A new type of difference sequence spaces

Vakeel A. Khan

Abstract. In this article we introduce a new sequence space denoted by $m(\Delta_v^u, \phi, p)$. We give some topological properties and inclusion relations on this space. The results herein proved are analogous to those from [1].

M.S.C. 2000: 40C05, 46A45.

Key words: Difference sequence; solid spaces; symmetric space.

1. Introduction

Let ℓ^0 be the set of all complex sequences and l_{∞}, c and c_0 be the sets of all bounded, convergent and null sequences $x = (x_k)$ with complex terms, respectively, normed by

$$||x||_{\infty} = \sup_{k} |x_{k}|, \text{ where } k \in \mathbb{N} = \{1, 2, \cdots\}.$$

A sequence space X with linear topology is called a K-space if each of the maps $P_k: X \to \mathbb{C}$ defined by $P_k(x) = x_k$ is continuous for $k = 1, 2, \cdots$. A K-space X is called a *BK*-space provided X is a Banach space.

The idea of difference sequence space was introduced by Kizmaz [12]. In 1981, Kizmaz [12] defined the sequence spaces:

$$l_{\infty}(\triangle) = \{x = \{x_k\} \in \ell^0 : (\triangle x_k) \in l_{\infty}\},\$$
$$c(\triangle) = \{x = \{x_k\} \in \ell^0 : (\triangle x_k) \in c\},\$$

and

$$c_0(\triangle) = \{ x = \{ x_k \} \in \ell^0 : (\triangle x_k) \in c_0 \},\$$

where $\Delta x = (x_k - x_{k+1})$. These are Banach spaces with the norm

$$||x||_{\triangle} = |x_1| + ||\Delta x||_{\infty}.$$

Et and Colak [5] generalized the above sequence spaces to the sequence spaces

$$X(\triangle^r) = \{x = \{x_k\} \in \ell^0 : \triangle^r x_k \in X\},\$$

for $X = l_{\infty}$, c and c_0 , where $r \in \mathbb{N}$,

$$\triangle^0 x = (x_k), \quad \triangle x = (x_k - x_{k+1}), \quad \triangle^r x = (\triangle^r x_k - \triangle^r x_{k+1})$$

Applied Sciences, Vol.12, 2010, pp. 102-108.

[©] Balkan Society of Geometers, Geometry Balkan Press 2010.

and so that

$$\triangle^r x_k = \sum_{i=0}^r (-1)^i \begin{bmatrix} r\\ i \end{bmatrix} \quad x_{k+i}.$$

Difference sequence spaces have been studied by Colak and Et [2], Et [4], Et and Esi [6], Vakeel A. Khan [8,9,10,11] and many others.

Let $X, Y \subset \ell^0$. Then we shall write

$$M(X,Y) = \bigcap_{x \in X} \quad x^{-1} * Y = \{a \in \ell^0 : ax \in Y \text{ for all } x \in X\}.$$

The set

$$X^{\alpha} = M(X, l_1)$$

is called Köthe - Toeplitz dual space or α - dual of X(see [16]).

Let X be a sequence space. Then X is called

(i) solid (or normal), if $(\alpha_k x_k) \in X$, whenever $(x_k) \in X$ for all sequences of scalars (α_k) with $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$.

(ii) symmetric, if $(x_k) \in X$ implies $(x_{\pi(k)}) \in X$, where $\pi(k)$ is a permutation of \mathbb{N} . (iii) perfect, if $X = X^{\alpha\alpha}$.

(iv) sequence algebra, if $x.y \in X$, whenever $x, y \in X$.

It is well known that if X is perfect then X is normal (see [7]).

Let \mathcal{C} denote the space whose elements are finite sets of distinct positive integers. Given any element σ of \mathcal{C} , we denote by $c(\sigma)$ the sequence $\{c_n(\sigma)\}$ which is such that $c_n(\sigma) = 1$ if $n \in \sigma, c_n(\sigma) = 0$ otherwise. Further,

$$\mathcal{C}_s = \left\{ \sigma \in \mathcal{C} : \sum_{n=1}^{\infty} c_n(\sigma) \le s \right\} (cf[13]),$$

the set of those σ whose support has cardinality at most s, and

$$\Phi = \left\{ \phi = \{\phi_k\} \in \ell^0 : \phi_1 > 0, \Delta \phi_k \ge 0 \text{ and } \Delta \left(\frac{\phi_k}{k}\right) \le 0 \quad (k = 1, 2, \ldots) \right\},$$

where $\Delta \phi_k = \phi_k - \phi_{k-1}$; and ℓ^0 is the set of all real sequences.

