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Abstract. The object of this paper is to study α-Kenmotsu manifolds
which can be derived from almost contact Riemannian manifolds satis-
fying some certain conditions. We first examine the generalized recur-
rent α-Kenmotsu manifolds, and next we give some relations about Ricci
semi-symmetric and D-conformal curvature tensors. We show that Ricci
semi-symmetric α-Kenmotsu manifolds are also Einstein manifolds. Fur-
thermore, we prove that the scalar curvature of α-Kenmotsu manifolds
with η-parallel Ricci tensors is constant. We conclude the paper with an
example on α-Kenmotsu manifolds.
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1 Introduction

A (2n+1)-dimensional differentiable manifold M of class C∞ is said to have an almost
contact structure if the structural group of its tangent bundle reduces to U(n) × 1,
(see [2], [19]) equivalently an almost contact structure is given by a triple (φ, ξ, η)
satisfying certain conditions (see Section 2). Many different types of almost contact
structures are defined in the literature (cosymplectic, almost cosymplectic, Sasakian,
Quassi Sasakian, α-Kenmotsu, almost α-Kenmotsu,..., [12], [21]).

The main purpose of this paper is to investigate the class of almost contact metric
manifolds which are called α-Kenmotsu manifolds. These manifolds appear for the
first time in (see [9]), where they have been locally classified. The author characterized
the warped product space by tensor equations.

In Section 1, we give some basic definitions on Riemannian manifolds. According
to these definitions, we introduce almost contact structure and α-Kenmotsu manifolds
for n-dimension in Section 2. In Section 3, we study generalized recurrent α-Kenmotsu
manifolds and we prove some theorems about the scalar curvature of the manifolds.
In Section 4, we consider the Ricci semi-symmetric condition and show that Ricci
semi-symmetric α-Kenmotsu manifolds are Einstein manifolds too. In Section 5, we
deal with α-Kenmotsu manifolds whose D-conformal curvature tensor is irrotational.
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In Section 6, we examine α-Kenmotsu manifold with η-parallel Ricci tensor. We
prove that α-Kenmotsu manifolds with η-parallel Ricci tensors have constant scalar
curvatures. Finally, in Section 7 we construct an illustrating example on α-Kenmotsu
manifolds.

2 Preliminaries

Let (M, g) be an n-dimensional Riemannian manifold. We denote by ∇ the covariant
differentiation with respect to the Riemannian metric g. Then we have

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

The Riemannian curvature tensor and the Ricci tensor of M are defined by

R(X, Y, Z, W ) = g (R(X, Y )Z,W ) ,

and
S(X, Y ) = trace {Z → R(X, Z)Y } ,

respectively. Locally, the Ricci tensor is also given by

S(X, Y ) =
n∑

i=1

R(X, Ei, Y, Ei),

where {E1, E2, ..., En} is a local orthonormal frame and X,Y, Z,W are vector fields
on M .

The Ricci operator Q is a tensor field of type (1, 1) on M defined by

g(QX, Y ) = S(X,Y ),

for all vector fields on M .
A Riemannian manifold (M, g) is called a generalized recurrent Riemannian man-

ifold (see [3]) if the curvature tensor R satisfies the following condition

(2.1) (∇XR)(Y, Z)W = ψ(X)R(Y,Z)W + β(X) [g(Z, W )Y − g(Y, W )Z] ,

where ψ and β are two 1-forms, β is non-zero and these are defined by

(2.2) ψ(X) = g(X, A), β(X) = g(X, B),

where A, B are vector fields associated with 1-forms α and β, respectively and ∇ is
the Riemannian connection of g.

A Riemannian manifold (M, g) is called generalized Ricci recurrent (see [3]) if its
Ricci tensor S satisfies the following condition

(2.3) (∇XS)(Y, Z) = ψ(X)S(Y, Z) + (n− 1)β(X)g(Y, Z),

where α and β are defined as in (2.2).
A Riemannian manifold (M, g) is called generalized concircular recurrent if its

concircular curvature tensor C (see [13])

(2.4) C(X,Y )Z = R(X,Y )Z − τ

n(n− 1)
(g(Y, Z)X − g(X, Z)Y ),
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satisfies the following condition

(2.5) (∇XC)(Y, Z)W = ψ(X)C(Y, Z)W + β(X)[g(Z, W )Y − g(Y, W )Z],

(see [13]), where ψ and β are defined as in (2.2) and τ is the scalar curvature of (M, g).

