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Abstract. In view of information geometry, the state space of thermody-
namic parameters S = {ρ|ρ = Z−1 exp{−∑n

i=1 βiFi, Tr ρ = 1} has been
investigated. Here the α-geometric structures of the denormalization of
S called S̃ = {ρ̃|ρ̃ = f(τ)ρ, f(τ) > 0, Tr ρ = 1} is investigated. The co-
variant derivative and the α-curvature tensor is studied. Therefore, the
relation of the α-geometric structures between S and S̃ are obtained. The
results were obtained in [8] when α = 0 and in [2] when f(τ) = 1.
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1 Introduction

Information geometry ([1]) originated from investigating the geometric structures of
the manifold which consists of probability density functions and it has various appli-
cations such as in statistical inference and neural networks.

Recently, some authors ([7, 6, 5, 3, 4, 2]) considered the geometric structure of the
space of thermodynamic parameters, which forms a manifold called S. This manifold
characterizes a given physical system. One of the main results they obtained is to
give the Riemannian Gaussian curvature of the manifold S. In the present paper,
we firstly define the α-connection and obtain the α-Gaussian curvature which will
becomes the Riemannian Gaussian curvature when α = 0. Ingarden ([3]), Janyzek
([4]), Zheng Z. [10] and other authors reaching a Riemannian metric by statistical
method. For a given equilibrium density operator ([7]) ρ = Z−1 exp{−∑n

i=1 βiFi},
where F1, F2, · · · , Fn are linear independent operators, Z = Tr exp{−∑n

i=1 βiFi} is
a partition function and β = (β1, β2, · · · , βn) are classical real parameters (statistical
temperature, press, magnetic field), which describes the environment of a physical
system. The thermodynamic parameters set S = {ρ|Tr ρ = 1} can be regarded as a
differential manifold equipped with a Riemannian metric

gij = Tr[ρ(∂i ln ρ)(∂j ln ρ)]

for the case of commuting operators Fi, where Tr denotes the trace of the matrix,
and ∂i means the partial derivative with respect to the parameter βi.
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In [1], Amari investigated the denormalization of statistical model. Here we con-
sider the denormalization of thermodynamic parameters model, a more general man-
ifold, namely

S̃ = {ρ̃|ρ̃ = f(τ)ρ, f(τ) > 0, Tr ρ = 1},
where f(τ)(> 0) is an arbitrary-order differentiable function. Then S̃ is a manifold
which contains S as a submanifold with dim S̃ = dim S +1. S̃ is called the denormal-
ization of S. By calculating the covariant derivative and the α-curvature tensor, we
obtain the relation of the α-geometric structures between S and S̃. At last, we use a
example to illustrate our conclusions.

2 The information geometric structures of the man-
ifold S̃

Parameterizing the elements of S̃ as ρ̃ by a coordinate system [β, τ ] = (β1, · · · , βn, τ)
and letting

l̃(α) :=





2
1− α

ρ̃
1−α

2 (α 6= 1)

ln ρ̃ (α = 1),

the components of the α-metric g̃(α) and the coefficients of the α-connection ∇̃(α) are
represented respectively by

g̃
(α)
ij = Tr(∂i l̃

(α)∂j l̃
(−α)),(2.1)

Γ̃(α)
ijk = Tr(∂i∂j l̃

(α)∂k l̃(−α)).(2.2)

We denote its natural basis by ∂̃i = ∂
∂βi

, ∂̃τ = ∂
∂τ and use µ, ν, λ, γ to denote the

subscripts of the natural basis, that is, µ, ν, λ, γ ∈ {1, · · · , n, n + 1}, while i, j, k, l ∈
{1, · · · , n}. For the case of commuting operators Fi, from (2.1), we see that

g̃µν = Tr(ρ̃∂̃µ ln ρ̃∂̃ν ln ρ̃).

By a calculation, we get

g̃ij = f(τ)gij , g̃iτ = 0, g̃ττ = f(τ)−1(∂τf(τ))2.

