Relativistic elastic tensor
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Abstract. The aim of this work is to determine the law of transformation
of the elastic tensor from one inertial frame to another in the contest of
special relativity. By the introduction of the entropy density as function
of the component Ty of the energy-momentum tensor and of the strain
tensor we introduce the relativistic temperature in a generic inertial frame
of reference and the relative law of transformation. By mean of a new
definition of thermodynamic relativistic stress tensor, compared with the
classical one, allows to the law of transformation of the strain tensor.
Finally these laws allow to the introduction of the relativistic elastic tensor
and, as in the particular case of an isotropic medium, of the dynamic
moduli.
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1 Introduction

In a previous paper [3] the dependence of the entropy density on energy momentum
tensor allows to obtain the law of transformation of the temperature (in agreement
with Otts transformation formula) and therefore a new expression of the relativistic
stress tensor in a general inertial frame of reference which take into account the
relativistic entropy density.

Since are well known the laws of transformation of every component of the stress
tensor it has been possible, by utilizing these laws and our new stress tensor form, to
obtain the law of transformation of the strain tensor.

The aim of this work is to introduce the relativistic elastic tensor by the law of
transformation of the stress and strain. It will be shown that symmetries of the
elastic tensor in the proper frame are not preserved in a generic inertial frame of
reference.

Moreover, by specialize to the case of an isotropic medium, it will possible to introduce
(as a very particular case) the relativistic dynamic modulus. Even in this case it is
shown that in a generic inertial frame the isotropic properties are not preserved,
obtaining the components of the relativistic dynamic modulus.
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2 Energy momentum tensor

In [3] a continuum deformable medium in motion with respect to an arbitrary inertial
frame ¥ = (O, z,y, 2, t) is considered and the following total density of energy flow is
introduced:

) ,
(2.1) L; = E; + pcv; + v ¢y,
where:

i) E; is the vector representing density of energy flow of not mechanical nature (as
the heat) [6],[7],

ii) pc®v; is the density of energy flow due only to the motion of the medium, p is the
mass density and c is the scalar velocity of light in vacum,

iii) v7¢;; is the density of energy energy flow due to the action of the forces of stress
flowing in the positive x; direction and ¢;; is the relativistic (no symmetric)
stress tensor.

From (2.1), the following total momentum density can be deduced:

L; Ei | vy
(22) Hichzzpvi—&-cj—i— 2

Putting z¢ = ct, x1 =, x2 = ¥y, 23 = 2, the following energy momentum tensor 7,3
can be introduced ([12, 17, 14]):

Tik = Hivg + dik
Top =4 Tio=Toi =cH;
Too = pc?,

in which Latin index assumes the values 1,2,3 and Greek index assumes the values
0,1,2,3. Introducing the four-vector W, = (pv;F;/c, pF;), where pF; is the unitary
volume force, the following tensorial equation can be written:

0T, s
= Wom
OxP

in which the ”temporal component (the upper zero index) represents the balance
equation for energy density and the spatial components (”1,2,3” index) represent the
balance equation for momentum density. Using the four velocity V< = (a , av;/c),
the first law of thermodynamics has the form:

T
OxP

Ve = w,ve.

3 Density of internal energy

It is known that the coordinate transformation relating two inertial frames ¥ and X'
in relative general configuration are the Lorentz transformation ([12, 16]):
V; Vg il'/

2 Ok

x, =x; + %xol +(a—1)
c
3.1
1) e
Ty = a(xo + —),
c
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where v = (v1,v2,v3) is the uniform ve1001ty of ¥ with respect to ¥ and o =
1/4/1— (v? /c2 So, if we consider ¥ = X, as a proper reference, the following

transformatlon law for Ti,g can be ertten:

83:” 83:” (0)
D 0P

(3.2) Top =

where T,S,j) is the energy momentum tensor in .

By using the transformation laws (3.1) from 3.2 we have [12, 18]:
(3.3) Too = a2poc® + 2252 Vg0 ikl —

The formula (3.3) describes the density internal energy in X, where pg and ¢§2) 2],
[11] are respectively the mass density and the symmetric Cauchy stress tensor in Xg.

4 Relativistic strain and stress tensors.

It is well known that in ¥y the entropy of an element of medium with volume dry is
(17]
dog = ¢ dro,

where ¢ is the entropy density which depends on the internal energy T (58) and on the
strain tensor %(,S), ie.

0
¢o = d)O(Too 7'7( ))~
Since doyg is a relativistic invariant the entropy density will transform in ¥ as:

¢ = o .

We assume that in a general inertial frame of reference the entropy density depend
on the transform of Tég) and ’yi(lg)) [15], 9], i.e.

