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1 Introduction

The present work is devoted to n-ary operations on Cartesian powers, extending
several prior developments on the subject ([17],[18],[11],[12],[14],[13]). In [17], for
given arbitrary integers ` > 2, k > 2, m > 1 and n > 3, there were defined and
studied the `-ary, respectively the n-ary operations [ ]l,k and [ ]n,m,m(n−1). Further,
the work [18] contains examples and details on the properties of these operations,
which are essentially relevant for the use of multidimensional spaces in geometry
and physics. In [11] and [12], for the same ` and k as above, and for an arbitrary
permutation σ ∈ Sk we defined another `-ary operation [ ]l,σ,k, which in the case
σ = (1 2 . . . k) coincides with [ ]l,k, namely [ ]l,k = [ ]l,(1 2 ... k),k.

In this study, which naturally continues these works, we define and study another
n-ary operation [ ]l,σ,m,mk, which includes as particular cases the previously studied
operations:

[ ]l,k = [ ]l,(1 2 ... k),1,k, ( )l,σ,k = [ ]l,σ,1,k,

[ ]n,m,m(n−1) = [ ]n,(1 2 ... n−1),m,m(n−1).

Most of the notions which are used hereafter, were introduced and described in [18],
and numerous particular cases were addressed in [10],[22],[23],[15],[16],[14].

2 The `-ary operation [ ]l,k

Consider a groupoid A, and the integers k > 2, l > 2. We first define on Ak the
binary operation

x ◦ y = (x1, x2, . . . , xk) ◦ (y1, y2, . . . , yk) = (x1y2, x2y3, . . . , xk−1yk, xky1),
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and further, the l-ary operation

(2.1) [x1x2 . . .xl]l,k = x1 ◦ (x2 ◦ (. . . (xl−2 ◦ (xl−1 ◦ xl)) . . .)).

It is obvious that the operation [ ]2,k coincides with ”◦”.

Example 2.1. The defined on R2 operations [ ]3,2 (ternary) and [ ]4,2 (quaternary),
have the form1:

{
[(x1, x2)(y1, y2)(z1, z2)]3,2 = (x1y2z1, x2y1z2);

[(x1, x2)(y1, y2)(z1, z2)(u1, u2)]4,2 = (x1y2z1u2, x2y1z2u1).

The ternary operation [ ]3,3, defined on R3, where R is groupoid with the usual
operation of multiplication, has the form

[(x1, x2, x3)(y1, y2, y3)(z1, z2, z3)]3,3 = (x1y2z3, x2y3z1, x3y1z2).

It can be proved straightforward that the ternary operation [ ]3,2 is associative, while
the 4-ary operation [ ]4,2 and the ternary one [ ]3,3 are non-associative. We shall
further use the following

Lemma 2.2. [17]. Let A be a semigroup, and for n > 3, let [ ]n,n−1 be an n-ary op-
eration defined on An−1 by (2.1) for k = n−1, l = n. If xi = (xi1, xi2, . . . , xi(n−1)) ∈
An−1, i = 1, . . . , n, then

[x1x2 . . .xn]n,n−1 = (y1, y2, . . . , yn−1),

where, for j = 1, . . . , n− 1, we have

yj = x1jx2(j+1) . . . x(n−j)(n−1)x(n−j+1)1 . . . x(n−1)(j−1)xnj .

As direct consequence, we infer:

(2.2)
[x1x2 . . .xn]n,n−1 = (x11x22 . . . x(n−1)(n−1)xn1,

x12x23 . . . x(n−2)(n−1)x(n−1)1xn2, . . .

x1(n−2)x2(n−1)x31 . . . xn(n−2), x1(n−1)x21 . . . xn(n−1)).

This Lemma shows that if A is a semigroup, then the n-ary operation [ ]n,n−1 defined
on An−1 in a similar way to the n-ary operation introduced by Post over the set of
all n-permutations ([22], [23], [16]): he showed that, relative to this operation, the
set of all n−permutations becomes an n-ary group; in particular this operation is
associative. Then it is likely that (2.2) is associative as well. Indeed, we have the
following result:

Theorem 2.3. [18, 11]. The operation [ ]s(n−1)+1,n−1, (s > 1), defined on the
Cartesian power An−1 of the semigroup A is associative. In particular, the n-ary
operation [ ]n,n−1 is associative as well.

We note that the components from the right side of (2.2) can be written, as shows
the following

1Here, R is regarded as groupoid with the usual operation of multiplication of reals.
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Proposition 2.4. [11]. Let A be a semigroup, and let [ ]n,n−1 be the n-ary operation
(n > 3) which is defined on An−1 by (2.1), considered for k = n− 1, l = n. Let α =
(1 2 . . . n−1) be a cyclic permutation from Sn−1, and let xi = (xi1, xi2, . . . , xi(n−1)) ∈
An−1, i = 1, . . . , n. Then

(2.3)
[x1x2 . . .xn]n,n−1 = (x11x2α(1) . . . xnαn−1(1), . . .

. . . , x1(n−1)x2α(n−1) . . . xnαn−1(n−1)).

Remark. Since αn−1 is the identity permutation, then αn−1(j) = j for all j ∈
{1, 2, . . . , n− 1}. Hence the relation (2.3) can be written as:

(2.4)
[x1x2 . . .xn]n,n−1 = (x11x2α(1) . . . x(n−1)αn−2(1)xn1, . . . ,

. . . x1(n−1)x2α(n−1) . . . x(n−1)αn−2(n−1)xn(n−1)).

Let 〈A, ∗〉 be a groupoid, and let k > 2, i ∈ {1, . . . , k − 1}. We define a transfor-
mation fi of the set Ak as

fi : (a1, a2, . . . , ak−1, ak) → (ai+1, . . . , ak, a1, . . . , ai).

In particular, we have f1 : (a1, a2, . . . , ak−1, ak) → (a2, . . . , ak−1, ak, a1).
The properties of such mappings are described by the following

Lemma 2.5. [11]. The following assertions hold true:
1) fi = f i

1 for all i ∈ {2, . . . , k − 1};
2) fk

1 is the identity transformation;
3) for all i ∈ {1, . . . , k − 1}, the transformation fi is an automorphism of the

grouppoid 〈Ak, ◦〉 and of the grouppoid 〈Ak, ∗〉, considered with the operation ”∗”
component-wise defined on Ak.

Consequently one can prove:

Theorem 2.6. a) ([11]) Let A be a semigroup, l > 2, k > 2. Then, within the
semigroup Ak, the following identity holds2

[x1x2 . . .xl−1xl]l,k = x1x
f1
2 . . .xf l−2

1
l−1 xf l−1

1
l .

b) ([12]) Let A be a groupoid with unity, which contains an element distinct from the
unity; let k ≥ l ≥ 2 and s > 0. Then the (sk + l)-ary operation [ ]sk+l,k, defined on
Ak is not semi-associative, and hence, is not associative.

3 The `-ary operation [ ]l,σ,k

Formulas (2.3) and (2.4) lead to considering new multiple operations which involve
the composition [ ]n,n−1.

Let A be a semigroup, k > 2, l > 2; let σ be a permutation of Sk. We define on
Ak the l-ary operation

(3.1)
[x1x2 . . .xl]l,σ,k = (x11x2σ(1) . . . x(l−1)σl−2(1)xlσl−1(1), . . .

. . . , x1kx2σ(k) . . . x(l−1)σl−2(k)xlσl−1(k)).

2The article [18] contains detailed information on the l-ary groupoid 〈Ak, [ ]l,k〉.
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Example 3.1. The operations [ ]3,σ1,3, [ ]3,σ2,3 and [ ]4,σ,3, where σ1 = (12) ∈ S3,
σ2 = (13) ∈ S3, σ = (132) ∈ S3, have the form

[xyz]3,σ1,3 = (x1y2z1, x2y1z2, x3y3z3),

[xyz]3,σ2,3 = (x1y3z1, x2y2z2, x3y1z3),

[xyzu]4,σ,3 = (x1y3z2u1, x2y1z3u2, x3y2z1u3).

Regarding the associativity of the operation [ ]l,σ,k, we have

Theorem 3.2. [11, 14, 13]. Let A be a semigroup, k > 2, l > 2, σ a permutation
from Sk, which satisfies the condition σl = σ. Then the l-ary operation [ ]l,σ,k is
associative.

We show that if the permutation σ from the definition of the operation [ ]l,σ,k

does not satisfy the condition σl = σ, then the l-ary operation [ ]l,σ,k might be
non-associative.

Example 3.3. Replacing l = k = 3 and σ = (132) in (3.1), we define on R3 the
ternary operation [ ] = [ ]3,(132),3, as follows

[xyz] = (x1yσ(1)zσ2(1), x2yσ(2)zσ2(2), x3yσ(3)zσ2(3)) = (x1y3z2, x2y1z3, x3y2z1).

