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Abstract. The notions of quasi-nilpotent equivalence and commutator
for operators were introduced by I. Colojoară and C. Foiaş in 1965 and
1967 ([8], [10]) and the generalizations of these notions to operator systems
appeared in the papers [17], [18] of Şt. Frunză.
This work is trying to extend significant results for spectral equivalence
of decomposable and spectral operators (systems) and to characterize the
spectral equivalence of those by equality of spectral capacities (spectral
measures) to S-decomposable and S-spectral systems. We shall see that
not all results for decomposable (spectral) systems can be extended and
generalized to S-decomposable (S-spectral) systems.
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1 Introduction

In this paper we recall several notations and definitions from the specialized literature,
which will be further needed.

Let X be a Banach space and let B(X) be the algebra of all linear bounded
operators on X. Let a = (a1, a2, ..., an) ⊂ B(X) be a system of commuting operators,
let Y ⊂ X be an invariant subspace to a, let b = a|Y = (a1|Y, a2|Y, ..., an|Y ) be the
restriction of a to Y and let ȧ = (ȧ1, ȧ2, ..., ȧn) be the quotient system induced by a
on the quotient space Ẋ = X|Y .

The system a = (a1, a2, ..., an) ⊂ B(X) is said to be nonsingular on X if the
Koszul complex E(a,X) is exact, where

E(X, a) : 0 → X = Λn[σ,X] δn−→ Λn−1[σ,X]
δn−1−−−→ . . .

δ3−→ Λ2[σ,X] δ2−→ Λ1[σ,X] δ1−→
Λ0[σ,X] = X → 0
or, equivalently, the complex F (a,X) is exact, where

F (X, a) : 0 → X = Λ0[σ,X] δ0

−→ Λ1[σ,X] δ1

−→ Λ2[σ,X] δ2

−→ ...
δn−2

−−−→ Λn−1[σ,X] δn−1

−−−→
Λn[σ,X] = X → 0 (see [24]).
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The complement in Cn of the set of those elements z = (z1, z2, . . . , zn) ∈ Cn

for which the system z − a = (z1 − a1, z2 − a2, . . . , zn − an) is nonsingular on X
is said to be the spectrum of a on X and is denoted by σ(a,X). The complement
of the reunion of all open sets V in Cn having the property that there is a form
ϕ ∈ Λn−1[σ ∪ dz̄, C∞(V,X)] satisfying the equality sx = (α ⊕ ∂)ϕ is said to be
the spectrum of x ∈ X with respect to a and is denoted by sp(a, x) (see [18]). The
complement in Cn of the set of all z = (z1, z2, . . . , zn) ∈ Cn such that there are an
open neighborhood V of z and n X-valued analytic functions f1, f2, . . . , fn on V ,
satisfying the identity x ≡ (ζ1 − a1)f1(ζ) + · · · + (ζn − an)fn(ζ), ζ ∈ V is called the
local analytic spectrum of x with respect to a and is denoted by σ(a, x) (see [18]). In
[16], J. Eschmeier proved that sp(a, x) = σ(a, x).

We shall say that the system a = (a1, a2, . . . , an) ⊂ B(X) verifies the cohomology
property (L) if Hn−1(C∞(G,X), α⊕ ∂) = 0, for any open set G ⊂ Cn ([24]).

We denote by Sa the complement in Cn of the set of those points ω ∈ Cn for which
there is an open polydisc Dω 3 ω with the property that Hp(A(Dω, X), αa) = 0, for
0 ≤ p ≤ n − 1 (where αa(z) = z − a, A(Ω, X) is the space of all X-valued analytic
functions on Ω, z ∈ Cn, Ω ⊂ C open set). The set Sa will be called the analytic
spectral residuum of the system a. If Sa = f¡ , then we say that the system a has
the single-valued extension property (or a verifies the cohomology property (L)) ([18],
[27]).

Definition 1.1. Let X be a Banach space, let B(X) be the algebra of all linear
bounded operators on X, let PX be the set of the projectors on X and let Bn

S be
the family of all Borelian sets of Cn that have the property B ∩ S = f¡ or S ⊂ B,
B ∈ Bn

S , where S ⊂ Cn is a compact fixed set.
A map ES : Bn

S → PX is called a (Cn, X) type S-spectral measure if

(1) ES( f¡ ) = 0, ES(Cn) = I;

(2) ES(B1 ∩B2) = ES(B1)ES(B2), B1, B2 ∈ Bn
S ;

(3) ES

( ∞⋃
m=1

Bm

)
x =

∞∑
m=1

ES(Bm)x, Bm ∈ Bn
S , Bp ∩Bm = f¡ if p 6= m, x ∈ X.

