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Abstract. In their work on Solow model with Richards population growth
law, Accinelli and Brida [1] give a global asymptotic stability result for
the model’s solution. In this paper, we present another proof of this fact.
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1 Introduction

One of the most important models elaborated to explain economic growth is the
neoclassical growth model originated with the work of Solow [17], who proposed a
model designed to show how growth in the capital stock, growth in the labor force,
and advances in technology interact and how they affect a nation’s total output. From
simply being a tool for the analysis of the growth process, the Solow model has been
generalized in several different directions (see, e.g., Accinelli and Brida [1]; Bucci
and Guerrini [3]; Ferrara and Guerrini [4]-[7]; Germanà and Guerrini [8]; Guerrini
[9]-[16]). In particular, Accinelli and Brida [1] have investigated the implications of
studying the Solow model by modelling the population growth rate via a generalized
logistic equation (Richards law [21]), and showed that with the Richards law, the
intrinsic rate of population growth plays no role in determining long run equilibrium
per worker level of capital. Moreover, they have presented a closed-form solution of
the model and proved its stability. The purpose of this paper is to demonstrate this
last statement in another way, using the Bendixson-DuLac and Poincarè-Bendixson
theorems. For further research, it would be interesting to investigate the Ramsey
model analogue following Udriste’s ideas (see, e.g., [18]-[20]).

2 The model

There is a closed economy consisting of a single good, used either for consumption
or investment, produced by physical capital K and population/labor L in a process
described by a Cobb-Douglas production function Y = KαL1−α, 0 < α < 1. In this
economy, output equals income, and the amount invested equals the amount saved.
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Let s be the fraction of output that is saved, i.e. the savings rate, so that 1 − s is
the fraction of output that is consumed. We assume that capital depreciates at the
constant rate δ, i.e. at each point in time, a constant fraction of the capital stock
wears out and, hence, can no longer be used for production. The net increase in
the stock of physical capital at a point in time equals gross invest less depreciation,
.

K = I − δK = sKαL1−α − δK. Taking logarithms and differentiations on both sides
of the equality, we have
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so that we find that the capital per effective worker accumulates over time according
to

.

k = skα − (δ +
.

L/L)k. If the labor force grows at a constant rate n, i.e.
.

L/L = n,

then we get
.

k = skα − (δ + n)k, which is the fundamental differential equation of
the neoclassical growth theory as put forward by Solow [17]. If, instead, we assume
Richards law [18] for the evolution of population, i.e.

.

L/L = r[1− (L/L∞)β ], where
r > 0 is the intrinsic growth rate per capita, L∞ is the carrying capacity, and β is
a positive real number, we obtain the modified Solow model introduced by Accinelli
and Brida [1]. Within this setup, the corresponding model happens to be described
by

(2.1)
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Accinelli and Brida [1] proved the dynamical system (2.1) to have a unique non-zero
equilibrium (k∗, h∗) in R2

+, which is a sink, and showed the process described by the
model to be globally asympotically stable, i.e. all solutions starting near the steady
state remain near the steady state for all time, and furthermore they tend towards
(k∗, h∗) as t grows to infinity.

3 Global asymptotic stability

In order to study closed orbits of system (2.1), we start by recalling the Bendixson-
DuLac theorem (see, e.g., Boyce and DiPrima [2]), which states that if there exists
a function ϕ(k, L) such that ∂(ϕ

.

k)/∂k + ∂(ϕ
.

L)/∂L has the same sign ( 6= 0) almost
everywhere in a simply connected region, then the plane autonomous system (2.1)
has no periodic solutions. ”Almost everywhere” means everywhere except possibly in
a set of area 0, such as a point or line.

Lemma 3.1. A limit cycle cannot occur in this model.

Proof. Setting ϕ(k, L) = k−1L−1 gives

∂(k−1L−1
.

k)
∂k

+
∂(k−1L−1

.

L)
∂L

= −(1− α)skα−2L−1 − rβL−β
∞ k−1Lβ−1 < 0.

Applying the Bendixson-DuLac theorem, we can conclude that there is no closed
orbit. ¤
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Next, we recall the Poincarè-Bendixson Theorem (see, e.g., Boyce and DiPrima
[2]), which, basically, asserts that any orbit which stays in a bounded region of a plane
autonomous system either approaches a fixed point or a periodic orbit. Thus, chaotic
behavior cannot arise.

Theorem 3.1. Any solution of (2.1) converges to the steady state equilibrium (k∗, L∗)
as t →∞.

Proof. This will now be deduced from the Poincarè-Bendixson theorem. In fact, the
Inada conditions on the production function imply that any solution to system (2.1)
is bounded, i.e. there exists a compact set Ω ⊂ R2

+ such that (k, L) ⊂ Ω for all t. As
well, limit cycles are ruled out by Lemma 3.1. ¤
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