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Abstract. In this article we introduce a new sequence space denoted by
m(4u

v , φ, p). We give some topological properties and inclusion relations
on this space. The results herein proved are analogous to those from [1].

M.S.C. 2000: 40C05, 46A45.
Key words: Difference sequence; solid spaces; symmetric space.

1. Introduction
Let `0 be the set of all complex sequences and l∞, c and c0 be the sets of all

bounded, convergent and null sequences x = (xk) with complex terms, respectively,
normed by

||x||∞ = sup
k
|xk|, where k ∈ N = {1, 2, · · · }.

A sequence space X with linear topology is called a K-space if each of the maps
Pk : X → C defined by Pk(x) = xk is continuous for k = 1, 2, · · · . A K- space X is
called a BK-space provided X is a Banach space.

The idea of difference sequence space was introduced by Kizmaz [12]. In 1981,
Kizmaz [12] defined the sequence spaces:

l∞(4) = {x = {xk} ∈ `0 : (4xk) ∈ l∞},

c(4) = {x = {xk} ∈ `0 : (4xk) ∈ c},
and

c0(4) = {x = {xk} ∈ `0 : (4xk) ∈ c0},
where 4x = (xk − xk+1). These are Banach spaces with the norm

||x||4 = |x1|+ ||4x||∞.

Et and Colak [5] generalized the above sequence spaces to the sequence spaces

X(4r) = {x = {xk} ∈ `0 : 4rxk ∈ X},

for X = l∞, c and c0, where r ∈ N,

40x = (xk), 4x = (xk − xk+1), 4rx = (4rxk −4rxk+1)
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and so that

4rxk =
r∑

i=0

(−1)i

[
r
i

]
xk+i.

Difference sequence spaces have been studied by Colak and Et [2], Et [4], Et and Esi
[6], Vakeel A. Khan [8,9,10,11] and many others.

Let X,Y ⊂ `0. Then we shall write

M(X, Y ) =
⋂

x∈X

x−1 ∗ Y = {a ∈ `0 : ax ∈ Y for all x ∈ X}.

The set
Xα = M(X, l1)

is called Köthe - Toeplitz dual space or α - dual of X(see [16]).
Let X be a sequence space. Then X is called
(i) solid (or normal), if (αkxk) ∈ X, whenever (xk) ∈ X for all sequences of scalars
(αk) with |αk| ≤ 1 for all k ∈ N.
(ii) symmetric, if (xk) ∈ X implies (xπ(k)) ∈ X, where π(k) is a permutation of N.
(iii)perfect, if X = Xαα.
(iv) sequence algebra, if x.y ∈ X, whenever x, y ∈ X.

It is well known that if X is perfect then X is normal (see [7]).
Let C denote the space whose elements are finite sets of distinct positive integers.

Given any element σ of C, we denote by c(σ) the sequence {cn(σ)} which is such that
cn(σ) = 1 if n ∈ σ, cn(σ) = 0 otherwise. Further,

Cs =

{
σ ∈ C :

∞∑
n=1

cn(σ) ≤ s

}
(cf [13]),

the set of those σ whose support has cardinality at most s, and

Φ =
{

φ = {φk} ∈ `0 : φ1 > 0,∆φk ≥ 0 and ∆
(

φk

k

)
≤ 0 (k = 1, 2, . . .)

}
,

where ∆φk = φk − φk−1; and `0 is the set of all real sequences.
For φ ∈ Φ, we define the following sequence space, introduce in [14],

m(φ) =

{
x = {xk} ∈ `0 : sup

s≥1
sup
σ∈Cs

(
1
φs

∑

k∈σ

| xk |
)

< ∞
}

.

Recently the space m(φ) was extended to m(φ, p) by Tripathy and Sen [15] as follows:

m(φ, p) :=

{
x = {xk} ∈ `0 : sup

s≥1
sup
σ∈Cs

1
φs

∑

k∈σ

| xk |p< ∞
}

.

It is easy to see that:

‖ x ‖m(φ,p) = sup
s≥1

sup
σ∈Cs

(
1
φs

∑

k∈σ

| xk |p
) 1

p

.
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Remark 1. The space m(φ, p) is a Banach space with the norm

‖ x ‖m(φ,p) = sup
s≥1

sup
σ∈Cs

(
1
φs

∑

k∈σ

| xk |p
) 1

p

.

Remark 2. As in [14], we have
(i) If φn = 1 for all n ∈ N then m(φ, p) = lp. Moreover

lp ⊆ m(φ, p) ⊆ l∞.

(ii) If p = 1, then m(φ, p) = m(φ). Also

m(φ) ⊆ m(φ, p).

(iii) m(φ, p) ⊆ m(ψ, p) if and only if sups≥1

(
φs

ψs

)
< ∞.

