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Abstract. This paper evaluates the dynamic effects of assuming a logis-
tic law hypothesis for population growth into the Mankiw, Romer, Weil
(hereafter MRW) neoclassical growth model [9]. Under this assumption,
the model is described by a three dimensional dynamical system, which
has a unique non-trivial steady state equilibrium that is a saddle point
with a two dimensional stable manifold. As a result, the speed of conver-
gence is determined by two stable roots, rather than only one as in the
basic MRW model, so that its transitional adjustment paths are enriched.
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1 Introduction

Mankiw, Romer and Weil [9] have extended the Solow growth model [12] by incor-
porating an explicit process of human capital accumulation. In this framework, they
have derived a convergence equation relating the increments of output to investment
rates for both physical and human capital. This specification have allowed them to
find that Solow model’s predictions are consistent with empirical evidence, but the
effects of saving and population growth rates are biased upward since human capital
is excluded as an explanatory variable from the model.

Recently, Ferrara and Guerrini [6] have explored the implications of studying the
neoclassical Solow growth model within a framework where the change over time of the
labor force is given by the logistic population model. It is known that usually standard
economic growth theory assumes that population grows exponentially. However, this
hypothesis is realistic only for an initial period, but it cannot be valid indefinitely
because population growing exponentially can be arbitrarily large. What is often
observed, instead, is that, as the population grows, some members interfere with
each other in competition for some critical resource. That competition diminishes
the growth rate, until the population ceases to grow. Therefore, it seems reasonable
for a good population model to reproduce this behavior. The logistic growth model,
as proposed by Verhulst [13], is just such a model. In economic growth modelling,
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this approach have been recently analyzed in different directions (see, for example,
[1],[6],[4],[5],[7],[8],[3] and [10]).

The objective of this paper is to combine within the same framework the above
two different research lines, that have been analyzed separately, i.e. the one studying
the effects of including human capital in the Solow model, and that analyzing the role
of a logistic-type population growth within the Solow model. Within this framework,
we show that the economy is described by a three dimensional dynamical system,
whose unique non-trivial steady-state equilibrium is saddle-point stable. The saddle-
path stable system now has two negative eigenvalues, so that the stable manifold is
a two dimensional locus, thereby introducing important flexibility to the convergence
and transition characteristics. The crucial determinant of the asymptotic speed of
convergence is the larger of the two negative eigenvalues.

2 The model

We consider a closed economy where the aggregate production function is represented
by a Cobb-Douglas technology with constant returns to scale. More precisely, in each
period t, the production is given by

(2.1) Y = KαHβL1−α−β , α, β, α + β ∈ (0, 1),

where Y is aggregate output, K is the stock of physical capital, H is the stock of
human capital, and L is labor (population). Time argument is suppressed to ease the
burden of notations. All markets, both input and output markets, are assumed to be
perfectly competitive, all firms are assumed to be identical. In this way, the economy
can be described by a representative agent. Physical capital and human capital are
assumed to be accumulating factors, i.e. the representative agent saves output to
have more capital, either physical or human. Their equations of motion are given by
.

K = skY − δK,
.

H = shY − δH, where sk and sh are the saving rates for physical
capital and human capital, respectively. They are given exogenously. Note that both
capital and human capital are assumed to depreciate at the same rate δ. Following
Solow [12], and Mankiw et al. [9], we rewrite income, physical and human capital
in (2.1) in terms of quantities per unit of effective labor, i.e. y = Y/L, k = K/L,
h = H/L. In particular, this gives y = kαhβ . If we divide both sides of the previous
equations by L, we get

.

K/L = sky − δk,
.

H/L = shy − δh. We can write
.

K/L and
.

H/L as a function of k and h by using the relations

.

k =
d(K/L)

dt
=

.

K

L
−

.

L

L
k,

.

h =
d(H/L)

dt
=

.

H

L
−

.

L

L
h.

Consequently, the two equations above yield

.

k = sky −
(

δ +

.

L

L

)
k,

.

h = shy −
(

δ +

.

L

L

)
h.

In standard growth models, the population growth rate
.

