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Abstract. The paper is divided into two principal parts. In the first
one, we give the set of generalized inverses of a matrix A a structure of
a semigroup and study some algebraic properties like factorization and
commutativity. We also define an equivalence relation in order to estab-
lish an isomorphism between the quotient semigroup and the semigroup
of projectors on R(A). In the second part, we study a relation between
semigroups associated to equivalent matrices and establish a correspon-
dence between the set of matrices and the set of associated semigroups.
We also study some algebraic properties in this set like intersection and
partial order.
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1 Introduction

In the following, K represents the real or the complex field. Let A be an m×n matrix
over K. The generalized inverse, or the {1}−inverse of A is an n×m matrix X over K,
which satisfies the matrix equation AXA = A. If in addition X satisfies the equation
XAX = X, then X is said to be a reflexive generalized inverse or {1, 2}−inverse of
A. It is known that there are infinitely sets of {1}−inverses and {1, 2}−inverses of a
matrix A.

Many studies on generalized inverses and their applications have been done (see
[1], [2], [5]). Some of them are algebraic; like the sum (see [4]) and the reverse
order law of a product (see [7]). In some areas of binary matrices, the usage of the
generalized inverse of a matrix might provide results as well, like the CP property for
binary matrices (see [6]).

In this paper we will study two principal parts. In the first one, we will give
the set of {1}− inverses of a matrix A a structure of a semigroup and study some
algebraic properties like factorization and commutativity. To study the property
of factorization in these semigroups, we will use the Moore-Penrose inverse. We
will also define an equivalence relation in order to establish an isomorphism between
the quotient semigroup and the semigroup of projectors on R(A). The second part
concerns the relation between semigroups associated to equivalent matrices and the
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correspondence between the set Mm×n(K) and the set of the associated semigroups.
Some algebraic properties in this set will be treated; like the intersection of semi-
groups and isomorphisms. Also, ordering of sets in the real inner product space, is
a recent subject. In [3], this subject addressed as main result, and proved using the
Lorentz-Minkowski distance for ordering certain sets. We shall also follow this pattern
by using generalized inverses for ordering sets of the introduced semigroups by minus
partial order.

2 Preliminary notes

Definition 2.1. Let A be an m×n matrix over K. The Moore-Penrose inverse of A
denoted by A+ is the n×m matrix X over K which satisfies the four equations

(2.1) AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

For every matrix there exists only one Moore-Penrose inverse. If X is at least a
{1}− inverse of A, then AX and XA are projectors on R(A) and R(X) the range
spaces of A and X respectively and rank(AX) = rankA = rank(XA). For more
properties and remarks, see ([1]), ([5]).

Denote by A{1} and by A{1,2} the sets of all {1}− inverses and {1, 2}− inverses of
A respectively. We will denote by small letters the sub-matrices of a matrix X and by
I and 0 the identical and zero matrices or identical and zero sub-matrices. Lemmas
without proofs are either easy to proof or well known in the precedent references.

Lemma 2.1. Let A be an m× n matrix over K of rank r. Then

1) There exist non singular matrices P and Q such that A = Q−1

(
ar 0
0 0

)
P .

2) A+ = P−1

(
a−1

r 0
0 0

)
Q.

3) The elements of A{1} are of the form P−1

(
a−1

r e
f g

)
Q and the elements of

A{1,2} are of the form P−1

(
a−1

r e
f fare

)
Q.

The first assertion is an elementary lemma in linear algebra. The second one and
the third need only a direct verification in (2.1). For this purpose the proof was
omitted.
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3 Main results

3.1 Semigroup on A{1}

3.1.1 Factorization and commutativity

The main important point in the theorem below is factorization of A{1,2}. For this
purpose we introduce two classes of A{1}:

PA+A =
{

X ∈ A{1}/X = P−1

(
a−1

r x
0 0

)
Q

}

PAA+ =
{

X ∈ A{1}/X = P−1

(
a−1

r 0
x 0

)
Q

}
.

The notations PA+A and PAA+ are justified by the fact that these two classes are the
sets of fixed points under left and right multiplications by orthogonal projectors A+A
and AA+ . In fact, for any X ∈ A{1},

A+AX = X ⇒ X = P−1

(
a−1

r x
0 0

)
Q and XAA+ = X ⇒ X = P−1

(
a−1

r 0
x 0

)
Q.

