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Abstract. One of the applied branches of mathematics is the entropy
of a dynamical system. In this paper we defined the infinite partition of
an algebraic structure and then we introduce the entropy of a countable
partition of this structure. In this respect, we introduce the generators
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the end, we prove a version of Kolomogorov-Sinai theorem concerning the
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1 Introduction

We assume that the reader is familiar with the definition of dynamical systems and
ergodic theory. In physics, entropy of a system with a finite quantum states is defined
by S = −k

∑
v fv ln(fv);

∑
v fv = 1, where k is the Boltzmann constant and the sum is

over all quantum states. This formula can be interpreted as a degree of disordering of
the system. The entropy of an algebraic structure with a finite partition was defined
by Riecăn [6]. In this paper we will extend this notion to an algebraic structure with
infinite partition and we discuss ergodic theory properties.

2 Basic concepts

Let F be a non-empty totally ordered set. Also let ⊕, ¯ be two binary operations on
F and 1 be a constant element of F such that,

(2.1) 1¯ a = a ≥ a¯ b.

Definition 2.1. A function m : F −→ [0, 1] is called F -measure if for any a, b and
c ∈ F we have,
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(i) m(a⊕ b) = m(b⊕ a), m(a¯ b) = m(b¯ a);

(ii) m(a⊕ (b⊕ c)) = m((a⊕ b)⊕ c), m(a¯ (b¯ c)) = m((a¯ b)¯ c);

(iii) m(a¯ (b⊕ c)) = m((a¯ b)⊕ (a¯ c)), m(a⊕ (b¯ c)) = m((a⊕ b)¯ (a⊕ c));

(iv) m(⊕n
i=1ai) =

∑n
i=1 m(ai), for any n ∈ N;

(v) If a ≤ b then m(a) ≤ m(b);

(vi) m(a¯ b) ≤ m(a);

(vii) If m(a) = m(1) then m(a¯ b) = m(b);

(viii) If m(a) ≤ m(b) then m(a¯ c) ≤ m(b¯ c).

Definition 2.2. A countable partition in F is a sequence A = {ai}i∈N ⊆ F such
that,

(i) m(1) =
∑∞

i=1 m(ai);

(ii)
∑∞

i=1 m(ai ¯ b) = m(b), for any b ∈ F .

Remark 2.3. It is clear that if a countable partition A = {ai}i∈N has more than
one element, then

m(ai) < m(1),

for any i ∈ N. And therefore,

∞∑

i=1,i6=n

m(ai) < m(1),

for any n ∈ N.

Definition 2.4. Let A = {ai}i∈N and B = {bj}j∈N be two countable partitions in
F. Their join is

A∇B = {ai ¯ bj : ai ∈ A , bj ∈ B, i, j ∈ N},
if A 6= B, and

A∇A = A .

Definition 2.5. Let A = {ai}i∈N and B = {bj}j∈N be two countable partitions in
F. We say B is a refinement of A , and write A ≺ B, if

(i) For each ai ∈ A there exists bi1 , . . . , bini
∈ B such that,

m(ai) =
ni∑

j=1

m(bij );

(ii) If ai, ak are two distinct element of A such that m(ai) =
∑ni

j=1 m(bij ) and
m(ak) =

∑nk

j=1 m(bkj ), then bij 6= bkl
for any j ∈ {1, . . . , ni} and l ∈ {1, . . . , nk}.

Proposition 2.6. A∇B with Lexicographic ordering is a countable partition in F.
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Proof. Since A∇B is given Lexicographic order, we have,

∑

i,j∈N
m(ai ¯ bj ) =

∞∑

j=1

∞∑

i=1

m(ai ¯ bj ).

Therefore,
∞∑

j=1

∞∑

i=1

m(ai ¯ bj ) =
∞∑

j=1

m(bj) = m(1).

So these imply that, ∑

i,j∈N
m(ai ¯ b

j
) = m(1).