The Riemannian metric of S̃ and its inverse are given by

(2.3) G̃ =
(

f(τ)G 0
0 f(τ)−1(∂τf(τ))2

)
, G̃−1 =

(
f(τ)−1G−1 0

0 f(τ)(∂τf(τ))−2

)
.

The square of the arc length of S defined by ds2 = gijdβidβj . Thus, the square of
the arc length of S̃ is given by

ds̃2 = f(τ)ds2 + f(τ)−1(∂τf(τ))2dτ2.

Note that the volume element of S is given by

dV =
√

det(G)dβ1Λ · · ·Λdβn,
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we have the relation between the volume elements dV and dṼ

dṼ =
√

det(G̃)dβ1Λ · · ·ΛdβnΛdτ

= (f(τ))
n−1

2 ∂τf(τ)
√

det(G)dβ1Λ · · ·ΛdβnΛdτ

= dV (f(τ))
n−1

2 df(τ).

Proposition 1. The α-connection coefficients of ∇̃(α) for S̃ satisfy

Γ̃(α)
ij,k = f(τ)Γ(α)

ij,k, Γ̃(α)
ij,τ = −1 + α

2
∂τf(τ)gij ,

Γ̃(α)
iτ,k = Γ̃(α)

τi,k =
1− α

2
∂τf(τ)gik, Γ̃(α)

iτ,τ = Γ̃(α)
τi,τ = 0, Γ̃(α)

ττ,k = 0,(2.4)

Γ̃(α)
ττ,τ = −1 + α

2
f(τ)−2(∂τf(τ))3 + f(τ)−1∂τf(τ)∂τ∂τf(τ),

and

Γ̃(α)k
ij = f(τ)Γ(α)k

ij , Γ̃(α)τ
ij = −1 + α

2
f(τ)(∂τf(τ))−1gij ,

Γ̃(α)k
iτ = Γ̃(α)k

τi =
1− α

2
f(τ)−1∂τf(τ)δk

i , Γ̃(α)τ
iτ = Γ̃(α)τ

τi = 0, Γ̃(α)k
ττ = 0,(2.5)

Γ̃(α)τ
ττ = −1 + α

2
f(τ)−1∂τf(τ) + (∂τf(τ))−1∂τ∂τf(τ),

where the α-connection coefficients of ∇(α) for S satisfies

Γ(α)
ijk(β) =

1− α

2
∂i∂j∂k ln Z.

Proof. By (2.2) and notice that

∂̃i∂̃j l̃
(α) = f(τ)

1−α
2 ∂i∂j l

(α), ∂̃τ ∂̃i l̃
(α) =

1− α

2
f(τ)∂τf(τ)∂il

(α),

∂̃τ ∂̃τ l̃(α) = −1 + α

2
f(τ)−

3+α
2 (∂τf(τ))2ρ

1−α
2 + f(τ)−

1+α
2 ∂τ∂τf(τ)ρ

1−α
2 ,

we can obtain proposition 1.
These equations enable us to verify that the following relations hold for the co-

variant derivatives ∇ (on S) and ∇̃ (on S̃), respectively:

(2.6) ∇̃X̃ Ỹ = (∇XY )∼ − 1 + α

2
(∂τf(τ))−1 < X̃, Ỹ > ∂̃τ ,

(2.7) ∇̃X̃ ∂̃τ = ∇̃∂̃τ
X̃ =

1− α

2
f(τ)−1∂τf(τ)X̃,

(2.8) ∇̃∂̃τ
∂̃τ =

[
−1 + α

2
f(τ)−1∂τf(τ) + (∂τf(τ))−1∂τ∂τf(τ)

]
∂̃τ ,
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where X and Y are arbitrary vector fields on S, and (· · · )∼ denotes (̃· · · ).
From proposition 1, we can obtain the following

Theorem 1. S is (-1)-autoparallel in S̃.

Theorem 2. Let M be a submanifold of S and M̃ be its denormalization. For
every α ∈ R, the following conditions (i) and (ii) are equivalent.