For $\phi \in \Phi$, we define the following sequence space, introduce in [14],

$$m(\phi) = \left\{ x = \{x_k\} \in \ell^0 : \sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \left(\frac{1}{\phi_s} \sum_{k \in \sigma} |x_k| \right) < \infty \right\}.$$

Recently the space $m(\phi)$ was extended to $m(\phi, p)$ by Tripathy and Sen [15] as follows:

$$m(\phi, p) := \left\{ x = \{x_k\} \in \ell^0 : \sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \sup_{\phi_s} \frac{1}{\phi_s} \sum_{k \in \sigma} |x_k|^p < \infty \right\}.$$

It is easy to see that:

$$||x||_{m(\phi,p)} = \sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \left(\frac{1}{\phi_s} \sum_{k \in \sigma} |x_k|^p \right)^{\frac{1}{p}}.$$

Remark 1. The space $m(\phi, p)$ is a Banach space with the norm

$$\|x\|_{m(\phi,p)} = \sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \left(\frac{1}{\phi_s} \sum_{k \in \sigma} |x_k|^p\right)^{\frac{1}{p}}.$$

Remark 2. As in [14], we have

(i) If $\phi_n = 1$ for all $n \in \mathbb{N}$ then $m(\phi, p) = l_p$. Moreover

$$l_p \subseteq m(\phi, p) \subseteq l_\infty.$$

(ii) If p = 1, then $m(\phi, p) = m(\phi)$. Also

$$m(\phi) \subseteq m(\phi, p).$$

(iii) $m(\phi, p) \subseteq m(\psi, p)$ if and only if $\sup_{s \ge 1} \left(\frac{\phi_s}{\psi_s}\right) < \infty$.

2. Main Results

Let u be a fixed positive integer and $v = (v_k)$ be any fixed sequence of non zero complex numbers (see [3]). Now we define the sequence space $m(\triangle_v^u, \phi, p)$ as follows:

$$m(\triangle_v^u, \phi, p) := \left\{ x = \{x_k\} \in \ell^0 : \sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \frac{1}{\phi_s} \sum_{k \in \sigma} \left(|\triangle_v^u x_k|^p \right) < \infty, \quad 0 \le p < \infty \right\}.$$

where

$$\Delta_v^0 x_k = (v_k x_k),$$

$$\Delta_v x_k = (v_k x_k - v_{k+1} x_{k+1}),$$

$$\Delta_v^u x_k = (\Delta_v^{u-1} x_k - \Delta_v^{u-1} x_{k+1})$$

such that

$$\Delta_v^u x_k = \sum_{i=0}^u (-1)^i \begin{bmatrix} u\\ i \end{bmatrix} \quad v_{k+i} x_{k+i}.$$

It is clear that if u = 0, $v = (1, 1, 1, \dots)$ and p = 1, we have $m(\phi)$, which was defined by Sargent [13].

Theorem 2.1. The sequence space $m(\triangle_v^u, \phi, p)$ is a Banach space for $\phi \in \Phi$ normed by

(2.1.1)
$$||x||_{\Delta_1} = \sum_{i=1}^u |x_i| + \sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \frac{1}{\phi_s} \sum_{k \in \sigma} \left((|\Delta_v^u x_k|^p))^{1/p}, \quad 1 \le p < \infty,$$

and a complete p-normed space by p-norm

(2.1.2)
$$||x||_{\Delta_2} = \sum_{i=1}^u |x_i|^p + \sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \frac{1}{\phi_s} \sum_{k \in \sigma} (|\Delta_v^u x_k|^p), \quad 0$$

Proof. It is clear that $m(\triangle_v^u, \phi, p)$ is a normed linear space normed by (2.1.1) for $1 \le p < \infty$ and a p-normed space by p-norm (2.1.2) for 0 . We need to

show that $m(\triangle_v^u, \phi, p)$ is complete. Let $\{x^{(l)}\}$ be a Cauchy sequence in $m(\triangle_v^u, \phi, p)$ where $x^l = (x_k^l)_k = (x_1^l, x_2^l, \cdots) \in m(\triangle_v^u, \phi, p)$ for each $l \in \mathbb{N}$. Then for given $\epsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that

$$||x^{l} - x^{t}||_{\Delta_{1}} = \sum_{i=1}^{u} |x_{i}^{l} - x_{i}^{t}| + \sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} \left(\left(|\Delta_{v}^{u} (x_{k}^{l} - x_{k}^{t})|^{p} \right) \right)^{1/p} < \epsilon, \text{ for all } l, t > n_{0}$$

Now we obtain

$$|x_k^l - x_k^t| \to 0$$
, as $l, t \to \infty$, for each $k \in \mathbb{N}$.