On the other hand, for any c ∈ F we have,
∑

i,j∈Nm((ai ¯ bj)¯ c) =
∑∞

j=1

∑∞
i=1 m(ai ¯ (bj ¯ c))

=
∑∞

j=1 m(bj ¯ c) = m(c).

¤

3 Entropy of a countable partition in F

Definition 3.1. Let A = {ai}i∈N be a countable partition in F. The entropy of A
is defined by

H(A ) = − log sup
i∈N

m(ai).

Proposition 3.2. Let A = {ai}i∈N and B = {bj}j∈N be two countable partitions in
F. If B is a refinement of A , then for any bk ∈ B there exist some al ∈ A such that

m(bk) ≤ m(al).

Proof. If it isn’t so, we assume that there exists k0 ∈ N such that

m(bk0) > m(ai)

for any i ∈ N.
Since A ≺ B, for any ai ∈ A , there exist bij ∈ B and ni ∈ N such that

m(ai) =
ni∑

i=1

m(bij ).

So these imply that

m(bk0) >

ni∑

i=1

m(bij ).

Since B is a refinement of A we have
∞∑

i=1

m(ai) =
∞∑

i=1

ni∑

j=1

m(bij ).(3.1)

But, we know that for any i ∈ N, j ∈ {1, . . . , ni}, we have bk0 6= bij .
Since otherwise, we would have two cases:
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case(1) If ni = 1, then m(bk0) > m(bk0), and this is a contradiction.

case(2) If ni ≥ 2, then 0 >
∑ni

j=1,ij 6=k0
m(bij ), and this is also a contradiction.

Now, since A is a countable partition in F, in the right side of the Equation (3.1) we
have all bij ∈ B except for bk0 , and there are no repeated bij . Then

m(1) =
∞∑

j=1,j 6=k0

m(bj).

But since B is a countable partition in F , this contradicts the Remark 2.3. ¤

Proposition 3.3. Let A = {ai}i∈N and B = {bj}j∈N be two countable partitions in
F.If B is a refinement of A , then H(A ) ≤ H(B).

Proof. It is clear by using Proposition 3.2. ¤

Definition 3.4. Two countable partitions A = {ai}i∈N and B = {bj}j∈N in F are
called independent if

m(ai ¯ bj) = m(ai)m(bj)

for any i, j ∈ N.

Proposition 3.5. Let A = {ai}i∈N and B = {bj}j∈N be two countable partitions in
F.Then

(i) H(A∇c) ≥ H(A ), for any c ∈ F

(ii) H(A∇B) ≥ H(A ) and H(A∇B) ≥ H(B);

(iii) If A and B are independent, then

H(A∇B) = H(A ) + H(B).

Proof.

(i) For any i ∈ N we have ai ≥ ai ¯ c. Therefore

m(ai) ≥ m(ai ¯ c),

for any i ∈ N.

(ii) We have m(ai) ≥ m(ai ¯ bj), for any i, j ∈ N.
This follows that

sup
i∈N

m(ai) ≥ sup
j∈N

sup
i∈N

m(ai ¯ bj).

Therefore,
H(A∇B) ≥ H(A ).

Similarly we have, H(A∇B) ≥ H(B).



52 Mohamad Ebrahimi and Nasrin Mohamadi

(iii)

H(A∇B) = − log sup
i,j∈N

m(ai ¯ bj)

= − log sup
i,j∈N

m(ai)m(bj)

= H(A ) + H(B).

¤

Definition 3.6. Let A = {ai}i∈N be a countable partition in F and c ∈ F such that
m(c) 6= 0. The conditional entropy of A given c is defined by

H(A | c) = − log sup
i∈N

m(ai | c),

where m(ai | c) =
m(ai ¯ c)

m(c)
.

Proposition 3.7. Let A = {ai}i∈N and B = {bj}j∈N be two countable partitions in
F.Let c and d be two arbitrary elements in F, such that m(c) 6= 0 and m(d) 6= 0. We
have

(i) H(A∇c) ≥ H(A | c);
(ii) If d ≤ c, then H(A∇d) ≤ H(A∇c);

(iii) If A ≺ B, then H(A | c) ≤ H(B | c).
Proof.