Since σ3 is the identity permutation, then the condition σ3 = σ does not hold true;
as well, since

[[xyz]uv] = [(x1y3z2, x2y1z3, x3y2z1) uv] = (x1y3z2u3v2, x2y1z3u1v3, x3y2z1u2v1),

[x[yzu]v] = [x(y1z3u2, y2z1u3, y3z2u1)v] = (x1y3z2u1v2, x2y1z3u2v3, x3y2z1u3v1),

[xy[zuv]] = [xy(z1u3v2, z2u1v3, z3u2v1)] = (x1y3z2u1v3, x2y1z3u2v1, x3y2z1u3v2),

the elements x,y, z,u,v ∈ R3 can be chosen in such way, that the following relations
hold true:

[[xyz]uv] 6= [x[yzu]v], x1 = y3 = z2 = v2 = 1, u3 6= u1;

[[xyz]uv] 6= [xy[zuv]], x1 = y3 = z2 = u3 = u1 = 1, v2 6= v3;

[x[yzu]v] 6= [xy[zuv]], x1 = y3 = z2 = u1 = 1, v2 6= v3.

From any of these relations follows the non-associativity of the operation [ ]. From
the second relation, it results that the operation [ ] is not semi-associative, i.e., the
following equality does not hold in R3:

[[xyz]uv] = [xy[zuv]].

We further show that a ternary operation defined on R3 which is not associative, can
still be semi-associative.

Example 3.4. We define on R3 the ternary operation

[xyz] = (x1y3z1, x2y1z2, x3y2z3).



44 A.M. Gal’mak, V. Balan, G.N. Vorobiev, I.R. Nicola

Due to the relations

[[xyz]uv] = [(x1y3z1, x2y1z2, x3y2z3)uv] = (x1y3z1u3v1, x2y1z2u1v2, x3y2z3u2v3),

[xy[zuv]] = [xy(z1u3v1, z2u1v2, z3u2v3)] = (x1y3z1u3v1, x2y1z2u1v2, x3y2z3u2v3),

[x[yzu]v] = [x(y1z3u1, y2z1u2, y3z2u3)v] = (x1y3z2u3v1, x2y1z3u1v2, x3y2z1u2v3),

we deduce that [[xyz]uv] = [xy[zuv]], ∀x,y, z,u,v ∈ R3, but there exist x, y, z, u,
v ∈ R3 such that [xy[zuv]] 6= [x[yzu]v]. Consequently, the operation [ ] is semi-
associative, but not associative. We remark that the operation [ ] from this example
is not of the form ( )l,σ,k.

Example 3.5. In Theorem 3.2 we replace: A = R, i.e., the semigroup with the usual
operation of multiplication of reals and k = 4. We shall describe all the associative
operations on R4 which are of the form [ ]l,σ,4, where σ ∈ S4, and l − 1 is the order
of the permutation σ. Each of the six transpositions

(12), (13), (14), (23), (24), (34) ∈ S4,

considered as elements of order 2, define on R4 a ternary associative operation. We
describe, as an example, the explicit form of the operation [ ]3,(24),4:

[x1x2x3]3,(24),4 = (x11x21x31, x12x24x32, x13x23x33, x14x22x34).

These associative ternary operations define as well three elements of order two:

(12)(34), (13)(24), (14)(23) ∈ S4.

As an example, the element of order two [ ]3,(14)(23),4 has the explicit form:

[x1x2x3]3,(14)(23),4 = (x11x24x31, x12x23x32, x13x22x33, x14x21x34).

Each of the eight cycles (123), (124), (132), (134), (142), (143), (234), (243) ∈ S4, as an
element of order three, defines on R4 a 4-ary associative operation. E.g., the explicit
form of the operation [ ]4,(143),4 is:

[x1x2x3x4]4,(143),4 = (x11x24x33x41, x12x22x32x42, x13x21x34x43, x14x23x31x44).

Each of the six cycles (1234), (1243), (1324), (1342), (1423), (1432) ∈ S4, as element of
order 4, defines on R4 a 5-ary associative operation. The explicit form of all these
operations follows:

[x1x2x3x4x5]5,(1234),4 = (x11x22x33x44x51, x12x23x34x41x52,

x13x24x31x42x53, x14x21x32x43x54);

[x1x2x3x4x5]5,(1243),4 = (x11x22x34x43x51, x12x24x33x41x52,

x13x21x32x44x53, x14x23x31x42x54);

[x1x2x3x4x5]5,(1324),4 = (x11x23x32x44x51, x12x24x31x43x52,

x13x22x34x41x53, x15x21x33x42x54);

[x1x2x3x4x5]5,(1342),4 = (x11x23x34x42x51, x12x21x33x44x52,

x13x24x32x41x53, x15x22x31x43x54);
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[x1x2x3x4x5]5,(1423),4 = (x11x24x32x43x51, x12x23x31x44x52,

x13x21x34x42x53, x14x22x33x41x54);

[x1x2x3x4x5]5,(1432),4 = (x31x24x33x42x51, x12x21x34x43x52,

x13x22x31x44x53, x15x23x32x41x54).

We note that the constructed on R4 binary operation

x1x2 = (x11x21, x12x22, x13x23, x14x24)

is defined by the identity permutation ε ∈ S4, i.e., it coincides with [ ]2,ε,4.

Besides the before mentioned 24 associative operations there also exist on R4 other
associative polyadic operations. Since for any permutation σ ∈ S4 of order r and for
any integer t > 1 the permutation σrt is the identity permutation, then by Theorem
3.2, [ ]rt+1,σ,4 is an associative (rt+1)-ary operation, defined on R4. As an example,
[ ]7,(13)(24),4 and [ ]7,(134),4 are 7-ary associative operations. For the first mentioned
operation, we have r = 2, t = 3, and for the second, r = 3, t = 2.

Moreover, the permutation σ satisfies the condition σl = σ, where l > 2, then for
the inverse permutation σ−1, it holds true the equality (σ−1)l = σ−1. Hence, from
Theorem 3.2, it follows

Corollary 3.6. [11, 13]. Let A be a semigroup, and k > 2, l > 2; let γ be a
permutation from Sk, which satisfies the condition γl = γ, σ = γ−1. Then the l-ary
operation [ ]l,σ,k is associative.

E.g., in Example 3.5, the associativity of the operation [ ]5,(1324),4 can be regarded
as consequence of the associativity of the operation [ ]5,(1423),4, since the permutations
(1324) and (1423) are inverse to each other.

Theorem 3.7. [12, 14]. Let A be a semigroup with unity, k > 2, l > 2, and let σ be
a permutation from Sk, which satisfies the condition σl 6= σ. Then the l-ary operation
[ ]l,σ,k is not semi-associative, and in particular, are not associative.

Proposition 3.8. If 〈A, +,×〉 is an associative algebra over the field P , then
〈Ak, +, [ ]l,σ,k〉 is a (2, l)-algebra over P . Moreover, if σl = σ, then 〈Ak, +, [ ]l,σ,k〉
is an associative (2, l)-algebra over P .

Proposition 3.9. Let the semigroup A contain the unity and an element distinct
from unity. If the permutation σ ∈ Sk is not the identical permutation, then the l-ary
groupoid 〈Ak, [ ]l,σ,k〉 is not abelian.

Proposition 3.10. If the permutation σ ∈ Sk satisfies the condition σl = σ, then
from the commutativity of the semigroup A follows the semi-commutativity of the l-ary
semigroup 〈Ak, [ ]l,σ,k〉. If the semigroup A contains the unity, then the converse is
true, i.e., from the semi-commutativity of the l-ary semigroup 〈Ak, [ ]l,σ,k〉, it follows
the commutativity of the semigroup A.

Proposition 3.11. If A is a group, then 〈Ak, [ ]l,σ,k〉 is an l-ary quasigroup. If,
moreover, the condition σl = σ holds true, then 〈Ak, [ ]l,σ,k〉 is an l-ary group.
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Proposition 3.12. If A = {0} is the null semigroup, then (0, . . . , 0)︸ ︷︷ ︸
k

is the zero

element of the l-ary groupoid 〈Ak, [ ]l,σ,k〉. If, moreover, l > 3, then in the l-ary
groupoid 〈Ak, [ ]l,σ,k〉 all the elements are zero-divisors.

Proposition 3.13. If the semigroup A contains more than one element, and σ is not
the identity permutation from Sk, then 〈Ak, [ ]l,σ,k〉 contains no unity.

If 〈A, +,×〉 is an algebra over the field P , a = (a1, a2, . . . , ak) ∈ Ak, then we shall
denote

a = (a1,−a2, . . . ,−ak) ∈ Ak.