3 α-Kenmotsu manifolds

Let M be a real n-dimensional C∞ manifold and χ(M) the Lie algebra of C∞ vector
fields on M. An almost contact structure on M is defined by a (1, 1)-tensor field φ, a
vector field ξ and a 1-form η on M such that for any point p ∈ M we have

(3.1) ηp(ξp) = 1, φ2
p = −I + ηp ⊗ ξp,

which implies

(3.2) φp(ξp) = 0, ηp ◦ φp = 0 rank(φp) = n− 1,

where I denotes the identity transformation of the tangent space TpM at the point
of p. Manifolds equipped with an almost contact structure are called almost contact
manifolds. A Riemannian manifold M with metric tensor g and with a triple (φ, ξ, η)
such that

(3.3) g(φX, φY ) = g(X,Y )− η (X) η (Y ) ,

and

(3.4) g(ξ,X) = η(X),

where X, Y ∈ χ(M), is an almost contact metric manifold. Then M is said to have a
(φ, ξ, η, g)-structure.

An almost contact metric manifold M is said to be almost α-Kenmotsu if dη = 0
and dΦ = 2αη ∧Φ, α being a non-zero real constant where the 2-form Φ is defined as

Φ(X, Y ) = g(φX, Y ).

We have known that an almost contact metric manifold (M,φ, ξ, η, g) is said to be
normal if the Nijenhuis torsion

Nφ(X, Y ) = [φX, φY ]− φ[φX, Y ]− φ[X, φY ] + φ2[X, Y ] + 2dη(X,Y )ξ,

vanishes for any X,Y ∈ χ(M). Remarking that a normal almost α-Kenmotsu mani-
fold is said to be α-Kenmotsu manifold (α 6= 0), (see [12]).

Moreover, if the manifold M satisfies the following relations

(3.5) (5Xφ)Y = −α [g(X, φY )ξ + η (Y )φX] ,

and

(3.6) ∇Xξ = −αφ2X,
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then (Mn, φ, ξ, η, g) is called an α-Kenmotsu manifold (see [2], [12]), where 5 denotes
the Riemannian connection of g.

On an α-Kenmotsu manifold M , the following relations are held

S(X, ξ) = −α2(n− 1)η(X),(3.7)
R(ξ,X)Y = α2 [−g(X,Y )ξ + η(Y )X](3.8)
R(X,Y )ξ = α2 [η(X)Y − η(Y )X] ,(3.9)

g(R(ξ, X)Y, ξ) = α2 [−g(X,Y ) + η(X)η(Y )] ,(3.10)
R(ξ,X)ξ = α2 [X − η(X)ξ] = −α2φ2X,(3.11)

for any X, Y ∈ χ(M).
Since g(QX, Y ) = S(X, Y ), we have

S(φX, φY ) = g(QφX, φY ),

where Q is the Ricci operator.
Using the properties g(X, φY ) = −g(φX, Y ), Qφ = φQ, (3.1) and (3.7), we obtain

(3.12) S(φX, φY ) = S(X, Y ) + α2(n− 1)η(X)η(Y ).

Also, we have

(3.13) (∇Xη)(Y ) = α [g(X, Y )− η(X)η(Y )] .

4 Generalized recurrent α-Kenmotsu manifolds

In this section, we give some theorems about generalized recurrent α-Kenmotsu man-
ifolds. At first, we give the following theorems

Theorem 4.1. If M is a generalized recurrent α-Kenmotsu manifold, then α2ψ − β
is everywhere zero.

Proof. Assume that M is a generalized recurrent α-Kenmotsu manifold. Then the
curvature tensor R of M satisfies the condition (2.1) for any X,Y, Z, W ∈ χ(M).
Taking Y = W = ξ in (2.1), we have

(4.1) (∇XR)(ξ, Z)ξ = ψ(X)R(ξ, Z)ξ + β(X)[g(Z, ξ)ξ − g(ξ, ξ)Z].

On the other hand, it is well-known that

(∇XR)(ξ, Z)ξ = ∇XR(ξ, Z)ξ −R(∇Xξ, Z)ξ(4.2)
−R(ξ,∇XZ)ξ −R(ξ, Z)∇Xξ.