A commuting system a = (a1, a2, . . . , an) ⊂ B(X) is called S-spectral system if
there is a (Cn, X) type S-spectral measure ES such that

(4) ajES(B) = ES(B)aj , B ∈ Bn
S , 1 ≤ j ≤ n;

(5) σ(a,ES(B)X) ⊂ B, B ∈ Bn
S .

For S = f¡ , we have Bn
∅ = Bn, f¡ -spectral measure is spectral measure and

f¡ -spectral system is a spectral system.

Remark 1.1. A commuting system a = (a1, a2, . . . , an) ⊂ B(X) is S-spectral if and
only if it is written as a direct sum a = b ⊕ c, where b is a spectral system and
σ(c,X) ⊂ S.
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Indeed, if a is S-spectral, then one easily verifies that the map E : B(Cn) → PX

(where B(Cn) = Bn
∅) defined by E(B) = ES(B ∩ {S) is a spectral measure for

b = a|ES({S)X, B ∈ B(Cn), while c = a|ES(S)X, σ(c,X) = σ(a, ES(S)X) ⊂ S.
Conversely, if b = (b1, b2, . . . , bn) ⊂ B(X1) is spectral and c = (c1, c2, . . . , cn) ⊂ B(X2)
is non spectral, with σ(c,X2) + σ(b,X1), by putting S = σ(c,X2), X = X1 ⊕ X2,
a = b ⊕ c, the map ES : Bn

S → PX defined by the equalities ES(B) = E(B) ⊕ 0, if
B ∩ S = f¡ and ES(B) = E(B)⊕ I2, for B ⊃ S, B ∈ Bn

S , is a S-spectral measure of
a, where E is the spectral measure of b and I2 is the identity operator in X2.

Definition 1.2. Let X be a Banach space, let S(X) be the family of all closed linear
subspaces of X, let S ⊂ Cn be a compact set and let FS(Cn) be the family of all
closed sets F ⊂ Cn which have the property: either F ∩ S = f¡ or F ⊃ S.

We shall call S-spectral capacity an application ES : FS(Cn) → S(X) that meets
the properties:

1. ES( f¡ ) = {0}, ES(Cn) = X;

2. ES

( ∞⋂

i=1

Fi

)
=

∞⋂

i=1

ES(Fi), for any sequence {Fi}i∈N ⊂ FS(Cn);

3. for any open finite S-covering {GS}
⋃ {Gj}m

j=1 of Cn we have

X = ES(GS) +
m∑

j=1

ES(Gj).

A commuting system of operators a = (a1, a2, . . . , an) ⊂ B(X) is said to be S-
decomposable if there is a S-spectral capacity ES such that:

4. ajES(F ) ⊂ ES(F ), for any F ∈ FS(Cn), 1 ≤ j ≤ n;

5. σ(a, ES(F )) ⊂ F, for any F ∈ FS(Cn).

In case that S = f¡ , F∅(Cn) = F(Cn) is the family of all closed sets F ⊂ Cn, the
f¡ -spectral capacity is said to be spectral capacity and the system is decomposable.

Theorem 1.2. Let a = (a1, a2, . . . , an) ⊂ B(X) be a commuting system of S-
decomposable operators, let ES be a (Cn, X) type S-spectral capacity and let Sa = f¡
(a has the single-valued extension property, i.e. a verifies the cohomology property
(L) ([18, 1.5.2]). Then ES(F ) = Xa(F ) = X[a](F ), for any F ∈ FS(Cn).

Proof. In [16], J. Eschmeier proved that the two local spectra of x ∈ X with respect
to a, sp(a, x) and σ(a, x), are equal ([18], 1.5.1, 1.5.2), in short sp(a, x) = σ(a, x),
hence Xa(F ) = X[a](F ), F ⊂ Cn closed. In [7] (3.5.9), it was shown that ES(F ) is
a spectral maximal space of a, where F ∈ FS(Cn). Using the definition of resolvent
set of y ∈ Y with respect to a and the resolvent set of the restriction a|Y on Y ,
where Y is a closed linear subspace of X invariant to a = (a1, a2, . . . , an), we have
ρ(a, y) = r(a, y) ⊃ r(a, Y ); hence it results that σ(a, y) = sp(a, y) ⊂ sp(a, Y ). Because
sp(a, ES(F )) ⊂ F , we have ES(F ) ⊂ X[a](F ).
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To prove that X[a](F ) ⊂ ES(F ) it is enough to verify that for any open set G, with
F ⊂ G, F , G ∈ FS(Cn), we have X[a](F ) ⊆ ES(G), therefore Xa(F ) ⊆ ⋂{ES(G), F ⊂
G} = ES({⋂ G,F ⊂ G}) = ES(F ).