Proposition 3.14. If A is an associative algebra over the field P , then

[x1x2 . . .xl]l,σ,k = [x1x2 . . .xl]l,σ,k.

If σ is a cycle of length k in Sk, which satisfies the condition σl = σ, then

[x1x2 . . .xl]l,σ,k =

{
[x1x2 . . .xl]l,σ,k, for even (l − 1)(k − 1)/k,

−[x1x2 . . .xl]l,σ,k, for odd (l − 1)(k − 1)/k.

Corollary 3.15. If A is an associative algebra over the field P , σ is a cycle of length
k from Sk, then

[x1x2 . . .xk+1]k+1,σ,k =

{
[x1x2 . . .xk+1]k+1,σ,k, for odd k,

−[x1x2 . . .xk+1]k+1,σ,k, for even k.

Corollary 3.16. If A is an associative algebra over the field P and σ is a cycle of
length k from Sk, then

[x1x2 . . .x2k−1]2k−1,σ,k = [x1x2 . . .x2k−1]2k−1,σ,k.

Proposition 3.17. If A is a group, 1 is its unity, σ = σ1 . . . σp is the decomposition
into product of independent cycles (excepting cycles of length 1) of a permutation
σ ∈ Sk which satisfies the condition σl = σ, then the element ε = (ε1, . . . , εk) is
idempotent in 〈Ak, [ ]l,σ,k〉 if and only if the components εm whose index m remains
fixed under the permutation σ satisfy the condition

εl−1
m = 1,

while the components, whose indices appear in the expression of the cycle σr (r =
1, . . . , p), satisfy the condition

εirεσ(ir)εσ2(ir) . . . εσl−2(ir) = 1,

where ir is an arbitrary symbol which appears in the expression of the cycle σr.

Corollary 3.18. If A is a group, 1 is its unity, and the cycle σ ∈ Sk of length k
satisfies the condition σl = σ, then

I(Ak, [ ]l,σ,k) = {(ε1, . . . , εk) ∈ Ak|(ε1εσ(1)εσ2(1) . . . εσk−1(1))
l−1

k = 1}.
In particular,

I(Ak, [ ]k+1,σ,k) = {(ε1, . . . , εk) ∈ Ak|ε1εσ(1)εσ2(1) . . . εσk−1(1) = 1}.



On n-ary operations and their applications 47

Corollary 3.19. If A is an abelian (commutative) group, 1 is its unity, and the cycle
σ ∈ Sk satisfies the condition σl = σ, then

I(Ak, [ ]l,σ,k) = {(ε1, . . . , εk) ∈ Ak|(ε1ε2 . . . εk)
l−1

k = 1}.
In particular,

I(Ak, [ ]k+1,σ,k) = {(ε1, . . . , εk) ∈ Ak|ε1ε2 . . . εk = 1}.
Remark. In Proposition 3.17, the condition

εir
εσ(ir)εσ2(ir) . . . εσl−2(ir) = 1

can be replaced with
εσ(ir)εσ2(ir) . . . εσl−2(ir)εir = 1.

Similar replacements hold valid in Corollaries 3.18 and 3.19.

Theorem 3.20. [13, 14]. Let 〈A, +,×〉 be an associative algebra over the field P , 0
- its zero element, k > 2, l ≥ 3, such that k divides l − 1, and σ a cycle of length k
from Sk. Then:

1) 〈Ak, +, [ ]l,σ,k〉 is an associative (2, l)-algebra over P , whose all its elements
are zero-divisors of its zero element (0, . . . , 0)︸ ︷︷ ︸

k

;

2) if 〈A, +,×〉 is commutative, then 〈Ak,+, [ ]l,σ,k〉 is semi-abelian (semi-commutative);
3) if 〈A\{0},×〉 is a group, then 〈(A\{0})k, [ ]l,σ,k〉 is an l-ary group;
4) for any j ∈ {1, . . . , k} and any a = (a1, . . . , aj−1, 0, aj+1, . . . , ak) ∈ Ak, we have

[a, . . . ,a︸ ︷︷ ︸
l

]l,σ,k = (0, . . . , 0︸ ︷︷ ︸
k

);

5) if the algebra 〈A,+,×〉 contains more than one element and has a unity, then
〈Ak, +, [ ]l,σ,k〉 is non-abelian;

6) if A contains more than one element, then 〈Ak, +, [ ]l,σ,k〉 does not contain a
unity;

7) if 〈A\{0},×〉 is a group and 1 is its unity, then

I(Ak, [ ]l,σ,k) = {(ε1, . . . , εk) ∈ Ak|(ε1εσ(1) . . . εσl−2(1))
l−1

k = 1} ∪ {(0, . . . , 0︸ ︷︷ ︸
k

)};

8) we have the following:

[x1x2 . . .xl]l,σ,k =

{
[x1x2 . . .xl]l,σ,k, for even (l − 1)(k − 1)/k,

−[x1x2 . . .xl]l,σ,k, for odd (l − 1)(k − 1)/k.

Proof. 1) follows from Propositions 3.8 and 3.12; 2) follows from Proposition 3.10;
3) follows from Proposition 3.11; 4) is straightforward; 5) follows from Proposition
3.9; 6) follows from Proposition 3.13; 7) follows from Corollary 3.18 and item 4); 8)
follows from Proposition 3.14. ¤

Replacing l = k + 1 in Theorem 3.20, we infer
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Corollary 3.21. Let 〈A, +,×〉 be an associative algebra over the field P , 0 its zero
element, k > 2, and σ a cycle of length k from Sk. Then:

1) 〈Ak, +, [ ]k+1,σ,k〉 is an associative (2, k + 1)-algebra over P , in which all its
elements are divisors of its zero element (0, . . . , 0︸ ︷︷ ︸

k

);

2) if 〈A, +,×〉 is commutative, then 〈Ak, +, [ ]k+1,σ,k〉 is semi-abelian;
3) if 〈A\{0},×〉 is a group, then 〈(A\{0})k, [ ]k+1,σ,k〉 is a (k + 1)-ary group;
4) for any j ∈ {1, . . . , k} and any a = (a1, . . . , aj−1, 0, aj+1, . . . , ak) ∈ Ak we have

[a, . . . , a︸ ︷︷ ︸
k+1

]k+1,σ,k = (0, . . . , 0︸ ︷︷ ︸
k

);

5) if the algebra 〈A,+,×〉 contains more than one element and has a unity, then
〈Ak, +, [ ]k+1,σ,k〉 is non-abelian;

6) if A contains more than one element, then 〈Ak, +, [ ]k+1,σ,k〉 has no unity;
7) if 〈A\{0},×〉 is a group, 1 is its unity, then

I(Ak, +, [ ]k+1,σ,k) = {(ε1, . . . , εk) ∈ Ak|ε1εσ(1) . . . εσl−2(1) = 1} ∪ {(0, . . . , 0︸ ︷︷ ︸
k

)};

8) we have the following:

[x1x2 . . .xk+1]k+1,σ,k =

{
[x1x2 . . .xk+1]k+1,σ,k, for odd k,

−[x1x2 . . .xk+1]k+1,σ,k, for even k.

We further prove that the operations [ ]l,k and [ ]l,(12...k),k coincide.

Proposition 3.22. Let A be a semigroup, l > 2, k > 2, α = (12 . . . k) ∈ Sk. Then
the operations [ ]l,k and [ ]l,α,k coincide: [ ]l,k = [ ]l,α,k.

Proof. Let l = sk + r, s > 0, 1 6 r 6 k. Using Theorem 2.6, items 1) and 2) from
Lemma 2.5, the definition of the transformation fi and the equalities

α(j) = j + 1, α2(j) = j + 2, . . . , αk−j(j) = k,

αk−j+1(j) = 1, . . . , αk−1(j) = j − 1, αk(j) = j,

we get

[x1x2 . . .xl]l,k = [x1x2 . . .xkxk+1xk+2 . . .x2kx2k+1x2k+2 . . .

. . .x(s−1)kx(s−1)k+1x(s−1)k+2 . . .xskxsk+1xsk+2 . . .xsk+r]l,k =

= x1xf1
2 . . .xfk−1

k xfk
k+1x

fk+1

k+2 . . .xf2k−1

2k xf2k
2k+1x

f2k+1

2k+2 . . .

. . .x
f(s−1)k−1

(s−1)k x
f(s−1)k

(s−1)k+1x
f(s−1)k+1

(s−1)k+2 . . .xfsk−1

sk xfsk
sk+1x

fsk+1

sk+2 . . .xfsk+r−1

sk+r =

= x1xf1
2 . . .xfk−1

k xk+1xf1
k+2 . . .xfk−1

2k x2k+1xf1
2k+2 . . .

. . .xfk−1

(s−1)kx(s−1)k+1x
f1
(s−1)k+2 . . .xfk−1

sk xsk+1xf1
sk+2 . . .xfr−1

sk+r =

= (x11, . . . , x1k)(x22, . . . , x2k, x21) . . .