Theorem 3.1. Let ∗ be a law on A{1} defined as follows: for any X, Y ∈ A{1};
X ∗ Y = XAY . Then

1) A{1} is a semigroup.
2) For any X, Y ∈ A{1} we have X ∗ Y ∈ A{1,2}

3) A{1,2} is an ideal of A{1}.
4) PAA+ ∗ PA+A = A{1,2} and PAA+ ∩ PA+A = {A+}.
5) For any X and Y in A{1} we have

X ∗ Y = Y ∗X ⇔ AX = AY and XA = Y A.

Proof. 1) A (XAY )A = (AXA)Y A = AY A = A. Then X ∗ Y = XAY ∈ A{1}.
The associativity of ∗ is obtained from the associativity of a product of matrices.
So A{1} is a semigroup. 2) Let X and Y be in A{1}. Since A (XAY )A = A and
(XAY )A (XAY ) = X (AY A) (XAY ) = X (AXA)Y = XAY , we obtain X ∗ Y =
XAY ∈ A{1,2}. 3) As A{1,2} ⊂ A{1}, then 3 is just a simple consequence of 2.
4) First, remark that PAA+ and PA+A are subsemigroups of A{1,2}. Let A =

Q−1

(
ar 0
0 0

)
P . For any Z = P−1

(
a−1

r x
y yarx

)
Q ∈ A{1,2} there exist Y =

P−1

(
a−1

r 0
y 0

)
Q ∈ PAA+ and X = P−1

(
a−1

r x
0 0

)
Q ∈ PA+A such that Y ∗X =

P−1

(
a−1

r 0
y 0

)(
ar 0
0 0

)(
a−1

r x
0 0

)
Q−1 = P−1

(
a−1

r x
y yarx

)
Q = Z. Con-

sequently, we have PAA+ ∗ PA+A = A{1,2}. However, by direct computation, we

fined that PA+A ∗ PAA+ = {A+}. For Z = p

(
a−1

r x
y yarx

)
Q−1 ∈ PAA+ ∩ PA+A

we have x = 0 and y = 0. Then Z = P

(
a−1

r 0
0 0

)
Q−1 = A+. Therefore

PAA+∩PA+A = {A+}. This assertion can be replaced by uniqueness of factorization of
elements of A{1,2}. 5) For any X and Y in A{1} we have XAY = Y AX ⇒ AXAY =
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AY AX ⇒ AY = AX and XAY = Y AX ⇒ XAY A = Y AXA ⇒ XA = Y A. Con-
versely, AY = AX ⇒ XAY = XAX and Y A = XA ⇒ Y AX = XAX. Hence we
have X ∗ Y = Y ∗X ⇔ AX = AY and XA = Y A. ¤

Note that we have not really commutativity on A{1}, but we have a kind of
commutativity modulo projectors.

It is easy to prove that the set of projectors of a vector space on a subspace is
a semigroup under ordinary composition. As many studies on projectors and their
properties have been done, we will exploit this to make properties of A{1} more easy.
This claim will be reached by defining an equivalence relation in A{1}, thus we will
have an isomorphism between the quotient semigroup of A{1} and the semigroup of
projectors on R(A). It will cause no confusion if we use the same letter to designate
a projector and its associated matrix.

Theorem 3.2. Let A ∈ Mm×n(K), Π be the semigroup of projectors of Km on
R (A). Then we have
1) For any P ∈ Π, there exists X ∈ A{1} such that AX = P .
2) There is an equivalence relation ∼ on A{1} such that under the quotient law of ∗,
A{1}
∼ is a semigroup isomorphic to Π.

Proof. 1) Let P ∈ Π and A− ∈ A{1}. As AA− is a projector on R (A), we have
AA−P = P and PA = A. Thus if we take X = A−P , we have AXA = AA−PA =
AA−A = A and AX = P which means that Π =

{
AX/X ∈ A{1}

}
.

2) Let ∼ be a relation in A{1} defined by X ∼ Y ⇔ AX = AY . Then it is
easy to check that ∼ is an equivalence relation in A{1}. Let χ be the canonical
map from A{1} on A{1}

∼ . Then for every χ(X), χ(Y ) ∈ A{1}
∼ , the quotient law of

∗ is defined by χ(X)χ (Y ) = χ (X ∗ Y ). It easy to show that A{1}
∼ is a semigroup

and χ is an homomorphism. It immediately follows that there exists a map ψ from
A{1}
∼ to Π defined by ψ(χ(X)) = AX. Now we check that ψ is an homomorphism.

Since A (XAY ) = (AXA) Y = AY , we obtain XAY ∼ Y . Then χ (XAY ) = χ(Y ).
Therefore

ψ (χ(X)χ(Y )) = ψ (χ (X ∗ Y )) = ψ (χ (XAY )) = ψ (χ(Y )) = AY = (AXA)Y =

= (AX) (AY ) = ψ (χ (X))ψ (χ(Y )) .