(i) M is α-autoparallel in S.
(ii) M̃ is α-autoparallel in S̃.
Proof. Let ∇̃(α) and ∇(α) be the α-connections on S̃ and S as above. Noting that

every vector field on M̃ can be represented as hiX̃i +h0∂̃τ |M̃ by vector fields {Xi} on
M and functions {hi} and h0 on M , we see from (2.7) and (2.8) that condition (ii) is
equivalent to stating that ∇̃(α)

X̃
Ỹ ∈ T (M̃) for all X,Y ∈ T (M). On the other hand,

we have for all X,Y ∈ T (M),

∇̃(α)

X̃
Ỹ ∈ T (M̃) ⇔ (∇(α)

X Y )∼ ∈ T (M̃) ⇔ ∇(α)
X Y ∈ T (M),

where the first equivalence follows from (2.6) and the second one is obvious. Therefore,
(i) and (ii) are equivalent.

Remark 1. The result is Theorem 2.10 in [1] when f(τ) = τ .

Proposition 2. The components of the α-curvature tensor of S̃ are given by

R̃
(α)
ijkl = f(τ)R(α)

ijkl −
1− α2

4
f(τ)(gilgjk − gjlgik),

R̃
(α)
ijkτ = R̃

(α)
iτkτ = 0,

where the components of α-curvature tensor of S satisfy

R
(α)
ijkl =

1− α2

4
(∂k∂m∂i ln Z∂j∂l∂n ln Z − ∂k∂m∂j ln Z∂i∂l∂n ln Z)gmn.

Proof. Since

R̃
(α)
βγλµ = (∂̃γΓ̃(α)ν

βγ − ∂̃βΓ̃(α)ν
γλ )gνµ + (Γ̃(α)

γωµΓ̃(α)ω
βλ − Γ̃(α)

βωµΓ̃(α)ω
γλ ),

combining (2.3), (2.4) and (2.5), we obtain

R̃
(α)
ijkl = f(τ)R(α)

ijkl +
1− α2

4
f(τ)(gilgjk − gjlgik), R̃

(α)
iτkτ = 0,

R̃
(α)
ijkτ =

1 + α

2
∂τf(τ)(∂igjk − ∂jgik + Γ(α)

jkl − Γ(α)
ikj ).

From (2.2), we get

Γ(α)
ijk(β) = Tr[ρ(∂i∂j ln ρ)(∂k ln ρ)] +

1− α

2
Tr[ρ(∂i ln ρ)(∂j ln ρ)(∂k ln ρ)] =

1− α

2
∂i∂j∂k ln Z.
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On the other hand, from (2.1), we get

∂kgij = ∂k(Tr[ρ∂i ln ρ∂j ln ρ])
= Tr[ρ∂k ln ρ∂i ln ρ∂j ln ρ] + Tr[ρ∂k∂i ln ρ∂j ln ρ] + Tr[∂i ln ρρ∂k∂j ln ρ]
= ∂i∂j∂k ln Z.

From above we can get

R̃
(α)
ijkτ = 0

and

R
(α)
ijkl =

1− α2

4
(∂k∂m∂i ln Z∂j∂l∂n ln Z − ∂k∂m∂j ln Z∂i∂l∂n ln Z)gmn.

This finishes the proof of proposition 2.

Remark 2. Clearly manifold S and S̃ are ±1-flat manifolds.
By a direct calculation, we obtain the α-sectional curvatures and the α-scalar

curvature of S̃

K̃
(α)
ijij =

R̃
(α)
ijij

g̃iig̃jj − g̃ij g̃ji
= (f(τ))−1K

(α)
ijij −

1− α2

4
(f(τ))−1,(2.9)

and

R̃(α) = R̃
(α)
µνλγ g̃µν g̃λγ = f(τ)−1R(α) +

1− α2

4
f(τ)−1(n− n2).

When n = 2, from (2.9), we see that the α-Gaussian curvature of S̃ satisfies

K̃(α) =
f(τ)−1(1− α2)

4 det(G)2

∣∣∣∣∣∣

∂2
1 ln Z ∂3

1 ln Z ∂2
1∂2 ln Z

∂1∂2 ln Z ∂2
1∂2 ln Z ∂1∂

2
2 ln Z

∂2
2 ln Z ∂1∂

2
2 ln Z ∂3

2 ln Z

∣∣∣∣∣∣
− f(τ)−1(1− α2)

4
.