. . . (xkk, xk1, . . . , xk(k−1))(x(k+1)1, . . . , x(k+1)k)
(x(k+2)2, . . . , x(k+2)k, x(k+2)1) . . . (x(2k)k, x(2k)1, . . . , x(2k)(k−1))
(x(2k+1)1, . . . , x(2k+1)k)(x(2k+2)2, . . . , x(2k+2)k, x(2k+2)1) . . .
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. . . (x((s−1)k)k, x((s−1)k)1, . . . , x((s−1)k)(k−1))(x((s−1)k+1)1, . . . , x((s−1)k+1)k)
(x((s−1)k+2)2, . . . , x((s−1)k+2)k, x((s−1)k+2)1)(x(sk)k, x(sk)1, . . . , x(sk)(k−1))
(x(sk+1)1, . . . , x(sk+1)k)(x(sk+2)2, . . . , x(sk+2)k, x(sk+2)1) . . .

. . . (x(sk+r)r, . . . , x(sk+r)k, x(sk+r)1, . . . , x(sk+r)(r−1)) =

= (x11, . . . , x1k)(x2α(1), . . . , x2α(k−1), x2α(k)) . . .

. . . (xkαk−1(1)xkαk−1(2), . . . , xkαk−1(k))(x(k+1)1, . . . , x(k+1)k)
(x(k+2)α(1), . . . , x(k+2)α(k)) . . . (x(2k)αk−1(1), . . . , x(2k)αk−1(k))
(x(2k+1)1, . . . , x(2k+1)k)(x(2k+2)α(1), . . . , x(2k+2)α(k)) . . .

. . . (x((s−1)k)αk−1(1), . . . , x((s−1)k)αk−1(k)) . . . (x((s−1)k+1)1, . . . , x((s−1)k+1)k)
(x((s−1)k+2)α(1), . . . , x((s−1)k+2)α(k)) . . . (x(sk)αk−1(1), . . . , x(sk)αk−1(k))
(x(sk+1)1, . . . , x(sk+1)k)(x(sk+2)α(1), . . . , x(sk+2)α(k)) . . .

. . . (x(sk+r)αr−1(1), . . . , x(sk+r)αr−1(k)) =

= (x11x2α(1) . . . xkαk−1(1)x(k+1)1x(k+2)α(1) . . . x(2k)αk−1(1) . . .

. . . x((s−1)k+1)1x((s−1)k+2)α(1) . . .

. . . x(sk)αk−1(1)x(sk+1)1x(sk+2)α(1) . . . x(sk+r)αr−1(1), . . . x1kx2α(k) . . . ,

. . . xkαk−1(k)x(k+1)kx(k+2)α(k) . . . x(2k)αk−1(k) . . .

. . . x((s−1)k+1)kx((s−1)k+2)α(k) . . . x(sk)αk−1(k) . . .

. . . x(sk+1)kx(sk+2)α(k)x(sk+r)αr−1(k)) =

= (x11x2α(1) . . . xkαk−1(1)x(k+1)αk(1)x(k+2)αk+1(1) . . . x(2k)α2k−1(1) . . .

. . . x((s−1)k+1)α(s−1)k(1)x((s−1)k+2)α(s−1)k+1(1) . . .

. . . x(sk)αsk−1(1)x(sk+1)αsk(1)x(sk+2)αsk+1(1) . . .

. . . x(sk+r)αsk+r−1(1), . . . , x1kx2α(k) . . . xkαk−1(k)x(k+1)αk(k)x(k+2)αk+1(k) . . .

. . . x(2k)α2k−1(k) . . . x((s−1)k+1)α(s−1)k(k)x((s−1)k+2)α(s−1)k+1(k) . . .

. . . x(sk)αsk−1(k)x(sk+1)αsk(k)x(sk+2)αsk+1(k) . . . x(sk+r)αsk+r−1(k)) =

= (x11x2α(1) . . . x(sk+r)αsk+r−1(1), . . . , x1kx2α(k) . . . x(sk+r)αsk+r−1(k)) =

= (x11x2α(1) . . . xlαl−1(1), . . . , x1kx2α(k) . . . xlαl−1(k)) = [x1x2 . . . xl]l,α,k.

Hence [x1x2 . . . xl]l,k = [x1x2 . . . xl]l,α,k , and the Theorem is proved. ¤

This result shows that Theorem 6.1 and Corollary 6.2 from [18] are particular cases
of Theorem 3.20 and respectively Corollary 3.21 - since the last ones follow by the
replacements l = s(n− 1), k = n− 1 (n > 3) and σ = (12 . . . n− 1). We remark that
the corresponding results from [18] are particular cases of the assertions (3.8) – (3.19)
as well.

4 The n-ary operation [ ]n,m,m(n−1)

Let B be a set, m > 1, n > 3, A = Bm an m-ary Cartesian power of the set B, 〈A,×〉
a semigroup, whose operation shall be sometimes omitted, for brevity.

We note that if B is a semigroup, then for the product × we may consider the
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operation which is componentwise defined on A = Bm. We define on An−1 = Bm(n−1)

the n-ary operation [ ]n,m,m(n−1) as follows. If, for i = 1, . . . , n, we denote

αi = (α(1)
i1 , . . . , α

(1)
im , α

(2)
i1 , . . . , α

(2)
im , . . . α

(n−1)
i1 , . . . , α

(n−1)
im ) ∈ Bm(n−1),

then

(4.1)
[α1α2 . . . αn]n,m,m(n−1) = (y11, . . . , y1m, y21, . . . , y2m, . . .

. . . , y(n−1)1, . . . , y(n−1)m) ∈ Bm(n−1),

where, for j = 1, . . . , n− 1, the components yij are defined by

(4.2)

(yj1, . . . , yjm) = (α(j)
11 , . . . , α

(j)
1m)× (α(j+1)

21 , . . . , α
(j+1)
2m )× . . .

. . . (α(n−1)
(n−j)1, . . . , α

(n−1)
(n−j)m)× (α(1)

(n−j+1)1, . . . , α
(1)
(n−j+1)m)× . . .

. . . (α(j−1)
(n−1)1, . . . , α

(j−1)
(n−1)m)× (α(j)

n1 , . . . , α
(j)
nm) ∈ Bm.

If one makes the replacements

αij = (α(j)
i1 , . . . , α

(j)
im) ∈ Bm, yj = (yj1, . . . , yjm), j ∈ {1, . . . , n− 1},

then (4.2) becomes

yj = αijα2(j+1) . . . α(n−j)(n−1)α(n−j+1)1 . . . α(n−1)(j−1)αnj ∈ Bm.

It is obvious, that using the relation (2.2) for m = 1, the n-ary operation [ ]n,m,m(n−1)

coincides with the n-ary operation [ ]n,n−1: [ ]n,n−1 = [ ]n,1,n−1.

Theorem 4.1. [17, 18, 13]. The n-ary operation [ ]n,m,m(n−1) is associative.

If in this Theorem we replace m = 2, then we get

Corollary 4.2. The n-ary operation [ ]n,2,2(n−1) is associative.

If in Corollary 4.2 we replace n = 3, B = R, and if for the operation ”×” we take
the multiplication of complex (or dual/double) numbers, then we get three distinct
associative ternary operations, defined on R4. The explicit forms of these operations
were determined in [17] and [18].

Generally speaking, if we take for the operation ×, the multiplication of complex
(or dual/double) numbers, then according to Corollary 4.2, for any n > 3, on the
Cartesian power R2(n−1) one can build three distinct associative n-ary operations.
We shall further describe the form of these operations, for the case of multiplication
of complex numbers, for n = 4.

Corollary 4.3. [17, 18, 13]. The 4-ary operation defined on R6:

[(x1, x2, x3, x4, x5, x6)(y1, y2, y3, y4, y5, y6)

(z1, z2, z3, z4, z5, z6)(u1, u2, u3, u4, u5, u6)]4,2,6 = (r1, r2, r3, r4, r5, r6),
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where




r1 = x1y3z5u1 − x2y4z5u1 − x1y4z6u1 − x2y3z6u1−
−x1y3z6u2 + x2y4z6u2 − x1y4z5u2 − x2y3z5u2,

r2 = x1y3z5u2 − x2y4z5u2 − x1y4z6u2 − x2y3z6u2 + x1y3z6u1−
−x2y4z6u1 + x1y4z5u1 + x2y3z5u1,

r3 = x3y5z1u3 − x4y6z1u3 − x3y6z2u3 − x4y5z2u3 − x3y5z2u4+
+x4y6z2u4 − x3y6z1u4 − x4y5z1u4,

r4 = x3y5z1u4 − x4y6z1u4 − x3y6z2u4 − x4y5z2u4 + x3y5z2u3−
−x4y6z2u3 + x3y6z1u3 + x4y5z1u3,

r5 = x5y1z3u5 − x6y2z3u5 − x5y2z4u5 − x6y1z4u5 − x5y1z4u6+
+x6y2z4u6 − x5y2z3u6 − x6y1z3u6,

r6 = x5y1z3u6 − x6y2z3u6 − x5y2z4u6 − x6y1z4u6 + x5y1z4u5−
−x6y2z4u5 + x5y2z3u5 + x6y1z3u5,

is associative.

