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Abstract. An approximate solution to the problem of steady boundary
layer flow of a viscous incompressible electrically conducting second grade
fluid over a stretching sheet is presented. Scaling group transformation
is applied to reduce the partial differential equation into an ordinary dif-
ferential equation and then least square method is used to minimize the
residual of the equation. The effects of the magnetic field on the flow
characteristics are studied through numerical computations with different
values of the Hartman Number.
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1 Introduction

The partial differential equations governing the motion of applied flow problems
are non-linear in nature and hence cannot be solved easily. Whenever possible
these differential equations are reduced to ordinary differential equations by employ-
ing transformations to obtain similar solutions. Ames[1], Bluman-Cole[3],Hansen[7],
Ibragimov[8], Olver[10], Seshadri-Na[14] and Stephani[16] have discussed application
of groups and symmetries to partial differential equations arising from natural phe-
nomena and technological problems. Symmetry groups are invariant transformations
which do not alter the structural form of the equation under investigation. The ad-
vantage of the symmetry method is that it can be applied successfully to non-linear
partial differential equations governing the motion of fluid. Sophus Lie developed a
transformation, currently known as Lie group of transformation, which map a given
differential equation to itself. The differential equations remain invariant under some
continuous group of transformations usually known as symmetries of a differential
equation. In this paper, we apply Lie’s scaling group of transformation to the problem
of visco-elastic second grade fluid over a stretching sheet in the presence of transverse
magnetic field. Many natural phenomena and technological problems are susceptible
to MHD analysis.
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The object of the present work is to investigate the effects of the transverse magnetic
field and the amplification factor on the flow part of a stretching sheet.

2 Formulation of the problem

We consider the laminar flow of a viscous incompressible, electrically conducting
second grade fluid past a stretching sheet. Many authors, as Sakiadis[13], Beard-
Walters[2], Rajagopal et al[12], Siddappa-Abel[15] and others have investigated the
boundary layer flow of visco-elastic fluid past a stretching sheet. The results of this
type of investigation are considered important to gain insight into polymer process-
ing industry. Beard-Walters[2], derived the steady two dimensional boundary layer
equations for the visco-elastic second grade fluid past a stretching sheet on which
Mazumdar et al[9] applied the scaling group of transformations. In the presence of
transverse magnetic field, the equation developed by Beard-Walters for second grade
visco-elastic fluid flow past a stretching sheet may reduce simply to:
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where u and v are the components of velocity in the x and y directions respectively,
ν = µ/ρ is the kinematic coefficient of viscosity, µ is the viscosity, ρ is the density of
the fluid, k is a positive parameter that depicts the visco-elastic property of the fluid,
σ is electrical conductivity of the fluid and B is the strength of applied transverse
magnetic field.
The boundary conditions for x ≥ 0, are given by

(2.3)
{

u = Ax and v = 0 at y = 0,
and u → 0 as y →∞

The sheet is moving in its own plane with a speed proportional to the distance from
the origin, A being the constant of proportionality.

3 Reduction of equations to non-dimensional form

Let us first convert the equations into dimensionless form by introducing characteristic
length L, half length of the sheet, the characteristic velocity U defined as U = AL let
Re = UL/ν be Reynold’s number. We take the dimensionless variables as

(3.1)

{
x̄ = x/L, ȳ = (y/L)

√
Re,

Ū = u/U, v̄ = (v/U)
√

Re.

Using the variables defined in (3.1) into equations (2.1),(2.2) and (2.3), we infer

(3.2)
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∂ȳ
= 0.
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and

(3.3) ū
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∂ȳ2
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∂ȳ3
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where k̄ = kRe

L2 = kA
ν , M = σB2L

ρU = σB2

ρA and M is known as the Hartman number.
The boundary conditions are

(3.4)
{

ū = x̄ and v̄ = 0 at ȳ = 0,
ū → 0 as ȳ →∞.

Let us define Stream functions ψ as follows:

(3.5) ū =
∂ψ

∂ȳ
and v̄ =

∂ψ

∂x̄
.

In terms of stream function ψ, equations (3.3) and (3.4) take the form
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∂ȳ

∂2ψ

∂x̄∂ȳ
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∂ȳ

∂4ψ

∂x̄∂ȳ3
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and the boundary conditions,

(3.7)
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4 Application of scaling group of transformations

Let us consider the scaling group of transformations by Patel- Timol [11] as

(4.1)





x∗ = x̄el

y∗ = ȳem

ψ∗ = ψen,

where l, m, n are very small transformation parameters. The transformation (4.1) is
known as point-transformation which co-ordinates (x̄, ȳ, ψ) to the (x∗, y∗, ψ∗). Sub-
stitution of (4.1) into (3.6) yields
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If the system remains invariant under the group of transformations (4.1), we must
have the following relations among the transformation parameters l + 2m − 2n =
3m− n = l + 4m− 2n = m− n, which yields

(4.3) m = 0 and l = n.

In view of (4.3), equation (4.2) reduces to

(4.4)
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.

and the boundary conditions transform to

(4.5)





∂ψ∗

∂y∗
= x∗ and

∂ψ∗

∂x∗
= 0 at y∗ = 0,

∂ψ∗

∂y∗
→ 0 as y →∞.