(i) Since m(c) ∈ (0, 1], we have

m(ai ¯ c) ≤ m(ai ¯ c)
m(c)

.

It follows that

− log sup
i∈N

m(ai ¯ c) ≥ − log sup
i∈N

m(ai ¯ c)
m(c)

.

(ii) Since d ≤ c, we have m(ai ¯ d) ≤ m(ai ¯ c), for any i ∈ N.

(iii) Since A ≺ B, for any k ∈ N, there exists l ∈ N such that

m(bk) ≤ m(al).

Then we have
m(bk ¯ c) ≤ m(al ¯ c).

¤
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Definition 3.8. The entropy function of c ∈ F is defined by

H(c) =

{
− log m(c) if m(c) > 0
0 if m(c) = 0

Proposition 3.9. Let A = {ai}i∈N be a countable partition in F and c, d be arbitrary
elements in F such that m(c) 6= 0. Then

(i) H(c) ≥ 0;

(ii) H(A∇c) ≥ H(c);

(iii) If d ≤ c, then H(c) ≤ H(d);

(iv) H(A∇c) = H(A | c) + H(c).

Proof. (i), (ii), (iii) are clear.

(iv)

H(A | c) + H(c) = − log sup
i∈N

m(ai ¯ c)
m(c)

+ (− log m(c))

= − log sup
i∈N

m(ai ¯ c)
m(c)

m(c).

¤

Definition 3.10. Let A = {ai}i∈N be a countable partition in F. The diameter of
A is defined as follows,

diam(A ) = sup
i∈N

m(ai).

Definition 3.11. Let A = {ai}i∈N and B = {bj}j∈N be two countable partitions in
F. The conditional entropy of A given B is defined by,

H(A | B) = − log sup
i∈N

diam(ai∇B)
diamB

.

Remark 3.12. (i) It is easy to see,

− log sup
i∈N

diam(ai∇B)
diamB

= − log sup
j∈N

diam(A∇bj)
diamB

.

(ii) If we set P 0 = {1}, then P 0 is a countable partition in F and

H(A |P 0) = H(A ).

Proposition 3.13. Let A = {ai}i∈N , B = {bj}j∈N and C = {ck}k∈N be countable
partitions in F. We have,

(i) H(A | B) ≥ 0;
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(ii) H(A∇B | C ) = H(A | C ) + H(B | A∇C );

(iii) H(A∇B) = H(A ) + H(B | A );

(iv) If A ≺ B, then H(A | C ) ≤ H(B | C );

(v) If B ≺ C , then H(A | B) ≤ H(A∇C ).

In particular, H(A | B) ≤ H(A∇B);

(vi) H(A ) ≥ H(A | B);

(vii) H(A∇B) ≤ H(A ) + H(B);

(viii) If A and B∇C are independent, then

H(A∇B | C ) = H(A ) + H(B | C ).

Proof.

(i) It is clear.

(ii)

sup
k∈N

diam((A∇B)∇ck)
diam C

= sup
k∈N

diam(A∇ck)
diam C

× diam((A∇B)∇ck)
diam(A∇ck)

= sup
k∈N

supi∈Nm(ai ¯ ck)
diam C

× supi,j∈Nm(ai ¯ bj ¯ ck)
supi∈Nm(ai ¯ ck)

= (sup
k∈N

supi∈Nm(ai ¯ ck)
diam C

)(
supi,j,k∈Nm(ai ¯ bj ¯ ck)

supi,k∈Nm(ai ¯ ck)
).

Then,

H(A∇B | C ) = − log sup
k∈N

diam((A∇B)∇ck)
diam C

= − log sup
k∈N

diam(A∇ck)
diam C

− log sup
j∈N

diam(bj∇(A∇C ))
diam(A∇C )

(iii) Set C = P 0 in (i).