If in Theorem 4.1 we replace m = 4, B = R, and for the operation ”×” we consider
the multiplication of quaternions, then for any n > 3, on the Cartesian power R4(n−1)

we can define an associative n-ary operation. In [17, 18] is presented the explicit form
of such a operation for m = 4, n = 3 (i.e., a ternary operation on R8).

5 The `-ary operation [ ]l,σ,m,mk

As shown before, for m = 1 the n-ary operation [ ]n,m,m(n−1) coincides with the n-ary
operation [ ]n,n−1, which is a particular case of the operation [ ]l,k for l = n, k = n−1.
The last one, in its turn, is a particular case of the operation [ ]l,σ,k for σ = (12 . . . k).
Then the following task appears: to generalize the operation [ ]n,m,m(n−1) in such a
way, that for m = 1 it coincides with the operation [ ]l,σ,k.

Let B be a set, m > 1, l > 2, k > 2, σ ∈ Sk, A = Bm the m-ary Cartesian power
of the set B and 〈A,×〉 a semigroup. Like before, in several places we shall omit the
multiplication sign ×, for brevity.

We shall define on Bmk an `-ary operation [ ]l,σ,m,mk as follows. If

αi = (α(1)
i1 , . . . , α

(1)
im , α

(2)
i1 , . . . , α

(2)
im , . . . , α

(k)
i1 , . . . , α

(k)
im ) ∈ Bmk, i ∈ {1, . . . , l},

then

(5.1) [α1α2 . . . αl]l,σ,m,mk = (y11, . . . , y1m, y21, . . . , y2m, . . . , yk1, . . . , ykm) ∈ Bmk,

where yij is defined by

(5.2)
(yj1, . . . , yjm) = (α(j)

11 , . . . , α
(j)
1m)× (α(σ(j))

21 , . . . , α
(σ(j))
2m )× . . .

. . . (α(σl−2(j))
(l−1)1 , . . . , α

(σl−2(j))
(l−1)m )× (α(σl−1(j))

lm , . . . , α
(σl−1(j))
lm ).
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If we replace

αij = (α(j)
i1 , . . . , α

(j)
im) ∈ Bm, yj = (yj1, . . . , yjm), j ∈ {1, . . . , k},

then (5.2) gets the form

yj = α1jα2σ(j) . . . α(l−1)σl−2(j)αlσl−1(j) ∈ Bm.

It is clear that for m = 1, due to (2.4), the `-ary operation [ ]l,σ,m,mk coincides
with the `-ary operation ( )l,σ,k. But if ` = n, k = n − 1, and σ = (12 . . . n − 1),
then (5.1) and (5.2) get the form (4.1) and respectively (4.2), and the operation
[ ]l,σ,m,mk coincides with the operation [ ]n,m,m(n−1). In this way, the posed problem
of extending the operation [ ]n,m,m(n−1) is solved.

We examine on Ak = Bm × . . .×Bm

︸ ︷︷ ︸
k

the `-ary operation ( )l,σ,k and we describe

its explicit form. To this goal, for any i ∈ {1, . . . , l}, we put

xi = (xi1, . . . ,xik) ∈ Ak, xij = (x(j)
i1 , . . . , x

(j)
im) ∈ Bm, j = 1, . . . , k,

i.e.,

xi = ((x(1)
i1 , . . . , x

(1)
im), (x(2)

i1 , . . . , x
(2)
im), . . . , (x(k)

i1 , . . . , x
(k)
im )) ∈ Ak.

Using (3.1) in the definition of the operation ( )l,σ,k, we infer

[x1x2 . . .xl]l,σ,k = (y1,y2, . . . ,yk),

where

yj = x1jx2σ(j) . . . x(l−1)σ(l−2)(j)xlσ(l−1)(j) ∈ Bm,

or

yj = (x(j)
11 , . . . , x

(j)
1m)(x(σ(j))

21 , . . . , x
(σ(j))
2m ) . . . (x(σl−2(j))

(l−1)1 , . . . , x
(σl−2(j))
(l−1)m )·

·(x(σl−1(j))
l1 , . . . , x

(σl−1(j))
lm ).

Lemma 5.1. The universal algebras 〈Bmk, [ ]l,σ,m,mk〉 and 〈Ak, [ ]l,σ,k〉 are isomor-
phic.

Proof. It is clear that the mapping ψ, which puts into correspondence the element

(α(1)
1 , . . . , α(1)

m , α
(2)
1 , . . . , α(2)

m , . . . , α
(k)
1 , . . . , α(k)

m ) ∈ Bmk

with the element

((α(1)
1 , . . . , α(1)

m ), (α(2)
1 , . . . , α(2)

m ), . . . , (α(k)
1 , . . . , α(k)

m )) ∈ Ak
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is a bijection from Bmk to Ak. Moreover, we have

[α1α2 . . . αl]
ψ
l,σ,m,mk = (y11, . . . , y1m, y21, . . . , y2m, . . . , yk1, . . . , ykm)ψ =

= ((y11, . . . , y1m), (y21, . . . , y2m), . . . , (yk1, . . . , ykm)) = (y1,y2, . . . ,yk) =

= (α11α2σ(1) . . . α(l−1)σl−2(1)αlσl−1(1), . . . , α1kα2σ(k) . . .

. . . α(l−1)σl−2(k)αlσl−1(k)) =

= ((α11, . . . , α1k)(α21, . . . , α2k) . . . (αl1, . . . , αlk))l,σ,k =

= (((α(1)
11 , . . . , α

(1)
1m), . . . , (α(k)

11 , . . . , α
(k)
1m))

((α(1)
21 , . . . , α

(1)
2m), . . . , (α(k)

21 , . . . , α
(k)
2m)) . . .

. . . ((α(1)
l1 , . . . , α

(1)
lm), . . . , (α(k)

l1 , . . . , α
(k)
lm )))l,σ,k =

= ((α(1)
11 , . . . , α

(1)
1m, . . . , α

(k)
11 , . . . , α

(k)
1m)ψ(α(1)

21 , . . . , α
(1)
2m, . . . , α

(k)
21 , . . . , α

(k)
2m)ψ . . .

. . . (α(1)
l1 , . . . , α

(1)
lm , . . . , α

(k)
l1 , . . . , α

(k)
lm )ψ)l,σ,k = [αψ

1 αψ
2 . . . αψ

l ]l,σ,k,

i.e.,

[α1α2 . . . αl]
ψ
l,σ,m,mk = [αψ

1 αψ
2 . . . αψ

l ]l,σ,k.

Consequently, ψ is the claimed isomorphism, and the Lemma is proved. ¤

Lemma 5.1 and Theorem 3.2 provide a sufficiency condition for associativity:

Theorem 5.2. [13]. If the permutation σ satisfies the condition σl = σ, then the
l-ary operation [ ]l,σ,m,mk is associative.

This result follows from Theorem 5.2 for l = n, k = n− 1 and σ = (12 . . . n− 1).

If in Theorem 5.2 we put m = 2, then we get

Corollary 5.3. If permutation σ satisfies the condition σl = σ, then the l-ary oper-
ation [ ]l,σ,2,2k is associative.

We remark that the 4-ary operation from Corollary 4.3 coincides with the opera-
tion [ ]4,(123),2,6, i.e., it is an operation of the form [ ]l,σ,m,mk for m = 2, l = 4, k = 3,
and σ = (123) a permutation of order 3 from S3. But the permutation (132) ∈ S3

satisfies as well the condition σ4 = σ. Hence, for B = R and 〈A = R2,×〉 – the
semigroup of complex numbers, and, by replacing ` = 4, k = 3 and σ = (132) in
Corollary 5.3, we get

Corollary 5.4. The 4-ary operation defined on R6:

[(x1, x2, x3, x4, x5, x6)(y1, y2, y3, y5, y6)

(z1, z2, z3, z4, z5, z6)(u1, u2, u3, u4, u5, u6)]4,(132),2,6 = (r1, r2, r3, r4, r5, r6),
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where 



r1 = x1y5z3u1 − x2y6z3u1 − x1y6z4u1 − x2y5z4u1−
−x1y5z4u2 + x2y6z4u2 − x1y6z3u2 − x2y5z3u2,

r2 = x1y5z3u2 − x2y6z3u2 − x1y6z4u2 − x2y5z4u2+
+x1y5z4u1 − x2y6z4u1 + x1y6z3u1 + x2y5z3u1,

r3 = x3y1z5u3 − x4y2z5u3 − x3y2z6u3 − x4y1z6u3−
−x3y1z6u4 + x4y2z6u4 − x3y2z5u4 − x4y1z5u4,

r4 = x3y1z5u4 − x4y2z5u4 − x3y2z6u4 − x4y1z6u4+
+x3y1z6u3 − x4y2z6u3 + x3y2z5u3 + x4y1z5u3,

r5 = x5y3z1u5 − x6y4z1u5 − x5y4z2u5 − x6y3z2u5−
−x5y3z2u6 + x6y4z2u6 − x5y4z1u6 − x6y3z1u6,

r6 = x5y3z1u6 − x6y4z1u6 − x5y4z2u6 − x6y3z2u6+
+x5y3z2u5 − x6y4z2u5 + x5y4z1u5 + x6y3z1u5,

is associative.