L/L is assumed to be constant,
say n. The main problem of this assumption is that population grows exponentially,



98 Luca Guerrini

L = L0e
nt, and so tends to infinity as time goes to infinity, which is clearly unrealistic.

Following Ferrara and Guerrini [6], we assume that
.

L/L is not constant, but given by
the logistic law of population growth, i.e.

(2.2)

.

L

L
= a− bL ≡ n(L),

with a > b > 0. In addition, today’s population is assumed to be normalized to one,
L0 = 1. Recall that (2.2) is a Bernoulli differential equation with solution given by
L = aeat/ (a− b + beat). In particular, this yields that L converges to a/b in the long
run. Putting all these assumptions together, we can conclude that the evolution of
the economy is determined by the following system of non-linear differential equations

(2.3)





.

k = skkαhβ − [δ + n(L)]k,
.

h = shkαhβ − [δ + n(L)]h,
.

L = Ln(L).

Given k0 > 0, h0 > 0, this Cauchy problem has a unique solution, say (k, h, L),
defined on [0,∞) (see [2]).

3 Transitional dynamics

We are interested in characterizing a possible state of the economy in which the growth
rate of per capita variables can be maintained constant forever. Such a situation, it
is defined more precisely as steady state. Let us denote the steady state values of
k,c,L by k∗,c∗,L∗, respectively. In our analysis, we will exclude the economically
meaningless solutions such as k∗ = 0, c∗ = 0, or L∗ = 0.

Proposition 3.1. There exists a unique steady state equilibrium (k∗, c∗, L∗), where

(3.1) k∗ =

(
s1−β

k sβ
h

δ

)1/(1−α−β)

, h∗ =
(

sα
k s1−α

h

δ

)1/(1−α−β)

, L∗ =
a

b
.

Proof. In steady state, the left hand side of (2.3) is zero. Hence, we get the following
system of equations

(3.2) skkα−1hβ = δ, shkαhβ−1 = δ, n(L) = 0.

It is now straightforward to show that (3.2) has a unique solution, which is exactly
the one provided by (3.1). ¤

Lemma 3.1. At steady state, the condition k0/sk = h0/sh must hold.

Proof. Eliminating kαhβ between the equations of (2.3) shows that physical capital
and human capital satisfy the equation

d

dt

(
k

sk
− h

sh

)

k

sk
− h

sh

= −δ −
.

L

L
,
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the solution of which is

(3.3)
k

sk
− h

sh
=

(
k0

sk
− h0

sh

)
e−δtL.

The statement now follows from (3.3) noting that, from (3.1), k∗/sk = h∗/sh. ¤

Corollary 3.1. lim
t→∞

k

sk
= lim

t→∞
h

sh
.

Proof. Immediate from (3.3) as t goes to infinity. ¤

Outside the steady state the growth rate of the economy is not constant but,
rather, it behaves according to (2.3). In order to determine what the equilibrium
path of the economy looks like, we need to study the transitional dynamics of the
dynamical system.

Theorem 3.1. The steady state equilibrium is a saddle point with a two dimensional
stable manifold.

Proof. The local dynamic around a steady state equilibrium (k∗, h∗, L∗) is determined
by the signs of the eigenvalues of the Jacobian matrix corresponding to its linearized
system, which writes as follows

(3.4)




.

k
.

h
.

L


 = J∗




k − k∗
h− h∗
L− L∗


 , where J∗ =




J∗11 J∗12 J∗13

J∗21 J∗22 J∗23

J∗31 J∗32 J∗33


 .

The matrix J∗, called the Jacobian matrix, denotes the matrix of first partial
derivatives evaluated at the equilibrium point, namely J∗11 = (∂

.

k/∂k) |(k∗,h∗,L∗),

J∗12 = (∂
.

k/∂h) |(k∗,h∗,L∗), J∗13 = (∂
.

k/∂L) |(k∗,h∗,L∗), and so on for all the other
matrix entries. Computing these elements yields

(3.5) J∗ =




−(1− α)δ
skβδ

sh
0

shαδ

sk
−(1− β)δ 0

0 0 −a




.