(iv) Since A ≺ B, for any j ∈ N there exists l ∈ N such that,

m(bj ¯ ck) ≤ m(al ¯ ck).

Then,
sup

j,k∈N
m(bj ¯ ck) ≤ sup

i,j∈N
m(al ¯ ck).
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(v) As B ≺ C , for any k ∈ N there exists l ∈ N such that,

m(ai ¯ ck) ≤ m(ai ¯ bl),

for any i ∈ N.
Therefore,

(3.2) sup
k∈N

sup
i∈N

m(ai ¯ ck) ≤ sup
j∈N

sup
i∈N

m(ai ¯ bj).

On the other hand, because B is a countable partition in F, there exists j ∈ N
such that m(bj) > 0. Therefore, 0 < diamB ≤ 1. And it follows that,

sup
j∈N

sup
i∈N

m(ai ¯ bj) ≤ supj∈N supi∈Nm(ai ¯ bj)
diamB

= sup
j∈N

supi∈Nm(ai ¯ bj)
diamB

= sup
j∈N

diam(A∇bj)
diamB

(3.3)

Then we have,

sup
i,k∈N

m(ai ¯ ck) ≤ sup
j∈N

diam(A∇bj)
diamB

.

vi) We have,
m(ai) ≥ m(ai ¯ bj),

for any i, j ∈ N. Therefore,

sup
i∈N

m(ai) ≤ sup
i,j∈N

m(ai ¯ bj) ≤
supi,j∈Nm(ai ¯ bj)

diam B
.

(vii) It follows immediately from (iii) and (vi).

(viii) A and B∇C are independent, so

m(ai ¯ (bj ¯ ck)) = m(ai)m(bj ¯ ck),

for any i, j, k ∈ N.
Then,

H(A∇B | C ) = − log sup
k∈N

supi,j∈Nm(ai ¯ (bj ¯ ck))
diam C

= − log sup
k∈N

supi,j∈Nm(ai)m(bj ¯ ck)
diam C

= − log(sup
i∈N

m(ai))(sup
k∈N

supj∈Nm(bj ¯ ck)
diam C

)

= − log sup
i∈N

m(ai)− log sup
k∈N

diam(B∇ck)
diam C

.

¤
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4 Entropy of m−preserving transformations

First we give some definitions.

Definition 4.1. Let G be a non-empty subset of F. We say G is m−set if there exists
k ∈ [0, 1] such that m(a) = k, for any a ∈ G. In this case we define m(G) = k.

Definition 4.2. Let G1 and G2 be two non-empty subsets of F. We define,

G1 ⊕G2 = {a1 ⊕ a2 : a1 ∈ G1, a2 ∈ G2},

G1 ¯G2 = {a1 ¯ a2 : a1 ∈ G1, a2 ∈ G2}.
Remark 4.3. If G1 and G2 are m−sets, then G1 ⊕G2 is also an m−set.

Definition 4.4. A function u : F −→ F is called m−preserving transformation if

(i) u−1(a) is an m-set with k = m(a), for any a ∈ F ;

(ii) u−1(a⊕ b) is an m−set and

m(u−1(a⊕ b)) = m(u−1(a)⊕ u−1(b)),

for any a, b ∈ F ;

(iii) u−1(a¯ b) and u−1(a)¯ u−1(b) are m−sets and

m(u−1(a¯ b)) = m(u−1(a)¯ u−1(b)),

for any a, b ∈ F.

Remark 4.5. It is easy to see that for an m-preserving transformation u, and for
any a ∈ F and n ∈ N, we have

(i) m(u−n(a)) = m(a);

(ii) m(u−n(a¯ b)) = m(u−n(a)¯ u−n(b)).

Definition 4.6. Let u : F −→ F be an m-preserving transformation, and A =
{a}i∈N be a countable partition in F. The inverse image of A by u is the set u−1A
containing exactly one element bi of u−1(ai), for any ai ∈ A .

