of Rn is the binary
relation ≤ defined, for every x, y ∈ Rm, by x ≤ y, if the i-th component of x is less
or equal to the i-th component of y, for all i = 1, . . . , n.

Definition 2.3 (of Pareto boundary). The Pareto maximal boundary of a game f
is the subset of the n-strategy space of those n-strategies x, such that the correspond-
ing payoff f(x) is maximal in the n-payoff space, with respect to the usual order of
the Euclidean n-space Rn. If S denotes the strategy space ×E, then we shall denote
the maximal boundary of the n-payoff space by ∂f(S) and the maximal boundary of
the game by ∂f (S) or by ∂(f). In other terms, the maximal boundary ∂f (S) of the
game is the reciprocal image (via the function f) of the maximal boundary of the
payoff space f(S). We shall use similar terminology and notations for the minimal
Pareto boundary.

The fundamental properties of Pareto boundaries are appropriately discussed in [5].
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3 The method for C1 games

The method for studying normal-form C1 games is presented and applied in [3, 4, 6].

The context. We deal with a type of normal-form game f defined on the product
of n compact non-degenerate intervals of the real line, such that f is the restriction to
the n-strategy space of a C1 function defined on an open set of Rn which contains the
n-strategy space S (in this case, a compact non-degenerate n-interval of the n-space
Rn). Before giving the main result of the method, we recall several basic notions.

3.1 Topological boundary

The topological boundary of a subset S of a topological space (X, τ) is the set defined
by the following three equivalent properties:

• it is the closure of S minus the interior of S:

∂S = cl(S)\int(S);

• it is the intersection of the closure of S with the closure of its complement

∂S = cl(S) ∩ cl(X\S);

• it is the set of those points x of X for which every neighborhood of x contains
at least one point of S and at least one point from the complement of S.

The main result of our method states that

Theorem 3.1. Let f be a C1 function defined upon an open set O of the Euclidean
space Rn with values in Rn. Then, for every part S of the open O, the topological
boundary of the image of S via the function f is contained in the union

f(∂S) ∪ f(C),

where C is the critical set of f in S - i.e., the set of the points x of S such that the
Jacobian matrix Jf (x) is not invertible. If, moreover, the function f is not continuous
over a part H of O and is C1 elsewhere in O, then the topological boundary of the
image of S via the function f is contained in the union f(∂S) ∪ f(C) ∪ f(H), where
C is the critical set of f in S.

4 Two players parametric games

In this article we shall use the following definitions for parametric games.

Definition 4.1. Let E = (Et)t∈T and F = (Ft)t∈T be two families of non empty sets
and let f = (ft)t∈T be a family of functions

ft : Et × Ft → R2.

We define a parametric game over the strategy pair (E,F ) and with family of payoff
functions f , the pair G = (f,>), where ”>” is the usual strict upper order of the
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Euclidean plane R2. We define the payoff space of the parametric game G as the
union of all the payoff spaces of the game family g = ((ft, >))t∈T , i.e., the union of
the payoff family

P = (ft(Et × Ft))t∈T .

We note that the family P can be identified with the multi-valued path

p : T → R2 : t 7→ ft(Et × Ft),

and that the graph of this path p is a subset of the Cartesian product T×R2. We note
that, indeed, the mapping p is defined on an interval and is set-valued with values
belonging to the power set P(Rn); hence, we can also interpret this multi-function as
an evolution curve of the section payoff spaces of our parametric game.
In particular, we focus on the following particular type of parametric games:

• parametric games in which the families E and F consist of only one set, respec-
tively.

In the latter case we can identify a parametric game with a pair (f,>), where f is a
function from a Cartesian product T × E × F into the plane R2, where T , E and F
are three non-empty sets.

Definition 4.2. When the triple (T,E, F ) is a triple of subsets of normed spaces, we
say that the parametric game (f,>) is of class C1, if the function f is of class C1.

5 Numerical results

Consider a (loss) parametric game (h, <), with strategy sets E = F = [0, 1], parameter
set T = [0, 1]2 and biloss (disutility) function h : ×(T,E, F ) → R2, whose section

h(a,b) : ×(E,F ) → R2

is defined by
h(a,b) (x, y) = (x− (1− a)xy, y − (1− b)xy) ,

for all (x, y) ∈ E × F and (a, b) ∈ T = [0, 1]2.
The above game is the von Neuman convexification of the finite game represented as

(a, b) (1, 0)
(0, 1) (0, 0) .