Therefore $(x_k^l)_l = (x_k^1, x_k^2, \cdots)$ is a Cauchy sequence in \mathbb{C} for each k. Since \mathbb{C} is complete, it is convergent

$$\lim_{l} x_{k}^{l} = x_{k} \quad (say) \text{ for each } k \in \mathbb{N}.$$

Taking limit as $t \to \infty$ in (2.1.3), we get

$$\sum_{i=1}^{u} |x_i^l - x_i| + \sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \frac{1}{\phi_s} \sum_{k \in \sigma} \left(|\Delta_v^u (x_k^l - x_k)|^p \right)^{1/p} < \epsilon, \quad \text{for all } n > n_0.$$

Hence $(x_k^l - x_i) \in m(\triangle_v^u, \phi, p)$. We know that $m(\triangle_v^u, \phi, p)$ is a linear space and (x_k^l) , $(x_k^l - x_k)$ are in $m(\triangle_v^u, \phi, p)$, it follows that

$$(x_k) = (x_k^l) - (x_k^l - x_k) \in m(\triangle_v^u, \phi, p).$$

Hence $m(\triangle_v^u, \phi, p)$ is complete. Similarly, we can show that $m(\triangle_v^u, \phi, p)$ is complete space *p*-normed by (2.1.1) for 0 .

Theorem 2.2. For any $\phi \in \Phi$ the space $m(\triangle_v^u, \phi, p)$ is a K - space.

The proof is straightforward.

Theorem 2.3. $m(\triangle_v^u, \phi) \subset m(\triangle_v^u, \phi, p)$, for any $\phi \in \Phi$.

Proof. Let $x \in m(\Delta_v^u, \phi)$. Then there exist a positive number K such that

$$\sum_{k \in \sigma} |\triangle_v^u x_k|^p \le K \phi_s, \qquad \sigma \in \phi_s \quad \text{for each fixed s.}$$

Hence

$$\sum_{k \in \sigma} |\triangle_v^u x_k|^p < K \phi_s, \qquad \sigma \in \phi_s \quad \text{for each p : } 0 \ and \ \sigma \in \phi_s.$$

Thus $x \in m(\triangle_v^u, \phi, p)$.

Theorem 2.4. For any two sequences (ϕ_s) and (ψ_s) of real numbers, we have $m(\triangle_v^u, \phi, p) \subset m(\triangle_v^u, \psi, p)$ if and only if

$$\sup_{s\geq 1}\left(\frac{\phi_s}{\psi_s}\right) < \infty.$$

Proof. Let $x \in m(\triangle_v^u, \phi, p)$. Then $\sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \frac{1}{\phi_s} \sum_{k \in \sigma} |\triangle_v^u x_k|^p < \infty$. Suppose that $\sup_{s \ge 1} \left(\frac{\phi_s}{\psi_s}\right) < \infty$. Then $\phi_s \le K\psi_s$ and so that $\frac{1}{\psi_s} \le \frac{K}{\phi_s}$ for some positive number K and for all s. Therefore we have

$$\frac{1}{\psi_s} \sum_{k \in \sigma} |\triangle_v^u x_k|^p \le \frac{K}{\phi_s} \sum_{k \in \sigma} |\triangle_v^u x_k|^p \quad \text{for each s.}$$

Now

$$\sup_{s\geq 1} \sup_{\sigma\in\mathcal{C}_s} \frac{1}{\psi_s} \sum_{k\in\sigma} |\triangle_v^u x_k|^p \le K \sup_{s\geq 1} \sup_{\sigma\in\mathcal{C}_s} \frac{1}{\phi_s} \sum_{k\in\sigma} |\triangle_v^u x_k|^p.$$

Hence $\sup_{s\geq 1} \sup_{\sigma\in\mathcal{C}_s} \frac{1}{\psi_s} \sum_{k\in\sigma} |\triangle_v^u x_k|^p < \infty$. Therefore $x \in m(\triangle_v^u, \psi, p)$.