Remark 3. The result is the conclusion in [8] when α = 0.
Here, we will use an example to verify our conclusion above.
Example 1. Suppose that S = {ρ|ρ = Z−1 exp

[−∑2
i=1 βiFi

]}, and the matrices
Fi are given by

F1 =




0 0 0
1 1 0
1 1 0


 , F2 =




1 −1 0
0 0 0
−1 1 0


 .

Taking f(τ) = τ > 0, we get

S̃ = {ρ̃|ρ̃ = τZ−1 exp
[−

2∑

i=1

βiFi

]}.

An equilibrium density ρ ∈ S can be represented by

ρ =
1
Z

exp







−β2 β2 0
β1 −β1 0

β1 + β2 −β1 − β2 0





 ,
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and the partition functions of ρ is Z = exp[−β1]+exp[−β2]+1. Under the coordinate
system (β1, β2), the geometric metrics of S are given by

G = (gij) = (∂i∂j ln Z),

det(G) = ∂2
1 ln Z∂2

2 ln Z − (∂1∂2 ln Z)2 =
exp 2(β1 + β2)

(exp(β1) + exp(β2) + exp(β1 + β2))3
,

and

R
(α)
1212 = − 1− α2

4 det(G)

∣∣∣∣∣∣

∂2
1 ln Z ∂3

1 ln Z ∂2
1∂2 ln Z

∂1∂2 ln Z ∂2
1∂2 ln Z ∂1∂

2
2 ln Z

∂2
2 ln Z ∂1∂

2
2 ln Z ∂3

2 ln Z

∣∣∣∣∣∣
=

=
(1− α2) exp 2(β1 + β2)

4(exp(β1) + exp(β2) + exp(β1 + β2))3
,

K
(α)
1212 =

R
(α)
1212

det(G)
=

1− α2

4
, R(α) =

2
det(G)

R
(α)
1212 =

1− α2

2
.

Under the coordinate system (β1, β2, τ), we obtain the geometric metrics of S̃
corresponding to those of S:

G̃ =




−τ∂2
1 ln Z −τ∂1∂2 ln Z 0

−τ∂1∂2 ln Z −τ∂2
2 ln Z 0

0 0 τ−1


 =

(
τG 0
0 τ−1

)
,

and

R̃
(α)
1212 = τR

(α)
1212 −

1− α2

4
τ det(G) = 0,

R̃
(α)
1τ1τ = R̃

(α)
121τ = R̃

(α)
212τ = R̃

(α)
1τ2τ = R̃

(α)
2τ2τ = 0,

K̃
(α)
1212 = τ−1K

(α)
1212 −

1− α2

4
τ−1 = 0.

The scalar curvature of S̃ satisfies

R̃(α) =
τ−1(1− α2)
2 det(G)2

∣∣∣∣∣∣

∂2
1 ln Z ∂3

1 ln Z ∂2
1∂2 ln Z

∂1∂2 ln Z ∂2
1∂2 ln Z ∂1∂

2
2 ln Z

∂2
2 ln Z ∂1∂

2
2 ln Z ∂3

2 ln Z

∣∣∣∣∣∣
− τ−1(1− α2)

2
= 0.

3 The approximation of the equilibrium density

In this section, we firstly define a Kullback-Leibler divergence, which is different from
the general distance of two points in the manifold.

Definition 1. Let ρ̃ and σ̃ be two points in manifold S̃, the Kullback-Leibler
divergence between two states is defined by

D(ρ̃|σ̃) = Tr[ρ̃(ln ρ̃− ln σ̃)].(3.1)

So, we have the relation of the Kullback-Leibler divergences between S and S̃

D(ρ̃|σ̃) = f(τ)D(ρ|σ).(3.2)
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Definition 2. Let

M̃ =
{

σ̃|σ̃ = f(τ)Z−1
σ exp{−

r∑

j=1

θjEj}
}

(3.3)

be an r-dimensional manifold, where r ≤ n and Ej is related to Fi. M̃ is a submanifold
of S̃.