Proposition 4.7. The inverse image u−1A is a countable partition in F, for any
countable partition A in F, and any m-preserving transformation u. In addition,

h(u−1A ) = H(A ).

Proof. Let u−1A = {bi ∈ F : u(bi) = ai, ai ∈ A } such that, (u−1A \ bi) ∩
(u−1(ai)) = f¡ . Therefore we have,

∞∑

i=1

m(bi) =
∞∑

i=1

m(u−1(ai)) =
∞∑

i=1

m(ai) = m(1).
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On the other hand, since u−1(b) is an m-set for any b ∈ F, we have

∞∑

i=1

m(bi ¯ u−1(b)) =
∞∑

i=1

m(u−1(ai)¯ u−1(b)) =
∞∑

i=1

m(ai ¯ b) = m(b).

Thus u−1A is a countable partition in F.

Now

H(u−1A ) = − log sup
i∈N

m(bi) = − log sup
i∈N

m(u−1(ai)) = − log sup
i∈N

m(ai) = H(A ).

¤

Corollary 4.8. Let B = {bi : u(bi) = ai, i ∈ N} and C = {ci : u(ci) = ai, i ∈ N} be
two inverse images of a countable partition A = {ai}i∈N in F such that bi 6= ci, for
some i ∈ N. Then,

H(B) = H(C ).

Proof. It is clear by using previous proposition. ¤

Proposition 4.9. Let A and B be two countable partitions in F, and u be an m-
preserving transformation. If A ≺ B, then H(u−nA ) ≤ H(u−nB).

Proof. As m(u−n(ai)) = m(ai), for any i ∈ N, we have

H(u−nA ) = H(A ).

Similarly we have,
H(u−nB) = H(B).

On the other hand, because A ≺ B, we have H(A ) ≤ H(B). ¤

Proposition 4.10. Let u be an m−preserving transformation, and A and B be two
countable partitions in F. Then for any n ∈ N,

(i) H(u−nA ) = H(A );

(ii) H(u−n(A∇B)) = H(u−nA∇u−nB);

(iii) H(u−nA |u−nB) = H(A |B);

(iv) H(u−n∇k
i=1A ) = H(∇k

i=1u
−nA ), for any k ∈ N.

Proof.

(i) We show it by induction. For n = 1 it is obviously true. Suppose it’s true for
n = k. We have,

H(u−(k+1)A ) = H(u−1(u−kA )) = H(u−kA ) = H(A ).

(ii) It follows immediately from the definition.
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(iii) For any j ∈ N we have m(u−n(bj)) = m(bj). It follows that,

diam(u−nB) = diamB.

Similarly,
diam(u−n(ai)∇u−nB) = diam(ai∇B),

for any i ∈ N.

(iv) By induction,

m(u−n(a¯ · · · ¯ a)) = m(u−n(a)¯ · · · ¯ u−n(a)),

for any n ∈ N.

¤

Proposition 4.11. Let u be an m-preserving transformation and A be a countable
partition in F. Then for any n ∈ N we have,

H(∇n−1
i=0 u−iA ) = H(A ) +

n−1∑

j=1

H(A |∇j
i=1u

−iA ).

Proof. Let us prove it by induction. For n = 1 it is obviously clear.
Now assume that this holds for n = k. So we have,

H(∇k
i=0u

−iA ) = H(∇k
i=1u

−iA∇A )

= H(∇k
i=1u

−iA ) + HA |∇k
i=1u

−iA ).

But
H(∇k

i=1u
−iA ) = H(u−1(∇k−1

i=0 u−iA )) = (∇k−1
i=0 u−iA ).

Then by using induction assumption, the equality is obtained. ¤

Lemma 4.12. Let {an}n∈N be a sequence of non-negative real numbers such that
an+p ≤ an + ap, for any n, p ∈ N. Then,

lim
n→∞

an

n
= inf

n∈N
an

n
.