So using (3.8), (3.9) and (3.11), the equation (4.2) can be written as

(∇XR)(ξ, Z)ξ = 0.

From the left hand side of the equation (4.1) and using (3.11), (3.4), we get
[
α2ψ(X)− β(X)

]
[η(Z)ξ − Z] = 0.
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Remarking that the equality η(Z)ξ−Z = 0 does not hold for an α-Kenmotsu manifold.
So we obtain

α2ψ(X)− β(X) = 0,

for all X ∈ χ(M). Since the equation α2ψ(X) − β(X) = 0 is independent from the
choice of the vector field X, we have α2ψ − β = 0 on M . ¤

Theorem 4.2. If M is a generalized Ricci-recurrent α-Kenmotsu manifold, then
α2ψ = β.

Proof. Assume that M is a generalized Ricci-recurrent α-Kenmotsu manifold. Then
the Ricci tensor S of M satisfies the condition (2.3) for any X, Y, Z ∈ χ(M). Now,
putting Y = Z = ξ in (2.3), we obtain

(4.3) (∇XS)(ξ, ξ) = −α2(n− 1)ψ(X) + (n− 1)β(X).

On the other hand, it is known that

(4.4) (∇XS)(ξ, ξ) = 0.

By using (4.4) in (4.3), we get

(4.5) −α2(n− 1)ψ(X) + (n− 1)β(X) = 0.

Since the equation (n− 1)
[−α2ψ(X) + β(X)

]
= 0 is independent from the choice of

the vector field X, we obtain −α2ψ + β = 0 on M . This completes the proof of the
theorem. ¤

In order to find the scalar curvature of the manifold M, we have the following
theorems

Theorem 4.3. Let M be a generalized recurrent α-Kenmotsu manifold. Then the
scalar curvature τ of M satisfies the below condition

τη(A) = (1− n)
[
nη(B) + 2α2η(A)

]
.

Proof. Suppose that M is a generalized recurrent α-Kenmotsu manifold. So by the
using of second Bianchi identity, we get

(4.6)
ψ(X)R(Y,Z)W + β(X)[g(Z,W )Y − g(Y, W )Z]
+ψ{Y )R{Z, X)W + β(Y )[g(X, W )Z − g(Z, W )X]
+ψ(Z)R(X, Y )W + β(Z)[g(Y, W )X − g(X, W )Y ] = 0.

By a contraction of (4.6) with respect to Y , we have

(4.7)
ψ(X)S(Z, W ) + nβ(X)g(Z, W ) + R(Z,X, W,A)
β(Z)g(X, W )− β(X)g(Z, W )
−ψ(Z)S(X,W )− nβ(Z)g(X,W ) = 0.

Contracting (4.7) over Z and W , we get

(4.8) τψ(X) + n(n− 1)β(X)− 2S(X,A) = 0.

Putting X = ξ in (4.8) and using (2.2) and (3.7), we obtain

(4.9) τη(A) + n(n− 1)η(B) + 2α2 (n− 1) η(A) = 0.

From the equation (4.9), we have the desired result. ¤
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Theorem 4.4. Let M be a generalized concircular recurrent α-Kenmotsu manifold.
Then the following relation

[(
α2 +

τ

n(n− 1)

)
ψ(X)− β(X)− X [τ ]

n(n− 1)

]
= 0,

holds for every vector field X on M , where X[τ ] denote the derivative of τ with respect
to the vector field X.

Proof. Suppose that M is a generalized concircular recurrent α-Kenmotsu manifold.
Then the concircular curvature tensor C of M satisfies the condition (2.5) for all
X, Y, Z, W ∈ χ(M). Taking Y = W = ξ in (2.5), we get

(4.10) (∇XC)(ξ, Z)ξ = a(X)C(ξ, Z)ξ + β(X)[g(Z, ξ)ξ − g(ξ, ξ)Z].

On the other hand, from the definition of covariant derivative we have

(∇XC)(ξ, Z)ξ = ∇XC(ξ, Z)ξ − C(∇Xξ, Z)ξ(4.11)
−C (ξ,∇XZ) ξ − C (ξ, Z)∇Xξ.