& = ¢(Too, Yik)-

Defining in ¥y the absolute temperature Ty as

9o 1
o) Ty
in X, we have:
9o Oy OTY

(4.1) o0 = 6T(0 TTog

By virtue of (3.3, one has:
oy 1

8T00 a2 ’
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so the equation (4.1) becomes:

o 11

T Toa'
Therefore we define the temperature in 3 as follows

1 0 11

T~ 0lw Tha

or T' = aTyp, in agreement with Ott’s transformation formula [13].
From equation ?? one has:

a6 9y 9y
8]

4.2 =
( ) 877’5 6’}/1(2) Yrs

b

and by virtue of the relations:

the equation (4.2) becomes:

0
1 00y

8(;5 1 (0) 6’}/1.(0)
Ca= i Oy’

a’Y’I‘S - fo(blk 877‘5

and so we have

¢ 2 (0 Oy
728 — 0240 ik
8’7rs “ (ZSlk) a'y'rs

In the same way, by defining the stress tensor in ¥ as follows

99
rs — T )
Pr Ors
one has
oy
4.3 re = a2\ ik
(43) re = 0l

Let us assume that our original system of coordinates X is oriented so that the ma-
terial, at the point of interest in the medium, will be moving with respect to this
system with the velocity, v parallel to the x-axis. Moreover, the system > moves
with the same velocity v respect to the system ¥. By virtue of these considerations,
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the transformation law of the stress tensor are the following [14]:

(4.4) P11 = ¢ ¢£g)aa’,yyigl) ) b12 = ¢12 o= 2¢£2)85.7;(Pi )
(4.5) 13 = 613 a = a?¢?) 86%2) ; go1 = 05 = 0’6" ?9:;81 ;
(4.6) P22 = 68 = a?¢(0) g%“’ 23 = 00 = 290 ‘217((&:
(4.7) P31 = qﬁgp = a?¢ ?9%5 o :(32) _ az@@%)
(4.8) ¢33 = a2 ?9?’;5 .

Let us observe that the stress tensor is not symmetric, then by considering the relation
(4.3) it results:

975
ik a’Ysr '

a2y a”““ # a0}

Therefore it follows the non symmetry of the strain tensor, i.e., ~,s # s The
transformation law of the strain tensor follows from the development of the equations
(4.3) and after to observe that the components in 3 of the stress tensor depend only
on the corresponding components in Yy, we have:

Y
Yik

=0 if i#nr k#s.

This implies that even components in % of strain tensor depend only on the cor-
responding components in ¥g. Thus the transformation law of the strain tensor is
expressed in the following form:

0 0 0
Y11 = 0427((1;)[)7 Y12 = 047’((1;)7 73 = O‘W((li)%)

(4.9) Vo1 =& ’Y(gi)v Vo2 =« 7((2%)7 V23 = 0‘27((2%)
V31 =« 7(32)» V32 =« 7((3;) Y11 = a2v((3§,)

5 Relativistic elastic tensor

We have:

) (0 0 (0 0 (0 0 (0
d)zk = zk)rs%("‘?) = Gz('k)117£1) + Gz('k)12’y£2) + Gz('k)13’y£3)+

(5.1) +sz2ﬂ21 + szzﬂzz + sz23V23)+

0) _(0 0) _(0 0) _(0
ngz’,17§1) ngé27§2) ngz’,37§3) )
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and using (4.9) one has:

) _
by = G'Lklla2 M1t szuoﬁlz szma%a"'
Gum =21t G(k22 =22t G1k23 2z V23t

0 0
"’sz:n 33 Y31 T ng?m 22732 + ng)&% 27 V33-
From (4.4)-(4.8), we obtain:

(5.2)
G G G G
e Lz Lla = Ghai2 Ghiaas
G — Gii21 Gii2e  Giies G — Gi221  Giz22 G223
11rs — a3 2 2 ) 12rs — 2 P o )
Giia1 G1132 Gi13s Gi231  Gi23z Gi233
a3 a? a? a? « «
(5.3)
G G G G
B Gy G g e
G _ Giz21 Gisze Giszs G _ Gai21 G212 Ga2i2s
13rs 2 a ’ 21rs ot a3 a3 )
Gizz1  Gisso Gi3ss Gaiz1 G213z Go2iss
a? a a at a3 a3
G22211 Gazi2  Ga2is G23211 Gaziz  Gaszis
fa3 « « fe3 « «
(5 4) G _ Ga221 G222 Ga223 G — Gazo1 G232 Gaszos
. 22rs a3 2 2 ) 23rs a3 o2 %) ’
Ga231 Gazza Gaass Gazz1  Gaszzs Gaass
as a? a? a3 a? a?
G31311 G31212 G31213 Gszjzu Gsz12  Ga2is
fe3 fe3 fe3 fe3 o «
(5 5) G — G321 G322 G3i23 G — G3221 G320 G323
. 3lrs — ot a3 a3 9 32rs — a3 o2 o2 )
Gsziz1 Gaize  Gaiss G3231 Gaazs  Gaoss
ol P o3 3 2 2
G33211 Gszi2  Gasis
« « «
(5 6) Gaa,.. = Gssa1r  Gaszo  Gasos
. 33rs a3 a2 a2 )
Gazz1 Gaaze  Gasss
o3 o2 o2
(0) 0) _ ~0) _ ~(0)
(57) Gnk'rs Giksr - Gkirs - Grsik
we have only
(58) Gikrs - Grsik .
For isotropic media we have:
0) (0)
(0) (
(5.9) Giirs = — A Oik0ps — H (0irOps + 0isOpr)
and so the relations (5.2)-(5.6) become:
0)  (0)
A — W (0)
a? © 0 0 - 0
(510) Gllrs = 0 —4 2)‘ 0 ’ GlQT’S = - (2«) 0 0 ’
“ © ol
0 0 - A 0 0 0

a2
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(0) (0)

0 0 —u 0 - 0
(511) Gi3rs = 0 0 0 s Go1rs = _(ﬁ) s
(0) at 0 0
_ag 0 0 0 0 0
(0)
2 0 o0 o
(5]_2) G22rs = 0 — (;)\;2— (B«) 0 N G23rs = 0 0 _ag P
(0)
0 0 S 0 == 0
0 0 ,20) 0 0 0 o
(513) G31TS = 0 0 0 ; G32rs = 0 0 7a5 ;
(0) (0)
=L 0 0 0 =L 0
(0)
-2 0 0
0)  (0)
(5.14) Gssrs = | 0 = 2 ,
(0)
0 0 —

so we have the following symmetries:
Gllrs = Gllsr; G22r5 = G22sr; G32rs = G32s7‘; G33rs = G3387‘7

otherwise

(515) Gl2rs 7& G12sr; GlSrs # GISSM G21'rs 7& G215r~

6 Dynamic relativistic moduli

From(5.1) and (5.9) it follows

0) (0) 0)
(6.1) 6 =% Y oy — 2 1d®

TS

. o (0) . . : o O (0 ),
in which dy¢ is the deviator of the strain tensor ~vrs’, ¥ = ~ps’ drs, M1 is the shear
modulus and

(0) (0)
(2) 33X t2u

3

is the bulk modulus. If only shear strain is considered, following the considerations
discussed in [4], we can observe that in the proper frame the dynamic complex modulus
can be written:

(0) (0) (0)
(6.2) G=%1+iGas=—2M1.



28 Vincenzo Cliancio, Franceso Farsaci

and the equation (6.1) assume the form:

(6.3) o) = _o%) d9 = Q4O

In this case the equations (5.10)-(5.15) become:

1 (©oo 0o 00'd
Gllrs - ? 000 5 G12rs == 000 5 G13rs == 00 0 5
000 000 00 0
AL , [000 AR
©)
(64) G21rs - ? (?) 00 5 G22rs - ? 0 (g> 0 5 G23rs - ? 0 0 @ )
000 000 0-% o
1 (000 1 (000 1 (000
G31T527 2 0o ) G32rs:72 0 g 0 y G33rs:72 0o g .
@\ Qoo @ \No@o @ \oo @
. 0
If no shear phenomena occur, i.e. drs) = 0, we have (see [4]):

0) (0 o (0)
G=G1+1dd2 = k.

and the equation (6.1) assumes the form:

(0) (0) (0) (0)
¢7(;2)= kEVor =G ok,

and (5.10)-(5.15) become:
1 [ Qoo 000 000
Girs=—=51| 000 | Giors = | 000 |, Gizrs = (000 ],
@ 000 000 000
000 1 (000 000
Gatrs = | 000 ),  Gagrs=-—75(0@o0 |, Gagrs={000],
000 "\ oo o 000

000 000 1 (000
G31rs =1000}J, G32Ts =1000/, G33rs = 35 000 .
000 000 o 00

It is interesting to observe that in this case only three diagonal components of the
elastic tensor are different from zero and so the transformed. This is in agreement
with the principle of relativity.

We conclude by observing that even if we consider only shear or bulk strain the
isotropy is not preserved in a general inertial reference frame. The knowledge of the
laws of transformation of dynamic modulus and is important for the experimental
evaluation of the mechanical properties of materials.
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