We remark that, corresponding to the definition of the operation [ ]l,σ,m,mk, the
components r1, . . . , r6 are implicitly defined by the relations





(r1, r2) = (x1, x2)× (y5, y6)× (z3, z4)× (u1, u2),
(r3, r4) = (x3, x4)× (y1, y2)× (z5, z6)× (u3, u4),
(r5, r6) = (x5, x6)× (y3, y4)× (z1, z2)× (u5, u6).

Lemma 5.1 and Theorem 3.7 allow us to state the following

Theorem 5.5. [13]. If the semigroup 〈A,×〉 from the definition of the operation
[ ]l,σ,m,mk contains the unity, and if the permutation σ satisfies the condition σl 6= σ,
then the l-ary operation [ ]l,σ,m,mk is not semi-associative and, in particular, it is
non-associative.

If in Theorem 5.5 one replaces m = 2, then it follows

Corollary 5.6. If the semigroup 〈A,×〉 from the definition of the operation [ ]l,σ,m,mk

contains the unity, and if the permutation σ satisfies the condition σl 6= σ, then the l-
ary operation [ ]l,σ,2,2k is not semi-associative and, in particular, it is non-associative.

We shall provide now examples of multiple non-associative operations of the form
[ ]l,σ,m,mk.

Example 5.7. Let 〈A,×〉 be the semigroup of complex (or dual/double) numbers,
let m = 2 and k = 3. If l = 3, then according to Corollary 5.6, the ternary operations
[ ]3,(123),2,6 and [ ]3,(132),2,6 are not associative. But if ` = 4, then, due to the
same Corollary, the 4-ary operations [ ]4,(12),2,6, [ ]4,(13),2,6 and [ ]4,(23),2,6 are
non-associative. All the five provided examples are defined on the Cartesian power
R6.

Consider, as before, a set B, let m > 1, n > 3, and let A = Bm be the m-ary Cartesian
power of the set B. Moreover, let 〈A, +〉 be a groupoid. We shall define on Bmk a
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binary operation +̃, as follows. If

α = (α11, . . . , α1m, . . . , αk1, . . . , αkm),
β = (β11, . . . , β1m, . . . , βk1, . . . , βkm) ∈ Bmk,

then
α+̃β = (u11, . . . , u1m, . . . , uk1, . . . , ukm) ∈ Bmk,

where, for any j ∈ {1, . . . , k},
(uj1, . . . , ujm) = (αj1, . . . , αjm) + (βj1, . . . , βjm) ∈ Bmk.

Remark. If on the set B we define an operation ”+”, this defines on the set A = Bm

in componentwise manner, a corresponding operation ”+”, then:

α+̃β = (α11 + β11, . . . , α1m + β1m, . . . , αk1 + βk1, . . . , αkm + βkm),

i.e., in this case, the operation ”+̃” coincides with the operation ”+”, componentwise
defined on Bmk.

For the same assumptions on m, n, B and A we define a multiplication of the
elements of the field P to the elements from A = Bm:

λa = λ(a1, . . . , am) = (u1, . . . , um).

We define the product ”◦” between elements λ ∈ P with elements from Bmk, as
follows. If

α = (α11, . . . , α1m, . . . , αk1, . . . , αkm) ∈ Bmk,

then
λ ◦α = (u11, . . . , u1m, . . . , uk1, . . . , ukm),

where, for any j ∈ {1, . . . , k},
(uj1, . . . , ujm) = λ(αj1, . . . , αjm).

Remark. If λa = λ(a1, . . . , am) = (λa1, . . . , λam), then

λ ◦α = (λα11, . . . , λα1m, . . . , λαk1, . . . , λαkm).

If 〈A = Bm, +,×〉 is an algebra, then for any

α = (α11, . . . , α1m, α21, . . . , α2m, . . . , αk1, . . . , αkm) ∈ Bmk

we put
α = (α11, . . . , α1m, β21, . . . , β2m, . . . , βk1, . . . , βkm) ∈ Bmk,

where (βi1, . . . , βim) = −(α11, . . . , αim), i = 2, . . . , k. As consequence of the relations




αψ = ((α11, . . . , α1m), (α21, . . . , α2m), . . . , (αk1, . . . , αkm)),

αψ = ((α11, . . . , α1m),−(α21, . . . , α2m), . . . ,−(αk1, . . . , αkm)) =
= ((α11, . . . , α1m), (β21, . . . , β2m), . . . , (βk1, . . . , βkm)),

(αψ)ψ−1

= (α11, . . . , α1m, β21, . . . , β2m, . . . , βk1, . . . , αkm),

we infer the following results
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Lemma 5.8. For any α ∈ Bmk, it holds the equality α = (αψ)ψ−1

.

Theorem 5.9. [14, 13]. Let B be a set, and m > 1, k > 2, ` > 3, such that k
divides l − 1. Let σ be a cycle of length k from Sk, 〈A = Bm, +,×〉 an associative
algebra over the field P and θ = (θ1, . . . , θm) is its zero element. Then:

1) 〈Bmk, +̃, [ ]l,σ,m,mk〉 is an associative (2, l)-algebra over the field P , which is
isomorphic to the (2, l)-algebra 〈Ak, +, [ ]l,σ,k〉;

2) in 〈Bmk, +̃, [ ]l,σ,m,mk〉, all its elements are divisors of its zero element,

(θ1, . . . , θm, . . . , θ1, . . . , θm︸ ︷︷ ︸
k

);

3) if 〈A, +,×〉 is commutative, then 〈Bmk, +̃, [ ]l,σ,m,mk〉 is semi-abelian;

4) if 〈A∗ = A\{θ},×〉 is a group, then 〈B̃, [ ]l,σ,m,mk〉 is an l-ary group, where B̃
is the set of elements

(b11, . . . , b1m, . . . , bk1, . . . , bkm) ∈ Bmk

such that (bj1, . . . , bjm) 6= (θ1, . . . , θm) for any j = 1, . . . , k;
5) for any elements

b = (b11, . . . , b1m, . . . , bk1, . . . , bkm) ∈ Bmk

such that (bj1, . . . , bjm) = (θ1, . . . , θm) for some j ∈ {1, . . . , k}, we have

[b . . .b︸ ︷︷ ︸
l

]l,σ,m,mk = (θ1, . . . , θm, . . . , θ1, . . . , θm︸ ︷︷ ︸
k

);

6) if the set B contains more than one element and 〈A,+,×〉 has a unity, then
〈Bmk, +̃, [ ]l,σ,m,mk〉 is non-abelian;

7) if the set B contains more than one element, then 〈Bmk, +̃, [ ]l,σ,m,mk〉 contains
no unity;

8) if 〈A∗,×〉 is a group and e is its unity, then

I(Bmk, +̃, [ ]l,σ,m,mk) = J ∪ {(θ1, . . . , θm, . . . , θ1, . . . , θm︸ ︷︷ ︸
k

)},

where J is the set of all the elements

(ε11, . . . , ε1m, . . . , ε(k−1)1, . . . , ε(k−1)m, εk1, . . . , εkm) ∈ Bmk,

such that
(ε1εσ(1) . . . εσl−2(1))

l−1
k = e,

where
ε1 = (ε11, . . . , ε1m), . . . , εk = (εk1, . . . , εkm) ∈ A.