Transformation (4.1) is reduced to one parameter group of transformations e.g. ,

(4.6)





x∗ = x̄el

y∗ = ȳ

ψ∗ = ψel.

5 Absolute invariants

The generator corresponding to the one parameter infinitesimal Lie group of point
transformation (4.6) is

(5.1) X = x̄
∂

∂x̄
+ ψ

∂

∂ψ
.

The invariant G(x̄, ȳ, ψ) corresponding to X is obtained by solving the differential
equation

x̄
∂G

∂x̄
+ ψ

∂G

∂ψ
= 0.

The auxiliary equation is dx̄
x̄ = dψ

ψ , which gives ψ
x̄ = constant.

We consider the new variable

(5.2) G(η) =
ψ∗

x̄
, with η = ȳ∗.

Substitution of (5.2) into (4.4) together with (4.5) yield

(5.3) (G′)2 −GG′′ = G′′′ − k̄[ 2G′G′′′ − (G′′)2 −GGiv]−MG′,

and the boundary conditions:

(5.4)
{

G′(η) = 1, G(η) = 0 when η = 0,
G′(η) → 0 as η →∞,

where G′ = dG
dη , G′′ = d2G

dη2 etc.
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6 Solution of the problem

Let us introduce two variables ζ and f as

(6.1) ζ = αη , f = αG.

where α (> 0) is an amplification factor. In view of (6.1), equation (5.3) is transformed
to

(6.2) α2[f ′′′ − k̄ 2f ′f ′′′ − (f ′′)2 − ff iv]−Mf ′ − (f ′)2 + ff ′′ = 0

and boundary conditions become

(6.3)





f = 0,
df

dζ
= 0 when ζ = 0,

df

dζ
→ 0 as ζ →∞.

Satisfying all the boundary conditions, we may choose f(ζ) in the following form:

f(ζ) =
1
2

[
3
2
− eζ − 1

2
e−2ζ

]
.

Therefore,

(6.4)
df

dζ
=

1
2
(e−ζ + e−2ζ) =

dG

dη
.

Substituting these in equation (6.2), we have
(6.5)

R(ζ, α) =
1
8
{(4−3k̄)α2−3−4M}e−ζ+

1
4
{(8−12k̄)α2−3−2M}e−2ζ+

1
8
(5k̄α2+1)e−3ζ ;

R(ζ, α) is called also the defect function. Our aim is to minimize R(ζ, α) using least
square method and obtain the value of α from the formula

(6.6)
∂

∂α

∫ ∞

0

R2(ζ, α) dζ = 0.

Substituting (6.5) in (6.6) and effecting integration and then differentiation, we obtain

(6.7) α2[k̄(871k̄ − 1548) + 3440] + 190M(9k̄ − 8) + 1681k̄ − 1494 = 0.

α being real, we get

(6.8) {k̄(871k̄ − 1548) + 3440}{190M(9k̄ − 8) + 1681k̄ − 1494} < 0.

But, since k̄ (871k̄ − 1548) + 3440 = 871k̄2 − 1548k̄ + 3440 is always positive
(15482−4×871×3440 < 0), we infer that (6.8) yields 190M (9k̄−8)+ 1681k̄− 1494 <
0, which on simplification gives

(6.9) k̄ <
1494 + 1520M

1681 + 1710M
.

α can be calculated as well from (6.7) for different choices of M and k̄ satisfying (6.9)
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7 Numerical results and discussions

For different values of Hartman number M and the parameter k̄, which is associated
with the visco-elastic fluid, the numerical calculations are carried out and are exhibited
in the graphs. The velocity profiles G′(ζ) are determined from (6.1) and (6.4) for
M ∈ {0.0, 0.5, 1.0, 1.5, 2.0}, and then G′(η) vs η is plotted for k̄= 0.25, 0.5, 0.75
in Fig.1, Fig.2, Fig.3, respectively. Its is seen that G′(η) decreases as M increases.
Thus, the effect of the magnetic field is to reduce the velocity component parallel
to the stretching surface. It is also seen that the velocity decreases rapidly near the
stretching sheet and this rate is higher as k̄ increases.

The dimensionless stream function G(ζ) is given by

G(ζ) =
1
2α

(
3
2
− e−ζ − 1

2
e−2ζ

)
.

In each of the Fig.4, Fig.5, and, Fig.6, the stream function G(ζ) is plotted against
ζ(= αη) for different values of M and k̄. Figures show that stream function decreases
with the increase of the values in the Hartman number M as well as k̄. Far downstream
the streamlines approach asymptotically to the x-axis as x →∞.

In order to examine the accuracy of the appropriate method, we plot the defect
function R(ζ) vs ζ in each of the figures from Fig.7 to Fig.13 for different values of M
and k̄. It is seen from the figures that the error bounds may be considered satisfactory
with low values of the magnetic parameter M and also the low values of the parameter
k̄. Again, k̄ is plotted against M , in Fig.14 from the relation k̄ = 1494+1520M

1681+1710M . It is
seen that k̄ increases with the increasing values of M and approaches asymptotically
to the line k̄ = 0.9.

8 Appendix. Computer plots

Fig. 1 Fig. 2.

Fig. 3 Fig. 4.
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Fig. 5 Fig. 6.

Fig. 7 Fig. 8.

Fig. 9 Fig. 10.

Fig. 11 Fig. 12.

Fig. 13 Fig. 14.
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