2. Main Results
Let u be a fixed positive integer and v = (vk) be any fixed sequence of non zero

complex numbers (see [3]). Now we define the sequence space m(4u
v , φ, p) as follows:

m(4u
v , φ, p) :=

{
x = {xk} ∈ `0 : sup

s≥1
sup
σ∈Cs

1
φs

∑

k∈σ

(|4u
vxk|p) < ∞, 0 ≤ p < ∞

}
.

where
40

vxk = (vkxk),

4vxk = (vkxk − vk+1xk+1),

4u
vxk = (4u−1

v xk −4u−1
v xk+1)

such that

4u
vxk =

u∑

i=0

(−1)i

[
u
i

]
vk+ixk+i.

It is clear that if u = 0, v = (1, 1, 1, · · · ) and p = 1, we have m(φ), which was defined
by Sargent [13].

Theorem 2.1. The sequence space m(4u
v , φ, p) is a Banach space for φ ∈ Φ

normed by

(2.1.1) ||x||41 =
u∑

i=1

|xi|+ sup
s≥1

sup
σ∈Cs

1
φs

∑

k∈σ

((|4u
vxk|p))1/p

, 1 ≤ p < ∞,

and a complete p-normed space by p-norm

(2.1.2) ||x||42 =
u∑

i=1

|xi|p + sup
s≥1

sup
σ∈Cs

1
φs

∑

k∈σ

(|4u
vxk|p) , 0 < p < 1.

Proof. It is clear that m(4u
v , φ, p) is a normed linear space normed by (2.1.1) for

1 ≤ p < ∞ and a p - normed space by p - norm (2.1.2) for 0 < p < 1. We need to
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show that m(4u
v , φ, p) is complete. Let {x(l)} be a Cauchy sequence in m(4u

v , φ, p)
where xl = (xl

k)k = (xl
1, x

l
2, · · · ) ∈ m(4u

v , φ, p) for each l ∈ N. Then for given ε > 0
there exists n0 ∈ N such that

||xl−xt||41 =
u∑

i=1

|xl
i−xt

i|+sup
s≥1

sup
σ∈Cs

1
φs

∑

k∈σ

((|4u
v (xl

k − xt
k)|p))1/p

< ε, for all l, t > n0.

Now we obtain

|xl
k − xt

k| → 0, as l, t →∞, for each k ∈ N.

Therefore (xl
k)l = (x1

k, x2
k, · · · ) is a Cauchy sequence in C for each k. Since C is

complete, it is convergent

lim
l

xl
k = xk (say) for each k ∈ N.

Taking limit as t →∞ in (2.1.3), we get

u∑

i=1

|xl
i − xi|+ sup

s≥1
sup
σ∈Cs

1
φs

∑

k∈σ

(|4u
v (xl

k − xk)|p)1/p
< ε, for all n > n0.

Hence (xl
k − xi) ∈ m(4u

v , φ, p). We know that m(4u
v , φ, p) is a linear space and (xl

k),
(xl

k − xk) are in m(4u
v , φ, p), it follows that

(xk) = (xl
k)− (xl

k − xk) ∈ m(4u
v , φ, p).

Hence m(4u
v , φ, p) is complete. Similarly, we can show that m(4u

v , φ, p) is complete
space p-normed by (2.1.1) for 0 < p < 1. ¤

Theorem 2.2. For any φ ∈ Φ the space m(4u
v , φ, p) is a K - space.

The proof is straightforward.

Theorem 2.3. m(4u
v , φ) ⊂ m(4u

v , φ, p), for any φ ∈ Φ.

Proof. Let x ∈ m(4u
v , φ). Then there exist a positive number K such that

∑

k∈σ

|4u
vxk|p ≤ Kφs, σ ∈ φs for each fixed s.

Hence ∑

k∈σ

|4u
vxk|p < Kφs, σ ∈ φs for each p ¿ 0 and σ ∈ φs.

Thus x ∈ m(4u
v , φ, p). ¤

Theorem 2.4. For any two sequences (φs) and (ψs) of real numbers, we have
m(4u

v , φ, p) ⊂ m(4u
v , ψ, p) if and only if

sup
s≥1

(
φs

ψs

)
< ∞.
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Proof. Let x ∈ m(4u
v , φ, p). Then sups≥1 supσ∈Cs

1
φs

∑
k∈σ |4u

vxk|p < ∞.

Suppose that sups≥1

(
φs

ψs

)
< ∞. Then φs ≤ Kψs and so that 1

ψs
≤ K

φs
for some

positive number K and for all s. Therefore we have

1
ψs

∑

k∈σ

|4u
vxk|p ≤ K

φs

∑

k∈σ

|4u
vxk|p for each s.

Now
sup
s≥1

sup
σ∈Cs

1
ψs

∑

k∈σ

|4u
vxk|p ≤ K sup

s≥1
sup
σ∈Cs

1
φs

∑

k∈σ

|4u
vxk|p.