Assume, now, that the parameter points (a, b) belong also to the 1-sphere S1
p, with

respect to the p-norm, in the Euclidean plane R2, for some positive real p; i.e., we
assume that ap + bp = 1 for some positive real p. Consider, then, the restriction
g : S × E × F → R2 of the function h to the parameter set S = S1

p ∩ T.
By projection on the first factor of the product S×E×F , we can consider, instead

of the parametric game g with parameter set S1
p ∩T , the equivalent parametric game

(f,<), with parameter set [0, 1] and a-payoff function fa defined by

fa (x, y) =
(
x− (1− a)xy, y − (1− (1− ap)1/p)xy

)
,
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for all (x, y) ∈ E × F and a ∈ [0, 1].1 In the following sections we shall consider the
following sub-cases:

1. (p = 1) fa (x, y) = (x− (1− a)xy, y − axy) , ∀x, y, a ∈ [0, 1].

2. (p = 0.1) fa (x, y) =
(
x− (1− a)xy, y − (1− (1− a0.1)10)xy

)
, ∀x, y, a ∈ [0, 1].

3. (p = 0.5) fa (x, y) =
(
x− (1− a)xy, y − (1− (1− a0.5)2)xy

)
, ∀x, y, a ∈ [0, 1].

4. (p = 2) fa (x, y) =
(
x− (1− a)xy, y − (1− (1− a2)0.5)xy

)
, ∀x, y, a ∈ [0, 1].

5. (p = 10) fa (x, y) =
(
x− (1− xy), y − (1− (1− a10)0.1)xy

)
, ∀x, y, a ∈ [0, 1].

Moreover, we shall present the following games:

6. fa (x, y) =
(
x + y + a, x− y + a2

)
, for all x, y ∈ [0, 2] and a ∈ [0, 1].

7. fa (x, y) = (x + y + a, x− y + |a|), for all x, y ∈ [0, 2] and a ∈ [−1, 1].

6 First game p = 1

Let E = F = [0, 1] be the strategy sets and let a be a real fixed number from
the interval [0, 1]. Consider the a-biloss (disutility) function of the parametric game
(f,<), defined by

fa(x, y) = (x− (1− a)xy, y − axy), ∀(x, y) ∈ [0, 1].

The critical zone of the function fa (represented in Figure 1 for every a in [0, 1]) is
the set

C(fa) =
{
(x, y) ∈ [0, 1]2 : 1− ax− (1− a)y = 0

}
.

Figure 1: Disjoint union of the critical zones.

1By equivalent parametric game, we mean the existence of the bijection j : S → [0, 1] : (a, b) 7→ a,
whose inverse is the bijection j−1 : [0, 1]→ S : a 7→ (a, (1− ap)1/p).
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The disjoint union of the family (fa(∂(E × F )))a∈T , i.e., the disjoint union of the
transformations of the topological boundaries of the bistrategy space with respect to
the parameter set, is shown in Figure 2.

Recalling that the action of a family of functions sharing a common domain on a
subset of the common domain of the member-functions, is the family of the images
(transformations) of the subset, we can consider the above disjoint union as a faithful
representation of the action of the entire family (fa)a∈T , on the boundary ∂(E × F ).

Figure 2: First Game: Disjoint union of transformations of the topological boundaries
of the bistrategy space.

The disjoint union of transformations of the critical zones is shown in Figure 3.

Figure 3: First Game: Disjoint union of transformations of the critical zones.
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So, from the transformations of the topological boundaries and of the critical zones,
we obtain the representation of the Payoff Space of the parametric game as disjoint
union of the family (fa(E × F ))a∈T , i.e., the disjoint union of the transformations of
the payoff spaces with respect to the parameter set, as shown in Figure 4. Moreover,
we observe that this last disjoint union is the graph of the multivalued curve c : T →
R2 : a 7→ fa(E × F ), after an irrelevant permutation

J : T × R2 → R2 × T : (a,X, Y ) 7→ (X, Y, a).

Figure 4: First Game: Disjoint union of payoff spaces.

7 Second game: p = 0.1

Let E = F = [0, 1] be the strategy sets and let fa be the a-biloss (disutility) function

fa (x, y) =
(
x− (1− a)xy, y − (1− (1− a0.1)10)xy

)
,

for all x, y a in [0, 1]. The critical zone of the a-biloss function is

C(fa) =
{
(x, y) ∈ [0, 1]2 : 1− (1− (1− a0.1)10)x− (1− a)y = 0

}
.