Let G ⊂ Cn be an open set with F ⊂ G, let F1, F2 ⊂ Cn be closed such that
F ⊂ F1 ⊂ G, F2 ∩ F = f¡ and let X = ES(F1) + ES(F2). For x ∈ X[a](F ) we
have x = x1 + x2, x1 ∈ ES(F1), x2 ∈ ES(F2). According to [18, Theorem 1.5.7.]), it
results that there are two forms ψ on r(a, x), respectively ψ2 on r(a, x2) such that
sx = (α⊕∂)ψ and sx2 = (α⊕∂)ψ2, hence sx1 = (α⊕∂)(ψ−ψ2) on r(a, x)∩ r(a, x2).
Further, the proof is the same as that of [18] (Theorem 2.2.1.), with only one condition,
namely F ∈ FS(Cn) (F ⊃ S or F ∩ S = f¡ ). ¤

Theorem 1.3. A S-spectral system a = (a1, a2, . . . , an) ⊂ B(X) having the S-spectral
measure ES is S-decomposable with its S-spectral capacity ES given by

ES(F ) = ES(F )X, F ∈ FS(Cn).

Proof. Obviously we have

ES( f¡ ) = ES( f¡ )X = OX = {0}, ES(Cn) = ES(Cn)X = IX = X,

hence the relation (1) from Definition 1.2 is verified.
To prove the relation (3) of Definition 1.2 we use the subadditivity of a measure

Y = ES(GS) +
n∑

i=1

ES(Gi) = ES(GS)X +
n∑

i=1

ES(Gi)X ⊇

⊇ ES

(
GS ∪

(
n⋃

i=1

Gi

))
X = ES(C)X = IX = X,

hence we have Y ⊇ X; but Y ⊆ X is a subspace, hence Y = X, where GS , Gi

(i = 1, 2, . . . , n) are not disjoint.
From the equality aiES(F ) = ES(F )ai, i = 1, 2, . . . , n, it results that

aiES(F ) = aiES(F )X = ES(F )aiX ⊂ ES(F )X = ES(F ).

We also have
sp(a, ES(F )) = sp(a,ES(F )X) ⊂ F.

It remains to be verified the relation (2) of Definition 1.2.
From ES(B) = ES(B ∩ B) = E2(B), for any B ∈ BS(Cn), we observe that

the values of the S-spectral measure are linear continuous projectors on X, thus the
subspace ES(F ) = ES(F )X is closed, for any F ∈ FS(Cn) .

The equality (2), ES

(⋂

i∈I

Fi

)
=

⋂

i∈I

ES(Fi), is proved in the same way as in [18,

Proposition 3.1.3], with the only indication that Fi ∈ FS(Cn), i = 1, 2, ..., n. ¤
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Remark 1.4. A direct and simple proof of the previous theorem can be given using
the following observation (and also Proposition 3.1.3., [18]): A S-spectral system
a = (a1, a2, . . . , an) is a direct sum between a spectral system b = (b1, b2, . . . , bn) =
a|ES({S)X and a system c = a|ES(S)X, with σ(c, ES(S)X) ⊂ S. Because the system
b is decomposable, then a is S-decomposable.

Definition 1.3. Let X be a Banach space and B(X) the algebra of all linear bounded
operators on X. For a ∈ B(X) we define the operators l(a) and r(a) given by

l(a)b = ab and r(a)b = ba, b ∈ B(X).

The linear operators l(a) and r(a) commute, i.e. l(a)r(b) = r(b)l(a), for all a,
b ∈ B(X).

The operator C(a, b) = l(a) − r(b) is called the commutator of a and b, where a,
b ∈ B(X).

For a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ⊂ B(X) two commuting operator
systems, we define the system

C(a, b) = (C(a1, b1), C(a2, b2), . . . , C(an, bn))

called the commutator of a and b. In this case, C(a, b) is also a commuting operator
system.

Taken k = (k1, k2, . . . , kn) a system of positive integers we use the notations

Ck(a, b) = Ck1(a1, b1) · ... · Ckn(an, bn) and (a− b)[k] = Ck(a, b)id,

where Ckj (aj , bj) = (C(aj , bj))kj , 1 ≤ j ≤ n.
For any u ∈ B(X) and 1 ≤ j ≤ n, we have

C(k+1)j (a, b)u = ajC
k(a, b)u− Ck(a, b)ubj

and

(a− b)[(k+1)j ] = aj(a− b)[k] − (a− b)[k]bj

(see 4.1.1., 4.1.2., 4.1.3, [18]).