Hence sups≥1 supσ∈Cs

1
ψs

∑
k∈σ |4u

vxk|p < ∞. Therefore x ∈ m(4u
v , ψ, p).

Conversely, let m(4u
v , φ, p) ⊆ m(4u

v , ψ, p) and suppose that sup
s≥1

(
φs

ψs

)
= ∞. Then

there exists aN increasing sequence (si) of natural numbers such that lim
(

φsi

ψsi

)
= ∞.

Now for every B ∈ R+ (the set of positive real numbers), there exists i0 ∈ N such
that φsi

ψsi
> B for all si ≥ i0. Hence 1

ψsi
> B

ψsi
and

1
ψsi

∑

k∈σ

|4u
vxk|p >

B

ψsi

∑

k∈σ

|4u
vxk|p

for all si ≥ i0. Now taking supremum over si ≥ i0 and σ ∈ Cs we get

(2.2.1) sup
si≥i0

sup
σ∈Cs

1
ψsi

∑

k∈σ

|4u
vxk|p > B sup

si≥i0

sup
σ∈Cs

1
φsi

∑

k∈σ

|4u
vxk|p.

Since (2.2.1) holds for all B ∈ R+ (we may take B sufficiently large ) we have

sup
si≥i0

sup
σ∈Cs

1
ψsi

∑

k∈σ

|4u
vxk|p = ∞

when x ∈ m(4u
v , φ, p) with

0 < sup
si≥i0

sup
σ∈Cs

1
φsi

∑

k∈σ

|4u
vxk|p < ∞.

Therefore x 6∈ m(4u
v , ψ, p). This contradicts to m(4u

v , φ, p) ⊆ m(4u
v , ψ, p), whence

sup
s≥1

(
φs

ψs

)
< ∞. ¤

From Theorem 2.4, we get the following result.

Corollary 2.1. m(4u
v , φ, p) = m(4u

v , ψ, p) if and only if

0 < inf
s≥1

(
φs

ψs

)
≤ sup

s≥1

(
φs

ψs

)
< ∞.

Theorem 2.5. m(4u−1
v , φ, p) ⊂ m(4u

v , φ, p) and the inclusion is strict.
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Proof. The proof follows from the following inequality and Minkowski’s inequality

|4u
vx| = |4u−1

v xk −4u−1
v xk+1| ≤ |4u−1

v xk|+ |4u−1
v xk+1|.

To show that the inclusion is strict consider the following example.
Example 2.1. Let φn = 1 for all n ∈ N, x = (ku−1) and v = (1, 1, 1, · · · ), then

x ∈ lp(4u
v ) \ lp(4u−1

v ).

Theorem 2.6. The sequence space m(4u
v , φ, p) is not sequence algebra, is not

solid and is not symmetric, for u ≥ 1.
Proof. For the proof of this theorem, consider the following examples:
Example 2.2. Let x = (ku−1), y = (ku−1) and v = (1, 1, 1, · · · ). Then x, y ∈

m(4u
v , φ, p), but x.y /∈ m(4u

v , φ, p). Hence m(4u
v , φ, p) is not sequence algebra.

Example 2.3. Let x = (ku−1), v = (1, 1, 1, · · · ) and αk = (−1)k. Then x =
(ku−1) ∈ m(4u

v , φ, p), but

(αkxk) /∈ m(4u
v , φ, p) for α = (αk) = (−1)k.

Hence m(4u
v , φ, p) is not solid.

Example 2.4. Let x = (ku−1) and v = (1, 1, 1, · · · ). Let (yk) be a arrangement
of (xk) which is defined as follows :

yk = {x1, x2, x4, x3, x9, x5, x16, x6, x25, x7, x36, x8, x49, x10, · · · }.
Then y /∈ m(4u

v , φ, p). Hence m(4u
v , φ, p) is not symmetric.

The following result is a consequence of Theorem 2.6.

Corollary 2.2. The sequence space m(4u
v , φ, p) is not perfect.

Theorem 2.7. lp(4u
v ) ⊆ m(4u

v , φ, p) ⊆ l∞(4u
v ).

Proof. Since m(4u
v , φ, p) = lp(4u

v ) for φn = 1, for all nN, then

lp(4u
v ) ⊆ m(4u

v , φ, p).

Now suppose that x ∈ m(4u
v , φ, p). Then we have

sup
s≥1

sup
σ∈Cs

1
φs

∑

k∈σ

|4u
vxk|p < ∞,

and hence

|4u
vxk| < Kφ1, for all n ∈ N and for some positive integer K.

Thus x ∈ l∞(4u
v ). This completes the proof of Theorem. ¤

Corollary 2.3. If 0 < p < q, then m(4u
v , φ, p) ⊆ m(4u

v , φ, q).
Proof. For the proof of this theorem follows from the following inequality

(
n∑

k=1

|xk|q
) 1

q

≤
(

n∑

k=1

|xk|p
) 1

p

, (0 < p < q).
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