For the proof see [7], chapter 4.

Proposition 4.13. If u is an m−preserving transformation, and A is a countable

partition in F, then limn→∞
1
n

H(∇n−1
i=0 u−iA ) exists.

Proof. Let us set
an = H(∇n−1

i=0 u−iA ).

Then,

an+p = H(∇n+p−1
i=0 u−iA ) ≤ H(∇n−1

i=0 u−iA ) + H(∇n+p−1
i=n u−iA ).
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But,

H(∇n+p−1
i=n u−iA ) = − log sup

ji∈N,0≤i≤p−1
m(u−n(aj0)¯ · · · ¯ u−(n+p−1)(aj(p−1)))

= − log sup
ji∈N,0≤i≤p−1

m(u−n(aj0 ¯ · · · ¯ u−(p−1)(ajp−1)))

= − log sup
ji∈N,0≤i≤p−1

m(aj0 ¯ · · · ¯ u−(p−1)(ajp−1))

= H(∇p−1
i=0 u−iA ).

These imply that an+p ≤ an + ap, for any n, p ∈ N. ¤

Definition 4.14. Let u be an m−preserving transformation and A be a countable
partition in F. Entropy of u with respect to A is defined by,

h(u, A ) = lim
n→∞

1
n

H(∇n−1
i=0 u−iA ).

Proposition 4.15. Let A and B be two countable partitions in F, and u be an
m−preserving transformation. Then we have,

(i) h(u, A ) ≤ H(A );

(ii) If A ≺ B, then h(u, A ) ≤ h(u, B);

(iii) h(u, u−1A ) = h(u,A );

(iv) h(u, A∇B) ≤ h(u,A ) + h(u, B);

(v) h(u,∇r
i=ku−iA ) = h(u,A ), for any k ≤ r, r ≥ 0;

(vi) h(u,∇r
i=0u

−iA ) = h(u, A );

(vii) If u is invertible and k ≥ 1, then

h(u,∇k
i=−ku−iA ) = h(u, A ).

Proof.

(i) It is clear.

(ii) Because A ≺ B, for j = j0 there exists l0 ∈ N such that,

m(bj0) ≤ m(al0).

It follows that,
m(bj0 ¯ u−1(bj1)) ≤ m(al ¯ u−1(bj1)).

Now for j = j1 there exists l1 ∈ N such that

m(bj1) ≤ m(al1).
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These imply that

m(bj0 ¯ u−1(bj1)) ≤ m(al0 ¯ u−1(al1)).

Therefore using induction, we may find l0, ..., ln−1 ∈ N for any j0, ..., jn−1 ∈ N
such that,

m(bj0¯u−1(bj1)¯· · ·¯u−(n−1)(bjn−1)) ≤ m(al0¯u−1(al1)¯· · ·¯u−(n−1)(aln−1)).

Note that if m(bj) ≤ m(al), then m(u−1(bj)) ≤ m((u−1(al)), for any n ∈ N.

(iii)

H(∇n−1
i=0 u−i(u−1A )) = − log sup m(u−1(ai0 ¯ u−1(ai1)¯ · · · ¯ u−(n−1)(ain−1)))

= − log sup m(ai0 ¯ u−1(ai1)¯ · · · ¯ u−(n−1)(ain−1))

= H(∇n−1
i=0 u−iA ).

(iv)

H(∇n−1
i=0 u−i(A∇B)) = H(∇n−1

i=0 (u−iA∇u−iB))

= H((∇n−1
i=0 u−i(A )∇(∇n−1

i=0 u−iB))

≤ H(∇n−1
i=0 u−i(A ) + H(∇n−1

i=0 u−iB).

(v)

h(u,∇r
i=ku−iA ) = lim

n→∞
1
n

H(∇n−1
j=0 u−j(∇r

i=ku−iA ))

= lim
n→∞

1
n

H(∇n+r−k−1
i=0 u−iA )

= lim
n→∞

n + r − k

n

1
n + r − k

H(∇n+r−k−1
i=0 u−iA )

= h(u, A ).