So using (2.4) and (3.8), the equation (4.11) can be written as follows

(∇XC)(ξ, Z)ξ = ∇X

[(
α2 +

τ

n(n− 1)

)
(Z − η(Z)ξ)

]

−
[
α

(
α2 +

τ

n(n− 1)

)]
(η(X)η(Z)ξ − η (Z)X)

−
[(

α2 +
τ

n(n− 1)

)]
(∇XZ − η(∇XZ)ξ)

−
[
α

(
α2 +

τ

n(n− 1)

)]
(η(Z)η(X)ξ − g (X, Z) ξ) .

Hence, we obtain

(4.12) (∇XC)(ξ, Z)ξ =
1

n(n− 1)
X [τ ] (Z − η(Z)ξ) .

On the other hand, by using (4.12), the equation (4.10) can be written as

ψ(X)C(ξ, Z)ξ + β(X) (η(Z)ξ − Z)

= (Z − η(Z)ξ)
([(

α2 +
τ

n(n− 1)

)
ψ(X)− β(X)

])
.(4.13)

So from the equation (4.12) and (4.13), we get

(4.14)
[(

α2 +
τ

n(n− 1)

)
ψ(X)− β(X)− X [τ ]

n(n− 1)

]
(Z − η(Z)ξ) = 0.

Since the equality Z−η(Z)ξ = 0 does not hold, the equation (4.14) clearly completes
the proof. ¤
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5 Ricci semi-symmetric α-Kenmotsu manifolds

In this section, we suppose that n-dimensional α-Kenmotsu manifolds which satisfy
the following condition

(5.1) (R(X, Y ) · S)(Z, U) = 0.

So we have

(R(X, Y ) · S)(Z,U) = R(X, Y )S(Z, U)− S(R(X, Y )Z, U)− S(Z,R(X, Y )U) = 0,

for any X, Y, Z and U ∈ χ(M). Taking X = ξ and Z = ξ in (5.1), we get

S(Y, U) = −α2(n− 1)g(Y,U).

by using (3.8) and (3.11). Hence, we can give the following theorem

Theorem 5.1. A Ricci semi-symmetric α-Kenmotsu manifold is an Einstein mani-
fold.

In a similar, if (R(X,Y ) ·R)(Z, U) = 0, we obtain

S(Y, U) = (−α2n + 1)g(Y,U),

for any X,Y, Z and U ∈ χ(M). It is important to note that R · R = 0 ⊂ R · S = 0.
Since R ·R = 0 implies R · S = 0, we can state the following corollary

Corollary 5.1. A semi-symmetric α-Kenmotsu manifold is an Einstein manifold.

6 D-conformal curvature tensor on α-Kenmotsu manifolds

In this section, we give definitions related to the D-conformal curvature tensor

Definition 6.1. The D-conformal curvature tensor B on a Riemannian manifold M
(n > 4) is defined as

B(X, Y )Z = R(X,Y )Z +
1

n− 3
[S(X,Z)Y − S(Y, Z)X + g(X,Z)QY

−g(Y,Z)QX − S(X, Z)η(Y )ξ + S(Y,Z)η(X)ξ
−η(X)η(Z)QY + η(Y )η(Z)QX]

− (k − 2)
(n− 3)

[g(X,Z)Y − g(Y, Z)X](6.1)

+
k

(n− 3)
[g(X,Z)η(Y )ξ − g(Y,Z)η(Z)ξX,

+η(X)η(Z)Y − η(Y )η(Z)]

where k =
τ + 2(n− 1)

(n− 2)
and τ is the scalar curvature of the manifold M.
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Definition 6.2. The rotation (curl) of the D-conformal curvature tensor B on a
Riemannian manifold is given by

RotB = (∇V B)(X,Y, Z) + (∇XB)(V, Y, Z)(6.2)
+(∇Y B)(V, Y, Z)− (∇ZB)(X,Y, V ).

By virtue of second Bianchi identity

(6.3) (∇V B)(X, Y )Z) + (∇XB)(Y, V )Z) + (∇Y B)(V,X)Z) = 0,

(6.2) reduces to

(6.4) curl B = −(∇ZB)(X, Y )V.

If the D-conformal curvature tensor is irrotational then curl B = 0 and we have

(∇ZB)(X,Y )V = 0,

which implies

(6.5) ∇Z {B(X,Y )V } = B(∇ZX,Y )V + B(X,∇ZY )V + B(X,Y )∇ZV.

Putting V = ξ in (6.5), we get

(6.6) ∇Z {B(X,Y )ξ} = B(∇ZX,Y )ξ + B(X,∇ZY )ξ + B(X, Y )∇Zξ.