It is immediately seen from (3.5) that one of its three eigenvalues, say λ1, is −a. The
remaining eigenvalues λ2, λ3 are found solving the equation

λ2 + [(1− α) + (1− β)]δλ− αβδ2 = 0.

Since its discriminant is [(1 − α) + (1 − β)]2δ2 + 4αβδ2 > 0, λ2, λ3 must be real
numbers. Their sign can be derived looking at the determinant and trace of J∗. After
simplification, we get

Det(J∗) = −(1− α− β)δ2a < 0,

T race(J∗) = J∗11 + J∗22 + J∗33 = −[(1− α) + (1− β)]δ − a < 0.

Recalling that the determinant of a matrix is also equal to the product of its eigen-
values, as well as the trace of a matrix is also equal to the sum of its eigenvalues, we
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can conclude that one eigenvalue is negative and one is positive. In conclusion, the
matrix J∗ has one real positive (unstable) and two real negative (stable) roots. This
proves that the steady state is (locally) a saddle point. Since there are two negative
eigenvalues, the stable manifold is a plane going through the steady state. This plane
is generated by the two negative eigenvalues (see [11]). ¤

Remark 3.1. The point (k∗, h∗, L∗) is locally asymptotically stable, namely all solu-
tions which start near it remain near the steady state for all time, and, furthermore,
they tend towards (k∗, h∗, L∗) as t grows to infinity.

The linearized system (3.4) has the following closed-form solution




kt − k∗= c1v11e
λ1t + c2v12e

λ2t + c3v13e
λ3t,

ht − h∗= c1v21e
λ1t + c2d22e

λ2t + c3v23e
λ3t,

Lt − L∗= c1v31e
λ1t + c2v32e

λ2t + c3v33e
λ3t,

where c1, c2, c3 are arbitrary constants, to be determined using the initial conditions,
and [v11 v21 v31]T , [v12 v22 v32]T , [v13 v23 v33]T are the eigenvectors associated with
the eigenvalues λ1, λ2, λ3, respectively. Without loss of generality, assume λ2 < 0 and
λ3 > 0. Since eλ3t diverges to infinity, it is clear that the solutions will be stable if
c3 = 0. Thus, the solutions along the stable arm of the saddle-path are given by





kt − k∗= c1v11e
λ1t + c2v12e

λ2t,

ht − h∗= c1v21e
λ1t + c2d22e

λ2t,

Lt − L∗= c1v31e
λ1t + c2v32e

λ2t.

A particularly interesting aspect of the above results pertains to the eigenvalues,
which are crucial in determining the economy’s speed of convergence, namely how
long it takes for the economy to adjust to the steady state. Many models of growth,
including MWR model, have the property that the transitional dynamics are deter-
mined by a one dimensional stable manifold. As a consequence, all the variables
converge to their respective steady states at the same constant speed, which is equal
to the magnitude of the unique stable eigenvalue. By contrast, if the stable manifold
is two dimensional, as for our model, then the speed of convergence of any variable
at any point of time is a weighted average of the two stable eigenvalues. Clearly,
over time, the weight of the smaller (more negative) eigenvalue declines, so that the
larger of the two stable eigenvalues describes the asymptotic speed of convergence.
It is clear that the flexibility provided by the additional eigenvalue allows the system
to match some features of the data related with the timing of the key variables and
growth rates along the transitional path.

4 Conclusions

In this paper we have considered a modified version of the MRW model, obtained
by assuming a logistic law formulation for the evolution of population. As it is well
known, the main problem behind the standard assumption of a constant population
growth is that it yields an exponential behavior of population size over time, which
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is clearly unrealistic and unsustainable in the very long run. Using the logistic pop-
ulation growth hypothesis has the advantage that population size tends to a finite
saturation level in the very long run. Within this setup, the model is shown to be
described by a three dimensional dynamical system with a unique non-trivial steady
state equilibrium (a saddle). Two stable roots, rather than only one as in basic MRW
model, now determine the speed of convergence, thereby introducing important flex-
ibility to the convergence and transition characteristics. For future research it would
be interesting to include in our discussion tables and real experiments.
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