(vi) In (v) we set k = 0.

(vii) h(u,∇k
i=−ku−iA ) = h(u,∇2k

i=0u
−iA ) = h(u, A ).

¤
Definition 4.16. Let u be an m−preserving transformation. Entropy of u is defined
by,

h(u) = sup
A

h(u, A ),

where supremum is taken over all countable partitions in F.
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Proposition 4.17. If u is identity transformation, then h(u) = 0.

Proof. By definition and using induction we see that ∇n−1
i=0 A = A , for any n ∈ N.

Therefore,

h(id,A ) = lim
n→∞

1
n

H(∇n−1
i=0 A ) = 0.

¤

Corollary 4.18. If u is an m-preserving transformation such that uk = id, for some
k ∈ N, then h(uk) = 0.

Proof. This follows immediately from previous propositions. ¤

Proposition 4.19. Let u be an m−preserving transformation. Then we have,

(i) h(uk) = kh(u), for any k > 0;

(ii) If u is invertible, then h(uk) = |k|h(u), for any k ∈ Z.

Proof.

(i) For any countable partition A in F we have,

h(uk,∇k−1
i=0 u−iA ) = lim

n→∞
1
n

H(∇n−1
j=0 (uk)−j(∇k−1

i=0 u−iA ))

= lim
n→∞

1
n

H(∇n−1
j=0∇k−1

i=0 u−(kj+i)A )

= lim
n→∞

1
n

H(∇nk−1
i=0 u−iA )

= lim
n→∞

nk

n

1
nk

H(∇nk−1
i=0 u−iA )

= kh(u, A ).

Therefore,

kh(u) = k supA h(u, A ) = supA h(uk,∇k−1
i=0 u−iA )

≤ supB h(uk, B) = h(uk).

On the other hand, as

A ≺ A∇u−1A∇ · · ·∇u−(k−1)A ,

we have,
h(uk, A ) ≤ h(uk,∇k−1

i=0 u−iA) = kh(u, A ).
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(ii) We will show that h(u−1) = h(u).

h(u, A ) = lim
n→∞

1
n

H(∇n−1
i=0 u−iA )

= lim
n→∞

1
n

H(u−(n−1)∇n−1
i=0 u−iA )

= lim
n→∞

1
n

H(∇n−1
i=0 ui−(n−1)A )

= lim
n→∞

1
n

H(∇n−1
i=0 u−iA )

= h(u, A ).

¤

5 Generators of m-preserving transformations

Definition 5.1. Let u : F −→ F be an m−preserving transformation. A countable
partition G in F is said to be a generator of u if there exists r ∈ N such that,

A ≺ ∇r
i=0u

−iG ,

for any countable partition A in F.

Proposition 5.2. If G is a generator of u, then

h(u, A ) ≤ h(u, G ),

for any countable partition A in F.

Proof. G is a generator of u, so there exists r > 0 such that,

A ≺ ∇r
i=0u

−iG ,

for any countable partition A in F. Therefore,

h(u, A ) ≤ h(u,∇r
i=0u

−iG ) = h(u, G ).

¤

Proposition 5.3. Let G be a generator of an m-preserving transformation u. Then,

h(u) = h(u, G ).

Proof. Since G is a generator of u, we have h(u, A ) ≤ h(u, G ). Thus,

sup
A

h(u,A ) ≤ h(u,G ).

And we know, h(u, G ) ≤ supA h(u, A ). This completes the proof. ¤



The entropy function on an algebraic structure 63

6 Conclusions

In this paper, we have defined a specific algebraic structure and it’s countable par-
tition.Then we have proved some properties for the entropy of this countable partition,
parallel to the properties of the classical entropy(see [7]). Also, we have represented
the notion of m−preserving transformation. Finally, we have introduced a generator
of a dynamical system and stated a version of Kolomogorov-Sinai theorem.
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