Now, since AX = AY , it follows that χ(X) = χ(Y ). We conclude that for any AX∈ Π
there is a unique χ(X) ∈ A{1}

∼ such that ψ(χ(X)) = AX which means that ψ is a
bijection. ¤

3.2 The set A{1} of semigroups

Denote by M
{1}
m×n(K) the set M

{1}
m×n(K) =

{
A{1}/A ∈ Mm×n(K)

}
.

In this subsection, we will establish a relation between Mm×n(K) and M
{1}
m×n(K)

and deduce some properties of M
{1}
m×n(K) like isomorphism of semigroups, intersection

of them and relation order. For this main, the following Lemma will be useful.

Lemma 3.1. [1], [5]. Let A and B be two equivalent matrices, such that B = Q−1AP .
Then, for every Y in B{1} there exists a unique X in A{1} such that Y = P−1XQ.
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3.2.1 Isomorphism between semigroups

Theorem 3.3. Let A and B be two equivalent matrices. Then
(
A{1}, ∗) and

(
B{1}, ∗)

are isomorphic.

Proof. By using the previous Lemma, we can define a map ϕ from A{1} on B{1} as
follows ϕ(X) = P−1XQ. Then ϕ−1 is the inverse map from B{1} on A{1} given by
ϕ−1(X) = PXQ−1. In addition, for every X and Y in A{1}, we have

ϕ(X ∗ Y ) = ϕ(XAY ) = P−1(XAY )Q = (P−1XQ)(Q−1AP )(P−1Y Q) =

= ϕ(X)Bϕ(Y ) = ϕ(X) ∗ ϕ(Y ).

Also, we have for every X and Y in B{1},

ϕ−1 (X ∗ Y ) = ϕ−1 (XBY ) = ϕ−1(X)Aϕ−1 (Y ) = ϕ−1(X) ∗ ϕ−1 (Y ) .

Then the map ϕ is an isomorphism. ¤

We remark that ϕ (A+) = P−1A+Q = B+ only if P and Q are orthogonal.

Lemma 3.2. [4] Let A and B be two matrices. Then the following statements are
equivalent:
a) rank(A) + rank(B −A) = rank(B).
b) Every {1}− inverse of B is a {1}− inverse of both A and B −A.
c) R (A) ∩R (B) = {0} and R (At) ∩R (Bt) = {0}.

Theorem 3.4. There is a one-to-one correspondence between Mm×n(K) and M
{1}
m×n(K)

maps 0 to Mn×m(K) and preserves isomorphisms between semigroups.

Proof. Let ψ be a map from Mm×n(K) onto M
{1}
m×n(K) defined for every A ∈ Mm×n(K)

by ψ(A) = A{1}. Since 0X0 = 0 for any X ∈ Mn×m(K), we get 0{1} = Mn×m(K)
. Thus ψ(0) = Mn×m(K). According to Lemma 3.2, if A{1} = B{1}, we have
rank(A) + rank(B − A) = rank(B) and rank(B) + rank(A − B) = rank(A). Thus
we have rank (A−B) = 0 = rank (B −A). Therefore A = B. Now, let A and B ∈
Mm×n(K) such that B = Q−1AP . According to Lemma 3.1 and Theorem 3.3 , we
have B{1} =

{
P−1XQ/X ∈ A{1}

}
= ϕ

(
A{1}

)
. Hence we have ψ(B) = ϕ(ψ(A)). ¤

3.2.2 Intersection of semigroups

Theorem 3.5. a) For every matrix A ∈ Mm×n(K) there exists a matrix
A′ ∈ Mm×n(K) such that A{1} ∩A′{1} 6= f¡ .

b) For any matrices A,B ∈ Mm×n (K) there exists an isomorphism ϕ from A{1} on
ϕ

(
A{1}

)
such that ϕ

(
A{1}

) ∩B{1} 6= f¡ .

Proof. a) Let rankA = r ≤ min (m,n). It is sufficient to prove that for A ∈ Mm×n(K)
with rank(A) = r, there exists a matrix A′ ∈ Mm×n(K) such that rank (A + A′) =
rank(A) + rank(A′) = min (m,n). Applying Lemma 3.2, we have every {1}− inverse
of (A + A′) is a {1}− inverse of both A and A′. Thus A{1} ∩A′{1} 6= f¡ . Let P and
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Q be two nonsingular matrices such that A = Q−1

(
Ir 0
0 0

)
P . Then it is sufficient

to take A′ = Q−1

(
0 0
0 w

)
P with w ∈ M(m−r)×(n−r)(K) and

rank(w) = min (m,n)− r.