Clearly submanifold M̃ is a ±1-flat manifold, where θ = (θ1, · · · , θr) is the e–affine
coordinate system of M̃ .

Definition 3. For ρ̃ ∈ S̃, the projection onto M̃ is defined by

σ̃∗ =
∏

ρ̃ = arg min
ρ̃∈S̃

D(ρ̃|σ̃).(3.4)

So we have the following proposition.

Proposition 3. Suppose that the projection from a point ρ̃ in S̃ onto M̃ is σ∗.
Then σ∗ can be considered as a optimal approximation of the equilibrium density ρ̃ in
M̃ , and σ∗ is a solution of the following differential equation

− ∂

∂θi
ln Zσ = Tr[ρEi].(3.5)

Proof. From (3.1) and (3.2) we have

D(ρ̃|σ̃) = Tr[ρ̃(ln ρ̃− ln σ̃)] = f(τ)D(ρ|σ)

= f(τ)Tr[ρ(−
n∑

i=1

βiFi − ln Zρ +
r∑

j=1

θjEj + ln Zσ)]

= f(τ)
{
−

n∑

i=1

βi Tr[ρFi]− ln Zρ +
r∑

j=1

θj Tr[ρEj ] + ln Zσ

}
.

Since

∂D(ρ̃|σ̃(θ, τ))
∂θi

= −f(τ)
∂

∂θi
Tr[ρ ln σ] = f(τ)(Tr[ρEi] +

∂

∂θi
ln Zσ) = 0,

we obtain (3.5). This finishes the proof of Proposition 3.

Example 2. Let S be a 3-dimensional manifold and take

S̃ =
{

ρ̃ = f(τ)Z−1
ρ exp−

3∑

i=1

βiFi

}
=

{
ρ̃ = f(τ)ρ

}
,

where β = (β1, β2, β3) is the e-affine coordinate system of S, and the matrixes Fi are
given by

F1 =




1 0 0
0 0 0
0 0 0


 , F2 =




0 0 0
0 1 0
0 0 0


 , F3 =




0 0 0
0 0 0
0 0 1


 .
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Then submanifold M̃ of S̃ satisfies

M̃ =
{

σ̃ = f(τ)Z−1
σ exp−

2∑

j=1

θjEj

}
=

{
σ̃ = f(τ)σ

}
,

where θ = (θ1, θ2) is the e-affine coordinate system of M , and the matrixes Ej are
given by

E1 =




1 0 0
0 1 0
0 0 0


 , E2 =




0 0 0
0 0 0
0 0 1


 .

So the equilibrium density ρ̃ and σ̃ can be written as

ρ̃ =
f(τ)
Zρ(β)




exp{−β1} 0 0
0 exp{−β2} 0
0 0 exp{−β3}


 ,

and

σ̃ =
f(τ)
Zσ(θ)




exp{−θ1} 0 0
0 exp{−θ1} 0
0 0 exp{−θ2}


 ,

respectively.
From (3.5), we have

2 exp{−θ1}
2 exp{−θ1}+ exp{−θ2} =

exp{−β1}+ exp{−β2}
exp{−β1}+ exp{−β2}+ exp{−β3} ,

exp{−θ2}
2 exp{−θ1}+ exp{−θ2} =

exp{−β3}
exp{−β1}+ exp{−β2}+ exp{−β3} .

So we obtain the coordinates θi of the optimal approximation σ∗ of ρ̃ as

θ∗1 = − ln
exp{−β1}+ exp{−β2}

2
, θ∗2 = β3.

4 Conclusions

In this paper, we investigate the structures of the state space of the thermodynamic
parameters based upon the information geometric approach to the denormalization
S̃ of S. By calculating the covariant derivative and the α-curvature tensor, we ob-
tain the relation of the α-geometric structures between S and S̃. At last, we study
the approximation of the equilibrium density and use two examples to illustrate our
conclusions.
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