The disjoint union of critical zones is shown in Figure 5. The disjoint union of
transformations of the topological boundary of the bistrategy space is presented in
Figure 6. The disjoint union of transformation of critical zones is illustrated in Figure
7. The Payoff Space (represented in Figure 8 for every a in T ), is obtained from the
union of transformations of the critical zone and of the topological boundary of the
bistrategy space.
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Figure 5: Second Game: Disjoint union of critical zones.

Figure 6: Second Game: Disjoint union of transformation of the topological boundary
of the bistrategy space.

Figure 7: Second Game: Disjoint union of transformations of the critical zones.
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Figure 8: Second Game: Payoff space of the parametric game as disjoint union of
partial payoff spaces.

8 Third game: p = 0.5

Let the strategy sets of the parametric game G = (f,<) be E = F = [0, 1] and let
the a-biloss (disutility) function of G be defined by

fa(x, y) =
(
x− (1− a)xy, y − (1− (1− a0.5)2)xy

)
, ∀x, y, a ∈ [0, 1].

The critical zones, in Figure 9, are the sets

C(fa) =
{

(x, y) ∈ [0, 1]2 : 1− (1− (1− a0.5)2)x− (1− a)y = 0
}

,

with a varying in T . The transformations of the topological boundary of the bistrategy
space are shown in Figure 10. The transformations of critical zones are presented in
Figure 11. We obtain the payoff space as before, shown in Figure 12 as disjoint union.

9 Fourth game: p = 2

Let the strategy sets of the parametric game G = (f,<) be E = F = [0, 1] and let
the a-biloss (disutility) function of G be defined by

fa (x, y) =
(
x− (1− a)xy, y − (1− (1− a2)0.5)xy

)
, ∀x, y, a ∈ [0, 1].

The a-critical zone is

C(fa) =
{

(x, y) ∈ [0, 1]2 : 1− (1− (1− a2)0.5)x− (1− a)y = 0
}

.

So the Payoff Space overlap the transformation of the topological boundary, as shown
in Figure 13 for every a.



10 S. Agreste, D. Carf̀ı and A. Ricciardello

Figure 9: Second Game: Critical zones.

Figure 10: Third Game: Transformations of the topological boundary of the bistrat-
egy space.

10 Fifth game: p=10

Let strategy sets be E = F = [0, 1] and biloss (disutility) function be

fa (x, y) =
(
x− (1− a)xy, y − (1− (1− a10)0.1)xy

)
, ∀x, y, a ∈ [0, 1].

The critical zones, as depicted in Figure ??, are

C(fa) =
{

(x, y) ∈ [0, 1]2 : 1− (1− (1− a10)0.1)x− (1− a)y = 0
}

,

with a varying in T .
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Figure 11: Third Game: Transformations of critical zones.

Figure 12: Third Game: Payoff space in form of disjoin union.

11 Sixth game

In this section we present a new game, where the strategy sets are E = F = [0, 2],
the parameter set is T = [0, 1] and the a-biloss (disutility) function is defined by

fa (x, y) =
(
x + y + a, x− y + a2

)
, ∀x, y, a ∈ [0, 1].

The critical zone is void, so the payoff spaces overlap the transformations of the
topological boundary, as shown in Figure 15.
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Figure 13: Fourth Game: Transformations of the topological boundary.

Figure 14: Fifth Game: Transformations of the topological boundary.

12 Seventh game

We further describe a new game, whose strategy sets are E = F = [0, 2], the parameter
set is T = [−1, 1] and the a-biloss (disutility) function is

fa (x, y) = (x + y + a, x− y + |a|), ∀x, y, a ∈ [−1, 1].
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Figure 15: Sixth Game: Transformation of the topological boundary

Figure 16: Seventh Game: Transformations of the topological boundary

The critical zone is empty, so the payoff spaces overlap the transformations of the
topological boundary, as shown in Figure 15.

Conclusions

In this paper we present an algorithm which completely describes the payoff space of a
C1 parametric game in normal-form. Specifically, it allows to determine a parametric
and graphical representation of its payoff space and of its critical zone. The reasons
of this work arise not only from theoretical and pure mathematical motivations, but
especially from multiple applications to Economics, Finance and Social Sciences.
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[7] D. Carf̀ı, D. Schilirò, A model of coopetitive game and the Greek crisis,
http://arxiv.org/abs/1106.3543
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