b) Let rank(A) = r, rank(B) = s. According to 1, there exist matrices A′ and
B′ ∈ Mm×n(K) of ranks min (m,n)−r and min (m,n)−s such that rank (A + A′) =
rank(A) + rank(A′) = min (m,n) and rank (B + B′) = rank(B) + rank(B′) =
min (m,n). It follows that (A + A′){1} ⊂ A{1} ∩ A′{1}, (B + B′){1} ⊂ B{1} ∩ B′{1}.
Since A + A′, B + B′ have the same rank, they are equivalent. So, there exists
an isomorphism ϕ from A{1} on ϕ

(
A{1}

)
such that ϕ

(
(A + A′){1}

)
= (B + B′){1}.

Hence we have

ϕ
(
(A + A′){1}

)
⊂ ϕ

(
A{1} ∩A′{1}

)
= ϕ

(
A{1}

)
∩ ϕ

(
A′{1}

)

and ϕ
(
(A + A′){1}

)
⊂ B{1} ∩B′{1}. Finally, we have ϕ

(
A{1}

) ∩B{1} 6= f¡ . ¤

The natural question arises whether it is possible to conclude that for any matrices
A, B ∈ Mm×n(K) we have A{1} ∩ B{1} 6= f¡ . The answer is negative. In fact if we
take B = αA for a scalar α which is different of 1 and 0, then if X ∈ A{1} ∩ B{1},
we have αA = αAXαA = α2A. Thus α ∈ {0, 1} which contradicts our assumption.
Consequently we have A{1} ∩B{1} = f¡ .

3.2.3 Partial order in M
{1}
m×n (K)

Definition 3.1. ([5]) A minus partial order, denoted by ≺−, is defined as follows for
A, B ∈ Mm×n(K), then A ≺− B if rank(B) = rank(A) + rank (B −A).

Theorem 3.6. 1) The inclusion is a partial order in M
{a}
m×n(K) induced by the minus

order in the reverse order.
b) Let m0 = min (m,n). For any matrix A ∈ Mm×n(K) of rank r there exists a
sequence of matrices A = Ar ≺− Ar+1 ≺− .... ≺− Am0 in Mm×n (K) such that
rank (Ar) = rank (A) = r, rankAr+i = r + i for i = 1, ...m0 − r. Thus, there exists
a sequence A

{1}
m0 ⊂ · · · ⊂ A

{1}
r = A{1} and A

{1}
m0 is the last term.

Proof. a) For A, B ∈ Mm×n(K), if A ≺− B, then rank(B) = rank(A)+rank (B −A).
By Lemma 3.2 it follows that B{1} ⊂ A{1}. Hence we have the partial order ⊂ in
M
{1}
m×n(K). b) Let {v1, v2, ...vr} be a basis of R(A) and {vr+1, vr+2, ...vm} be such

together with the basis of R(A) form a basis for Km. Let {e1, e2, ...en} be a basis for
Kn such that Arej = Aej = vj for j = 1, ...r and Arej = 0 for j = r + 1, ...m
and for i = 1, ...m0 − r, Ar+iej = vj for j = 1, ...r + i and Ar+iej = 0 for
j = r + i + 1, ...m. In these bases the matrices A = Ar and Ar+i are of the form

A = Ar = Q−1

(
Ir 0
0 0

)
P , Ar+i = Q−1

(
Ir+i 0
0 0

)
P for i = 1, ...m0 − r. Then

we have rank (Ar) = rank(A) = r , and

rank (Ar+i) = rank (Ar) + i = r + i = rank(Ar) + rank (Ar+i −Ar) ,
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for i = 1, ...m0 − r. Thus A = Ar ≺− Ar+1 ≺− ..... ≺− Am0 . By a), we have
A
{1}
m0 ⊂ .... ⊂ A

{1}
r = A{1}. A

{1}
m0 is the last term because Am0 is of maximal rank. ¤

4 Conclusions

In the present paper we give the set of generalized inverses of a matrix a struc-
ture of a semigroup and factorize its elements to simple ones. Unfortunately, this
semigroup is not commutative. To get a nice structural result, we define an equiv-
alence relation and we obtain an isomorphism between the quotient semigroup and
the semigroup of projectors. Furthermore we establish a one-to-one correspondence
between the set of matrices and the set of associated semigroups. This correspondence
preserves isomorphisms between semigroups and maps the zero matrix ( which is the
zero of the additive group of matrices) into the entire set of matrices ( which is the
unity related to intersection of sets ). Finally, we have proved that for any matrix,
there exists a sequence of semigroups ordered by inclusion.
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