9) we have the following:

[α1α2 . . . αl]l,σ,m,mk =

{
[α1 α2 . . . αl]l,σ,m,mk, for even (l − 1)(k − 1)/k

−[α1 α2 . . . αl]l,σ,m,mk, for odd (l − 1)(k − 1)/k.
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Proof. 1) We note that due to Proposition 3.8, 〈Ak,+, [ ]l,σ,k〉 is an associative
(2, l)-algebra over P . It is clear that the mapping ϕ, which relates the element

((α(1)
1 , . . . , α(1)

m ), (α(2)
1 , . . . , α(2)

m ), . . . , (α(k)
1 , . . . , α(k)

m )) ∈ Ak

to the element

(α(1)
1 , . . . , α(1)

m , α
(2)
1 , . . . , α(2)

m , . . . , α
(k)
1 , . . . , α(k)

m ) ∈ Bmk

is a bijection between Ak and Bmk. Since ϕ = ψ−1, where ψ is the mapping
from Lemma 5.1, we infer that ϕ is an the isomorphism from 〈Ak, +, [ ]l,σ,k〉 to
〈Bmk, [ ]l,σ,m,mk〉. Consequently,

(5.3) [α1α2 . . . αl]
ϕ
l,σ,k = [αϕ

1 αϕ
2 . . . αϕ

l ]l,σ,m,mk.

Let
α = ((α11, . . . , α1m), . . . , (αk1, . . . , αkm)),
β = ((β11, . . . , β1m), . . . , (βk1, . . . , βkm))

be arbitrary elements from Ak. Then

(α + β)ϕ = (((α11, . . . , α1m), . . . , (αk1, . . . , αkm))+
+((β11, . . . , β1m), . . . , (βk1, . . . , βkm)))ϕ =

= ((α11, . . . , α1m) + (β11, . . . , β1m), . . . , (αk1, . . . , αkm)+
+(βk1, . . . , βkm))ϕ =

= ((v11, . . . , v1m), . . . , (vk1, . . . , vkm))ϕ =

= (v11, . . . , v1m, . . . , vk1, . . . , vkm),

where for any j = 1, . . . , k we put

(5.4) (vj1, . . . , vjm) = (αj1, . . . , αjm) + (βj1, . . . , βjm).

Moreover,

αϕ+̃βϕ = ((α11, . . . , α1m), . . . , (αk1, . . . , αkm))ϕ+̃

+̃((β11, . . . , β1m), . . . , (βk1, . . . , βkm))ϕ =

= (α11, . . . , α1m, . . . , αk1, . . . , αkm)+̃

+̃(β11, . . . , β1m, . . . , βk1, . . . , βkm) =

= (u11, . . . , u1m, . . . , uk1, . . . , ukm),

where, according to the definition of the operation +̃, for any j = {1, . . . , k} we have

(5.5) (uj1, . . . , ujm) = (αj1, . . . , αjm) + (βj1, . . . , βjm).

Since the right sides of (5.4) and (5.5) are equal, it follows that

(5.6) (α + β)ϕ = αϕ+̃βϕ.
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Let α = ((α11, . . . , α1m), . . . , (αk1, . . . , αkm)) be an arbitrary element from Ak. Then

(λα)ϕ = (λ((α11, . . . , α1m), . . . , (αk1, . . . , αkm)))ϕ =

= (λ(α11, . . . , α1m), . . . , λ(αk1, . . . , αkm))ϕ =

= ((v11, . . . , v1m), . . . , (vk1, . . . , vkm))ϕ =

= (v11, . . . , v1m, . . . , vk1, . . . , vkm),

where we put

(5.7) (vj1, . . . , vjm) = λ(αj1, . . . , αjm).

Moreover, we have

λ ◦αϕ = λ ◦ ((α11, . . . , α1m), . . . , (αk1, . . . , αkm))ϕ =

= λ ◦ (α11, . . . , α1m, . . . , αk1, . . . , αkm) =

= (u11, . . . , u1m, . . . , uk1, . . . , ukm),

where, according to the definition of the product ”◦”, for any j = {1, . . . , k},
(5.8) (uj1, . . . , ujm) = λ(αj1, . . . , αjm).

Since the right sides of (5.7) and (5.8) are equal, then

(5.9) (λα)ϕ = λ ◦αϕ

From (5.3), (5.6) and (5.9) it follows that ϕ is an isomorphism from
〈Ak, +, [ ]l,σ,k〉 to 〈Bmk, +̃, [ ]l,σ,m,mk〉. But since 〈Ak, +, [ ]l,σ,k〉 is an associa-
tive (2, l)-algebra over P , then 〈Bmk, +̃, [ ]l,σ,m,mk〉 is an associative (2, l)-algebra
over P .

2) According to item 1) in Theorem 3.20, in the (2, l)-algebra 〈Ak,+, [ ]l,σ,k〉, all
the elements are divisors of its zero element

(θ . . . θ︸ ︷︷ ︸
k

) = ((θ1, . . . , θm), . . . , (θ1, . . . , θm)).

Further, we apply the isomorphism ϕ defined in 1). For proving the items 3), 5), 6), 7)
and 8), we respectively use the items 2), 4), 5), 6) and 7) of Theorem 3.20 and apply
the isomorphism ϕ. For item 4), we use item 3) from Theorem 3.20 and the equality
((A\{(θ1, . . . , θm)}k)ϕ = B̃. For 9), we use Lemma 5.8, and we get α = (αψ)ϕ for
any α ∈ Bmk, where ψ is the isomorphism from Lemma 5.1, and ϕ = ψ−1 is the
isomorphism from item 1). Then, according to item 8) of Theorem 3.20, for even
(l − 1)(k − 1)/k we have

[α1α2 . . . αl]l,σ,m,mk = ([α1α2 . . . αl]
ψ
l,σ,m,mk)ϕ =

= ([αψ
1 αψ

2 . . . αψ
l ]l,σ,mk)ϕ = ([αψ

1 αψ
2 . . . αψ

l ]l,σ,mk)ϕ =

= [(αψ
1 )ϕ (αψ

2 )ϕ . . . (αψ
l )ϕ]l,σ,m,mk = [α1 α2 . . . αl]l,σ,m,mk.
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For odd (l − 1)(k − 1)/k, we apply again item 8) of Theorem 3.20, and we get

[α1α2 . . . αl]l,σ,m,mk = ([α1α2 . . . αl]
ψ
l,σ,m,mk)ϕ = ([αψ

1 αψ
2 . . . αψ

l ]l,σ,mk)ϕ =

= (−[αψ
1 αψ

2 . . . αψ
l ]l,σ,mk)ϕ = −([αψ

1 αψ
2 . . . αψ

l ]l,σ,m,mk)ϕ =

= −[(αψ
1 )ϕ (αψ

2 )ϕ . . . (αψ
l )ϕ]l,σ,m,mk = −[α1 α2 . . . αl]l,σ,m,mk.

Hence the Theorem is proved. ¤

If in Theorem 5.9 we put m = 2, l = 4, k = 3, σ = (132), B = R and 〈A = R2, +,×〉
is the algebra of complex numbers, then we get

Corollary 5.10. The following assertions hold true:

1) 〈R6, +, [ ]4,(132),2,6〉 is associative, non-abelian, semi-abelian (2, 4)-algebra over
R, in which all the elements are divisors of its zero (0, 0, 0, 0, 0, 0), and which has
no unity;

2) 〈R̃, [ ]4,(132),2,6〉 is a 4-ary group, where

R̃ = R6 \ ( {(0, 0, a, b, c, d) | a, b, c, d ∈ R}⋃{(a, b, 0, 0, c, d) | a, b, c, d ∈ R}⋃{(a, b, c, d, 0, 0) | a, b, c, d ∈ R} );

3) the set of all the multiplicative idempotents of 〈R6,+, [ ]4,(132),2,6〉 has the form

I(R6, +, [ ]4,2,6) =

{
(a, b, c, d,

ac− bd

(a2 + b2)(c2 + d2)
,

− ad− bc

(a2 + b2)(c2 + d2)
)

∣∣∣∣∣
a, b, c, d ∈ R, a2 + b2 6= 0, c2 + d2 6= 0} ⋃ {(0, 0, 0, 0, 0, 0)}.

4) for any α1, . . . , α6 ∈ R6 we have

[α1α2 . . . α6]4,(132),2,6 = [α1 α2 . . . α6]4,(132),2,6.

Remark. The assertion 3) from above emerges from Corollary 3.19, which states
that for the abelian group A and arbitrary permutations σ and τ ∈ Sk which satisfy
the conditions σl = σ, τ l = τ , we have I(Ak, [ ]l,σ,k) = I(Ak, [ ]l,τ,k).

6 The corresponding group of the `-ary group 〈Ak, [ ]l,σ,k〉

If A is a group, and the condition σl = σ holds true, then according to Proposition
3.11, 〈Ak, [ ]l,σ,k〉 is an `-ary group. But since according to Post [22], any l-ary group
has a corresponding group, then appears the question of finding the corresponding
Post group (Ak)0 of the `-ary group 〈Ak, [ ]l,σ,k〉.
Proposition 6.1. If A is a group, l > 3, k > 2, σ a permutation from Sk which
satisfies the condition σl = σ, then the corresponding Post group (Ak)0 of the l-ary
group 〈Ak, [ ]l,σ,k〉 is isomorphic to the direct product Ak of k copies of the group A,
(Ak)0 ' Ak.
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Proof. We put e = (1, . . . , 1︸ ︷︷ ︸
k

), where 1 is the unity of the group A. According to

Proposition 1.6.1 from [15], the group (Ak)0 is isomorphic to the group 〈Ak, e©〉
whose operation is defined as

x e© y = [x e . . . e︸ ︷︷ ︸
l−2

y]l,σ,k.