Conversely, let $m(\triangle_v^u, \phi, p) \subseteq m(\triangle_v^u, \psi, p)$ and suppose that $\sup_{s \ge 1} \left(\frac{\phi_s}{\psi_s}\right) = \infty$. Then there exists a nincreasing sequence (s_i) of natural numbers such that $\lim \left(\frac{\phi_{s_i}}{\psi_{s_i}}\right) = \infty$. Now for every $B \in \mathbb{R}^+$ (the set of positive real numbers), there exists $i_0 \in \mathbb{N}$ such that $\frac{\phi_{s_i}}{\psi_{s_i}} > B$ for all $s_i \ge i_0$. Hence $\frac{1}{\psi_{s_i}} > \frac{B}{\psi_{s_i}}$ and

$$\frac{1}{\psi_{s_i}} \sum_{k \in \sigma} |\triangle_v^u x_k|^p > \frac{B}{\psi_{s_i}} \sum_{k \in \sigma} |\triangle_v^u x_k|^p$$

for all $s_i \geq i_0$. Now taking supremum over $s_i \geq i_0$ and $\sigma \in \mathcal{C}_s$ we get

(2.2.1)
$$\sup_{s_i \ge i_0} \sup_{\sigma \in \mathcal{C}_s} \frac{1}{\psi_{s_i}} \sum_{k \in \sigma} |\Delta_v^u x_k|^p > B \sup_{s_i \ge i_0} \sup_{\sigma \in \mathcal{C}_s} \frac{1}{\phi_{s_i}} \sum_{k \in \sigma} |\Delta_v^u x_k|^p.$$

Since (2.2.1) holds for all $B \in \mathbb{R}^+$ (we may take B sufficiently large) we have

$$\sup_{s_i \ge i_0} \sup_{\sigma \in \mathcal{C}_s} \frac{1}{\psi_{s_i}} \sum_{k \in \sigma} |\triangle_v^u x_k|^p = \infty$$

when $x \in m(\triangle_v^u, \phi, p)$ with

$$0 < \sup_{s_i \ge i_0} \sup_{\sigma \in \mathcal{C}_s} \frac{1}{\phi_{s_i}} \sum_{k \in \sigma} |\triangle_v^u x_k|^p < \infty.$$

Therefore $x \notin m(\triangle_v^u, \psi, p)$. This contradicts to $m(\triangle_v^u, \phi, p) \subseteq m(\triangle_v^u, \psi, p)$, whence $\sup_{s \ge 1} \left(\frac{\phi_s}{\psi_s}\right) < \infty$.

From Theorem 2.4, we get the following result.

Corollary 2.1. $m(\triangle_v^u, \phi, p) = m(\triangle_v^u, \psi, p)$ if and only if

$$0 < \inf_{s \ge 1} \left(\frac{\phi_s}{\psi_s} \right) \le \sup_{s \ge 1} \left(\frac{\phi_s}{\psi_s} \right) < \infty.$$

Theorem 2.5. $m(\triangle_v^{u-1}, \phi, p) \subset m(\triangle_v^u, \phi, p)$ and the inclusion is strict.

A new type of difference sequence spaces

Proof. The proof follows from the following inequality and Minkowski's inequality

$$|\triangle_{v}^{u}x| = |\triangle_{v}^{u-1}x_{k} - \triangle_{v}^{u-1}x_{k+1}| \le |\triangle_{v}^{u-1}x_{k}| + |\triangle_{v}^{u-1}x_{k+1}|.$$

To show that the inclusion is strict consider the following example.

Example 2.1. Let $\phi_n = 1$ for all $n \in \mathbb{N}$, $x = (k^{u-1})$ and $v = (1, 1, 1, \dots)$, then

$$x \in l_p(\triangle_v^u) \setminus l_p(\triangle_v^{u-1}).$$

Theorem 2.6. The sequence space $m(\triangle_v^u, \phi, p)$ is not sequence algebra, is not solid and is not symmetric, for $u \ge 1$.

Proof. For the proof of this theorem, consider the following examples:

Example 2.2. Let $x = (k^{u-1})$, $y = (k^{u-1})$ and $v = (1, 1, 1, \cdots)$. Then $x, y \in m(\Delta_v^u, \phi, p)$, but $x.y \notin m(\Delta_v^u, \phi, p)$. Hence $m(\Delta_v^u, \phi, p)$ is not sequence algebra.

Example 2.3. Let $x = (k^{u-1}), v = (1, 1, 1, \dots)$ and $\alpha_k = (-1)^k$. Then $x = (k^{u-1}) \in m(\Delta_v^u, \phi, p)$, but

$$(\alpha_k x_k) \notin m(\Delta_v^u, \phi, p)$$
 for $\alpha = (\alpha_k) = (-1)^k$.

Hence $m(\triangle_n^u, \phi, p)$ is not solid.