So we can give the following lemmas

Lemma 6.1. The D-conformal curvature tensor B on α-Kenmotsu manifolds satis-
fies the following relation

(6.7) B(X, Y )ξ = λ [η(X)Y − η(Y )X] ,

where λ = −2
(α2 − 1)
(n− 3)

.

Proof. Using (3.7) and (3.9) in (6.1), we obtain (6.7). ¤

Lemma 6.2. If the D-conformal curvature tensor B on α-Kenmotsu manifolds is
irrotational, then the D-conformal curvature tensor B is given by

(6.8) B(X, Y )Z = λ [g(X, Z)Y − g(Y, Z)X] .

Proof. Using (6.7) and (3.6) in (6.6), we have

∇Z (λ [η(X)Y − η(Y )X]) = λ [η(X)∇ZY − η(∇ZY )X]
+λ [η(∇ZX)Y − η(Y )∇ZX]
+α [B(X, Y )(Z − η(Z)ξ)] .

We simplify the above equation, we get (6.8). ¤

Now, we can state the following theorem in order to find the scalar curvature of
the manifold M
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Theorem 6.1. If the D-conformal curvature tensor B on α-Kenmotsu manifolds is
irrotational, then the scalar curvature of M is given by

(6.9) τ = − [α(n− 1)]2 − n2 + 1,

where τ is the scalar curvature of the manifold M.

Proof. By using the definition of the D-conformal curvature tensor B and (6.8), we
get
(6.10)
R(X,Y )Z = λ [g(X, Z)Y − g(Y, Z)X]− 1

n−3 [S(X, Z)Y − S(Y,Z)X
+g(X, Z)QY − g(Y, Z)QX − S(X, Z)η(Y )ξ
+S(Y, Z)η(X)ξ − η(X)η(Z)QY + η(Y )η(Z)QX]
+ (k−2)

(n−3) [g(X, Z)Y − g(Y, Z)X]
− k

(n−3) [g(X, Z)η(Y )ξ − g(Y,Z)η(Z)ξ + η(X)η(Z)Y − η(Y )η(Z)X] .

Let {E1, E2, ..., En−1, ξ} be an orthonormal basis of the tangent space at any point.
First, we apply inner product with any vector field W both two sides. Then the sum
for 1 ≤ i ≤ n of the relation (6.10) with X = W = Ei, yields

(6.11)

(
λ(1− n) +

τ

n− 3
+

(k − 2)(1− n)
n− 3

+
k

n− 3

)
g(Y,Z)

−
(

2α2(n− 1) + τ + k(2− n)
n− 3

)
η(Y )η(Z) = 0.

By a contraction of (6.11) with respect to Y and Z, we have

τ = λn(n− 3) + (k − 2)n + k

(
n

1− n

)
− k

(
2− n

1− n

)
+ 2α2.

Simplifying the above equation, the proof of the theorem is clear. ¤

7 α-Kenmotsu manifolds with η-parallel Ricci tensor

In this section, we examine the notion of Ricci η-parallelity for an α-Kenmotsu man-
ifold. At first, we give the definition of η-parallel Ricci tensor

Definition 7.1. The Ricci tensor S of an α-Kenmotsu manifold M is called η-parallel,
if it satisfies

(7.1) (∇XS)(φY, φZ) = 0, for all X,Y, Z ∈ χ(M).

Let us consider an n-dimensional α-Kenmotsu manifold M with η-parallel Ricci
tensor. Then we have

(7.2) (∇XS)(φY, φZ) = ∇XS(φY, φZ)− S(∇XφY, φZ)− S(φY,∇XφZ).

Using (3.5), (3.7), (3.12) and (3.2) in (7.2), we obtain

(∇XS)(φY, φZ) = ∇XS(Y,Z) + α2(n− 1) [η(Z)∇Xη(Y ) + η(Y )∇Xη(Z)]
+αη(Y )

[
S(X, Z) + α2(n− 1)η(X)η(Z)

]

+αη(Z)
[
S(Y, X) + α2(n− 1)η(X)η(Y )

]− S(∇XY, Z)(7.3)

−S(Y,∇XZ)− α2(n− 1) [η(Z)η(∇XY ) + η(Y )η(∇XZ)] .
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Also, we have

(7.4) (∇Xη)Y = ∇Xη(Y )− η(∇XY ),

and

(7.5) ∇XS(Y, Z) = (∇XS)(Y, Z) + S(∇XY, φZ) + S(Y,∇XZ).