Since σl−1(j) = j for any j ∈ {1, 2, . . . , k}, then putting x = (x11, . . . , x1k), y =
(xl1, . . . , xlk), we get

x e© y = [x e . . . e︸ ︷︷ ︸
l−2

y]l,σ,k = [(x11, . . . , x1k)(x21 = 1, . . . , x2k = 1) . . .

. . . (x(l−1)1 = 1, . . . , x(l−1)k = 1)(xl1, . . . , xlk)]l,σ,k =
= (x11x2σ(1) . . . x(l−1)σl−2(1)xlσl−1(1), . . .

. . . , x1kx2σ(k) . . . x(l−1)σl−2(k)xlσl−1(k)) =
= (x11 1 . . . 1︸ ︷︷ ︸

l−2

xl1, . . . , x1k 1 . . . 1︸ ︷︷ ︸
l−2

xlk) = (x11xl1, . . . , x1kxlk) =

= (x11, . . . , x1k)(xl1, . . . , xlk) = xy.

Hence, x e©y = xy. Then the operation e© coincides with the operation of the direct
product Ak of k copies of the group A, and the Proposition is proved. ¤

Corollary 6.2. If A is a group, l > 3 and k > 2, then for any permutations σ,
τ ∈ Sk which satisfy σl = σ, τ l = τ , the corresponding Post groups of the l-ary groups
〈Ak, [ ]l,σ,k〉 and 〈Ak, [ ]l,τ,k〉 are isomorphic.

Proposition 6.1 is of notable importance, since using the corresponding results
form the theory of polyadic groups, one can obtain new information about the `-ary
group 〈Ak, [ ]l,σ,k〉.

As an example, we prove the following

Proposition 6.3. If A is a group, l > 3, k > 2 and σ is a permutation from Sk which
satisfies the condition σl = σ, then the l-ary group 〈Ak, [ ]l,σ,k〉 is not semicyclic.

Proof. A polyadic group is called semicyclic [15], if its corresponding Post group is
cyclic. Since the direct product Ak is not a cyclic group, then according to Proposition
6.1, the corresponding Post group (Ak)0 of the `-ary group 〈Ak, [ ]l,σ,k〉 is not cyclic as
well. Hence the `-ary group 〈Ak, [ ]l,σ,k〉 is not cyclic, and the Proposition is proved. ¤

We note that the non-cyclicity of the l-ary group 〈Ak, [ ]l,σ,k〉 follows from Proposition
3.9, according to which 〈Ak, [ ]l,σ,k〉 is non-abelian.

Finally, from Propositions 3.10 and 6.3, we get the following

Corollary 6.4. If A is an abelian group, l > 3, k > 2, σ a permutation from Sk which
satisfies the condition σl = σ, then the l-ary group 〈Ak, [ ]l,σ,k〉 is semi-abelian, but
is not semi-cyclic.
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Since any semi-cyclic `-ary group is semi-abelian, then from Corollary 6.4 it follows
that for any ` > 3, the class of all semi-abelian `-ary groups is larger than the class
of all poly-cyclic `-ary groups. Proposition 6.1 can be used not only for obtaining
new results, but also for simplifying the proofs of already known results. As an
example, according to the Post criterion, the semi-commutativity of polyadic groups
is equivalent to the commutativity of the corresponding Post group. Therefore, if A
is an abelian group and σl = σ, then from the commutativity of the direct product
Ak, according to Proposition 6.1, it follows the semi-commutativity of the `-ary group
〈Ak, [ ]l,σ,k〉.

7 Particular cases. Applications

The described above n-ary operations are tightly related to multilinear forms (covari-
ant tensors) defined on Cartesian powers of the field of real numbers. We shall further
present illustrative examples which relate the prior developed theory - by means of
multilinear forms, to the Berwald-Moor, Chernov and Bogoslovski geometric struc-
tures used in Relativity Theory.

If G is a multiplicative group we define on Gm the induced n−ary operation
µn,m = [ · , . . . , · ]n,m : (Gm)n → Gm, given by

(7.1) µn,m(x1, . . . xn) not= [x1, . . . xn]n,m
def= (p1, . . . pm),

for all xk = (xk1, . . . , xkm) ∈ Gm, k ∈ 1, n, where

pk =
n∏

j=1

xjτ(j,k), τ(j, k) = modm(j + k − 2) + 1, k ∈ 1,m.

Consider now for the multiplicative group G, the abelian multiplicative group of
positive reals (R∗+ = (0,∞), · ), and the mapping θ : Gm → G,

(7.2) θ(p) = p1 + . . . + pm,∀p = (p1, . . . , pm) ∈ G.

We note that both the mappings µn,m and θ are both additive and positive-homogeneous
relative to the vectors of Gm. Hence the composition θ ◦ µn,m : (Gm)n → G
is positive n−multilinear and defines by extension to V = Rm ⊃ Gm a tensor
A ∈ T 0

n (V ) = ⊗nV ∗ whose coefficients are

(7.3) Ai1...in =

{
1, if ∃j ∈ 1,m, s.t. ik = σj(modm(k − 1) + 1), ∀k = 1, n,

0, the rest,

where σ is the cycle (1 . . . m) ∈ σm (the roll-left operator).

We shall further provide a series of notable particular cases, which provide the
structures for alternative models of Relativity Theory.
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Applications.

1. The Bogoslovsky case. The particular case µn,n−1 provides the rank-n
reduced Bogoslovsky tensor ArB = θ ◦ µn,n−1 on Rn−1, whose nontrivial coefficients
are

(ArB)i1...in = 1, for (i1 . . . in−1) ∈ {σj(1 . . . n− 1) | j = 0, n− 2} and in = i1,

where we denoted by σ the cycle (1 . . . n − 1) ∈ σn−1. This tensor has
n − 1 nonzero components, and leads by symmetrization to the full Bogoslovsky
tensor, of C2

n · (n− 1)! nontrivial coefficients

(AB)i1...in
=

1
C2

n · (n− 2)!
, for {i1, . . . , in} = {1, . . . , n− 1}.

Both of them provide the m−root Finsler norm

FB(y) = AB(y, . . . , y) = ArB(y, . . . , y) =

= n

√√√√y1 · . . . · yn−1

n−1∑

k=1

yk, ∀y = (y1, . . . , yn−1) ∈ (R∗+)n−1.

2. The Berwald-Moor case. The particular case µn,n provides the rank-n reduced
Berwald-Moor tensor ArBM = θ ◦ µn,n on Rn, whose nontrivial coefficients are

(ArBM )i1...in = 1, if ∃j ∈ 1, n, σj(1 . . . n) = (i1 . . . in),

where σ is the cycle (1 . . . n) ∈ σn, and which has n nonzero components. Its sym-
metrization leads to the full Berwald-Moor tensor of n! nontrivial coefficients

(ABM )i1...in =
1
n!

, for {i1, . . . , in} = {1, . . . , n}.

Both of them produce the m−root Finsler norm

FBM (y) = ABM (y, . . . , y) = ArBM (y, . . . , y) =

= n
√

y1 · . . . · yn, ∀y = (y1, . . . , yn−1) ∈ (R∗+)n−1.

3. The Chernov case. The particular case µn−1,n provides the rank- n−1 reduced
Chernov tensor ArC = θ ◦ µn−1,n on Rn of n nontrivial coefficients

(ArC)i1...in = 1, if ik = modn(ik) + 1, ∀k ∈ 1, n− 1.

Its symmetrization leads to the full Chernov tensor of n! nontrivial coefficients

(AC)i1...in =
1

(n− 1)!
, for card {i1, . . . , in−1} = n− 1, i1, . . . , in−1 ∈ 1, n.

Both of them provide the m−root Finsler norm3

FC(y) = AC(y, . . . , y) = ArC(y, . . . , y) =

= n−1

√√√√
n∑

k=1

y1 · . . . ŷk · . . . · yn, ∀y = (y1, . . . , yn) ∈ (R∗+)n.

3The hat denotes absence of the corresponding factor.
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We note that the algebraic properties of these tensors have been intensive subject of
recent research, especially due to the existing interrelation between the properties of
their attached algebras, and the Finsler geometry lying beyond their related physical
models ([19, 20, 21, 9, 7, 8, 1, 2, 6, 3, 4, 5]).
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