Example 2.4. Let $x = (k^{u-1})$ and $v = (1, 1, 1, \dots)$. Let (y_k) be a arrangement of (x_k) which is defined as follows :

$$y_k = \{x_1, x_2, x_4, x_3, x_9, x_5, x_{16}, x_6, x_{25}, x_7, x_{36}, x_8, x_{49}, x_{10}, \cdots \}$$

Then $y \notin m(\triangle_v^u, \phi, p)$. Hence $m(\triangle_v^u, \phi, p)$ is not symmetric.

The following result is a consequence of Theorem 2.6.

Corollary 2.2. The sequence space $m(\triangle_n^u, \phi, p)$ is not perfect.

Theorem 2.7. $l_p(\Delta_v^u) \subseteq m(\Delta_v^u, \phi, p) \subseteq l_\infty(\Delta_v^u)$. *Proof.* Since $m(\Delta_v^u, \phi, p) = l_p(\Delta_v^u)$ for $\phi_n = 1$, for all $n\mathbb{N}$, then

$$l_p(\triangle_v^u) \subseteq m(\triangle_v^u, \phi, p).$$

Now suppose that $x \in m(\triangle_v^u, \phi, p)$. Then we have

$$\sup_{s \ge 1} \sup_{\sigma \in \mathcal{C}_s} \frac{1}{\phi_s} \sum_{k \in \sigma} |\triangle_v^u x_k|^p < \infty,$$

and hence

 $|\triangle_v^u x_k| < K\phi_1$, for all $n \in \mathbb{N}$ and for some positive integer K.

Thus $x \in l_{\infty}(\Delta_{v}^{u})$. This completes the proof of Theorem.

Corollary 2.3. If $0 , then <math>m(\triangle_v^u, \phi, p) \subseteq m(\triangle_v^u, \phi, q)$.

Proof. For the proof of this theorem follows from the following inequality

$$\left(\sum_{k=1}^{n} |x_k|^q\right)^{\frac{1}{q}} \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{\frac{1}{p}}, \quad (0$$

References

- R. Colak and M. Et, On some difference sequence sets and their topological properties, Bull. Malaysian Math.Sci.Soc. 2 (2005), 125-130.
- [2] R. Colak and M. Et, On some generalized difference sequence spaces and related matrix transformations, Hokkoido Mathematical Journal 26, 3 (1997), 483-492.
- [3] A. Esi and M.Isik, Some generalized difference sequence spaces, Thai Journal of Mathematics, 3 (2005), 241-247.
- [4] M. Et, On some topological properties of generalized difference sequence spaces, Internat. J. Math. and Math. Sci. 24, 11 (2000), 785-791.
- [5] M. Et and R. Colak, On some generalized difference sequence spaces, Soochow J. of Math. 21 (1995), 377-386.
- [6] M. Et and A. Esi, On Köthe Toeplitz duals of generalized difference sequence spaces, Bull. Malaysian Math. Sci. Soc. 24, 11 (2000), 25-32.
- [7] P. Kampthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker Inc. 1980.
- [8] V. A. Khan, Some inclusion relations between the difference sequence spaces defined by sequence of moduli, Indian Mathematical Society 73 (2006), 77-81.
- [9] V. A. Khan and Q.M.D. Lohani, Difference sequence spaces defined by a sequence of moduli, Southeast Asian Bull. Math. 30 (2006), 1061-1067.
- [10] V.A. Khan and Q.M.D. Lohani, New lacunary strong convergence difference sequence spaces defined by sequence of moduli, Kyungpook Mathematical Journal 46 (2006), 591-595.
- [11] V.A. Khan, New lacunary strongly summable difference sequences and \triangle_v^m lacunary almost statistical convergence, Vietnam Journal of Mathematics 36 (2008), 405-413.
- [12] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24, 2 (1981), 169-176.
- M. Mursaleen, Some geometric properties of a sequence space related to l_p, Bull. Aust. Math. Soc. 67, 2 (2003), 343-347.
- [14] W.L.C. Sargent, Some sequence spaces related to the l^p spaces, J. London Math. Soc. 35 (1960), 161-171.
- [15] B.C. Tripathy and M. Sen, On a new class of sequences related to the space l_p, Tamkang J. Math. 33, 2 (2002), 167-171.
- [16] A. Wilansky, Summability Through Functional Analysis, North Holland Mathematics Studies 85, North Holland, 1984.

Author's address:

Vakeel A. Khan Department of Mathematics, A.M.U. Aligarh, India. E-mail: vakhan@math.com

108