Theorem 1.5. Let a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ⊂ B(X) be two systems
of S-decomposable operators with Sa = Sb = f¡ and let ESa, ESb be its S-spectral
capacities. If a is spectral equivalent to b, then its S-spectral capacities are equal,
ESa = ESb.

Proof. According to the result obtained by J. Eschmeier in [16], the two local spectra
sp(a, x) and σ(a, x) are equal, so also its spectral spaces Xa(F ) and X[a](F ) are equal,
because from σ(a, x) = sp(a, x) ⊂ F , it results that x ∈ Xa(F ), so x ∈ X[a](F ), that is
to say Xa(F ) ⊂ X[a](F ); conversely, in a similar way, we prove that X[a](F ) ⊂ Xa(F ).
But according to Theorem 1.2, the S-spectral capacities ESa, ESb are given by

ESa(F ) = Xa(F )

ESb(F ) = Xb(F )
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and from Corollary 4.1.19., [18], it results that

σ(a, x) = sp(a, x) = σ(b, x) = sp(b, x),

hence
ESa(F ) = ESb(F ), for any F ∈ FS(Cn), i.e. ESa = ESb.

¤

With the same arguments as above, we obtain the following result:

Proposition 1.6. If a, b are two S-decomposable systems with its S-spectral capacities
ESa, ESb, then

lim
k→∞

‖(a− b)[k]‖
1
k = 0 implies that ESb(F ) ⊂ ESa(F ), F ∈ FS(Cn).

Theorem 1.7. If a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ⊂ B(X) are two operator
systems spectral equivalent and a is S-decomposable, then b is S-decomposable.

Proof. It is enough to show that the S-spectral capacity ESa of a is also the S-spectral
capacity of b. We prove that the relations (4) and (5) form Definition 1.2 are verified
by ESa for b, i.e. bjESa(F ) ⊂ ESa(F ), 1 ≤ j ≤ n, sp(b, ESa(F )) ⊆ F , F ∈ FS(Cn).

Because σ(b, x) = σ(a, x) ([18], 4.1.19.) and according to Theorem 1.2 we have

ESa(F ) = Xa(F ) = {x ∈ X;σ(a, x) = σ(b, x) ⊂ F} = Xb(F ).

For a closed linear subspace Y of X invariant to both a and b, we obviously have
that the restrictions a|Y and b|Y are spectral equivalent, hence a|ESa(F ) and b|ESa(F )
are spectral equivalent and according to theorem of equality of spectra we have

sp(b, ESa(F )) = sp(a, ESa(F )) ⊂ F, F ∈ FS(Cn).

Definition 1.5.1., [18] shows that σ(b, bjx) ⊂ σ(b, x), 1 ≤ j ≤ n, hence bjESa(F ) ⊂
ESa(F ), 1 ≤ j ≤ n. ¤

Proposition 1.8. Let a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ⊂ B(X) be two opera-
tor systems spectral equivalent such that a is S-spectral. Then b is also S-spectral.

Proof. A simple and direct proof can be given using the similar result form the case of
spectral operators and also using the observation: An S-spectral operator is a direct
sum between a spectral operator and an operator whose spectrum is in S.

Another laborious way is to use the proof for spectral operators by [9], [17], [18]
in the case of S-spectral operators with non-essential changes. Noting by ES = ESa

the S-spectral measure of a, it can be shown that ES verifies the relations (4) and
(5) from Definition 1.1 for b, hence ES is a S-spectral measure of b, therefore b is
S-spectral. ¤



Quasi-nilpotent equivalence of S-decomposable and S-spectral systems 7

References

[1] E.J. Albrecht and J. Eschmeier, Analytic functional models and local spectral
theory, Proc. London Math. Soc. 75 (1997), 323-345.

[2] E.J. Albrecht and F.H. Vasilescu, On spectral capacities, Revue Roumaine Math.
Pures et Appl. 18 (1974), 701-705.

[3] C. Apostol, Spectral decompositions functional calculus, Revue Roumaine Math.
Pures et Appl. 13 (1968), 1483-1530.

[4] I. Bacalu, On restrictions and quotients of decomposable operators, Revue
Roumaine Math. Pures et Appl. 18 (1973), 809-813.

[5] I. Bacalu, Residual spectral measures (Romanian), St. cerc. mat. 27 (1975), 377-
379.

[6] I. Bacalu, Some properties of decomposable operators, Rev. Roum. Math. Pures
et Appl. 21 (1976), 177-194.

[7] I. Bacalu, Residual spectral decompositions, I(Romanian), St. cerc. mat. 32
(1980), 467-504.

[8] I. Colojoară and C. Foiaş, Quasi-nilpotent equivalence of not necessarily com-
muting operators, J.Math.Mech. 15 (1965), 521-540.
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