Using (7.4), (7.5) and (3.13), the relation (7.3) reduces to

(∇XS)(φY, φZ) = (∇XS)(Y,Z) + α3(n− 1) [η(Z)g(X, Y ) + η(Y )g(X,Z)]
+α [η(Z)S(Y, X) + η(Y )S(X,Z)] .(7.6)

Then using (7.1) in (7.6), we obtain

(∇XS)(Y, Z) = −α3(n− 1) [η(Z)g(X,Y ) + η(Y )g(X, Z)](7.7)
−α [η(Z)S(Y, X) + η(Y )S(X,Z)] .

Hence, we can give the following proposition

Proposition 7.1. An α-Kenmotsu manifold M has η-parallel Ricci tensor if and
only if the above equation (7.7) holds.

Now, let {E1, E2, ..., En−1, ξ} be an orthonormal basis of the tangent space at any
point for i = 1, 2, ..., n. Taking Y = Z = Ei in (7.7) and then taking summation over
the index i, we get

n∑

i=1

(∇XS)(Ei, Ei) = −α3(n− 1)
n∑

i=1

η(Ei)g(X, Ei) + η(Ei)g(X, Ei)

−α

n∑

i=1

η(Ei)S(Ei, X) + η(Ei)S(X, Ei)

= −2α3(n− 1)η(X) + 2α3(n− 1)η(X)

So we have dτ(X) = 0, which implies τ is constant, where τ is the scalar curvature
of the manifold M. Thus we can give the following theorem

Theorem 7.1. If an α-Kenmotsu manifold M has η-parallel Ricci tensor, then the
scalar curvature is constant.

8 Example

We consider the 3-dimensional manifold M3 =
{
(x, y, z) ∈ R3

}
, where (x, y, z) are

the standard coordinates in R3. The vector fields are

e1 = f1(z)
∂

∂x
+ f2(z)

∂

∂y
, e2 = −f2(z)

∂

∂x
+ f1(z)

∂

∂y
, e3 =

∂

∂z
,

where f1, f2 are given by f1(z) = c2e
−αz, f2(z) = c1e

−αz, with c2
1 + c2

2 6= 0, α 6= 0
for constants c1, c2 and α. It is obvious that {e1, e2, e3} are linearly independent at
each point of M3. Let g be the Riemannian metric defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1, g(e1, e2) = g(e1, e3) = g(e2, e3) = 0
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and given by the tensor product g = (f2
1 + f2

2 )−1(dx ⊗ dx + dy ⊗ dy) + dz ⊗ dz.
Let η be the 1-form defined by η(X) = g(X, e3) for any vector field X on M3 and φ
be the (1, 1) tensor field defined by φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0. Then using
linearity of g and φ, we have

φ2X = −X + η(X)e3, η(e3) = 1, g(φX, φY ) = g(X, Y )− η(X)η(Y ),

for any vector fields on M3.
Let ∇ be the Levi-Civita connection with respect to the metric g. Then we get

[e1,e3] = αe1, [e2,e3] = αe2, [e1,e2] = 0.

Using Koszul’s formula, the Riemannian connection ∇ of the metric g is given by

2g(∇XY,Z) = Xg(Y, Z) + Y g(Z, X)− Zg(X, Y )
−g(X, [Y, Z])− g(Y, [X, Z])− g(Z, [X, Y ]).

Koszul’s formula yields

∇e1e1 = −αe3, ∇e1e2 = −e3, ∇e1e3 = αe1,
∇e2e1 = −e3, ∇e2e2 = −αe3, ∇e2e3 = αe2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

Thus it can be easily seen that (M3, φ, ξ, η, g) is an α-Kenmotsu manifold. Hence,
one can easily obtain by simple calculation that the curvature tensor components are
as follows

R(e1, e2)e1 = α(αe2 − e1), R(e1, e2)e2 = α(e2 − αe1),
R(e1, e2)e3 = 0, R(e1, e3)e1 = α2e3,
R(e1, e3)e2 = αe3, R(e1, e3)e3 = −α2e1,
R(e2, e3)e1 = αe3, R(e2, e3)e2 = α2e3,
R(e2, e3)e3 = −α2e2.
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