The entropy function on an algebraic structure with infinite partition and m-preserving transformation generators

Mohamad Ebrahimi and Nasrin Mohamadi

Abstract. One of the applied branches of mathematics is the entropy of a dynamical system. In this paper we defined the infinite partition of an algebraic structure and then we introduce the entropy of a countable partition of this structure. In this respect, we introduce the generators of an *m*-preserving transformation of a discrete dynamical system. At the end, we prove a version of Kolomogorov-Sinai theorem concerning the entropy of a dynamical system.

M.S.C. 2000: 28D20, 37A35, 54C70, 37-XX. Key words: *F*-measure, countable partition, entropy, *m*-preserving transformation, generators.

1 Introduction

We assume that the reader is familiar with the definition of dynamical systems and ergodic theory. In physics, entropy of a system with a finite quantum states is defined by $S = -k \sum_{v} f_v \ln(f_v)$; $\sum_{v} f_v = 1$, where k is the Boltzmann constant and the sum is over all quantum states. This formula can be interpreted as a degree of disordering of the system. The entropy of an algebraic structure with a finite partition was defined by Riecăn [6]. In this paper we will extend this notion to an algebraic structure with infinite partition and we discuss ergodic theory properties.

2 Basic concepts

Let F be a non-empty totally ordered set. Also let \oplus , \odot be two binary operations on F and 1 be a constant element of F such that,

$$(2.1) 1 \odot a = a \ge a \odot b.$$

Definition 2.1. A function $m: F \longrightarrow [0,1]$ is called *F*-measure if for any *a*, *b* and $c \in F$ we have,

Applied Sciences, Vol.12, 2010, pp. 48-63.

[©] Balkan Society of Geometers, Geometry Balkan Press 2010.

- (i) $m(a \oplus b) = m(b \oplus a), m(a \odot b) = m(b \odot a);$
- (ii) $m(a \oplus (b \oplus c)) = m((a \oplus b) \oplus c), \qquad m(a \odot (b \odot c)) = m((a \odot b) \odot c);$
- (iii) $m(a \odot (b \oplus c)) = m((a \odot b) \oplus (a \odot c)), \quad m(a \oplus (b \odot c)) = m((a \oplus b) \odot (a \oplus c));$
- (iv) $m(\bigoplus_{i=1}^{n} a_i) = \sum_{i=1}^{n} m(a_i)$, for any $n \in \mathbb{N}$;
- (v) If $a \leq b$ then $m(a) \leq m(b)$;
- (vi) $m(a \odot b) \le m(a);$
- (vii) If m(a) = m(1) then $m(a \odot b) = m(b)$;
- (viii) If $m(a) \le m(b)$ then $m(a \odot c) \le m(b \odot c)$.

Definition 2.2. A countable partition in F is a sequence $\mathscr{A} = \{a_i\}_{i \in \mathbb{N}} \subseteq F$ such that,

- (i) $m(1) = \sum_{i=1}^{\infty} m(a_i);$
- (ii) $\sum_{i=1}^{\infty} m(a_i \odot b) = m(b)$, for any $b \in F$.

Remark 2.3. It is clear that if a countable partition $\mathscr{A} = \{a_i\}_{i \in \mathbb{N}}$ has more than one element, then

$$m(a_i) < m(1),$$

for any $i \in \mathbb{N}$. And therefore,

$$\sum_{i=1, i \neq n}^{\infty} m(a_i) < m(1).$$

for any $n \in \mathbb{N}$.

Definition 2.4. Let $\mathscr{A} = \{a_i\}_{i \in \mathbb{N}}$ and $\mathscr{B} = \{b_j\}_{j \in \mathbb{N}}$ be two countable partitions in F. Their join is

$$\mathscr{A}\nabla\mathscr{B} = \{a_i \odot b_j : a_i \in \mathscr{A}, b_j \in \mathscr{B}, i, j \in \mathbb{N}\},\$$

if $\mathscr{A} \neq \mathscr{B}$, and

$$\mathscr{A}\nabla\mathscr{A}=\mathscr{A}.$$

Definition 2.5. Let $\mathscr{A} = \{a_i\}_{i \in \mathbb{N}}$ and $\mathscr{B} = \{b_j\}_{j \in \mathbb{N}}$ be two countable partitions in *F*. We say \mathscr{B} is a refinement of \mathscr{A} , and write $\mathscr{A} \prec \mathscr{B}$, if

(i) For each $a_i \in \mathscr{A}$ there exists $b_{i_1}, \ldots, b_{i_{n_i}} \in \mathscr{B}$ such that,

$$m(a_i) = \sum_{j=1}^{n_i} m(b_{i_j});$$

(ii) If a_i, a_k are two distinct element of \mathscr{A} such that $m(a_i) = \sum_{j=1}^{n_i} m(b_{i_j})$ and $m(a_k) = \sum_{j=1}^{n_k} m(b_{k_j})$, then $b_{i_j} \neq b_{k_l}$ for any $j \in \{1, \ldots, n_i\}$ and $l \in \{1, \ldots, n_k\}$.

Proposition 2.6. $\mathscr{A}\nabla\mathscr{B}$ with Lexicographic ordering is a countable partition in F.

Proof. Since $\mathscr{A}\nabla\mathscr{B}$ is given Lexicographic order, we have,

$$\sum_{i,j\in\mathbb{N}} m(a_i \odot b_j) = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} m(a_i \odot b_j).$$

Therefore,

$$\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} m(a_i \odot b_j) = \sum_{j=1}^{\infty} m(b_j) = m(1).$$

So these imply that,

$$\sum_{i,j\in\mathbb{N}} m(a_i\odot b_j) = m(1).$$

On the other hand, for any $c \in F$ we have,

$$\sum_{i,j\in\mathbb{N}} m((a_i \odot b_j) \odot c) = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} m(a_i \odot (b_j \odot c))$$
$$= \sum_{j=1}^{\infty} m(b_j \odot c) = m(c).$$

3 Entropy of a countable partition in F

Definition 3.1. Let $\mathscr{A} = \{a_i\}_{i \in \mathbb{N}}$ be a countable partition in *F*. The entropy of \mathscr{A} is defined by

$$H(\mathscr{A}) = -\log \sup_{i \in \mathbb{N}} m(a_i).$$

Proposition 3.2. Let $\mathscr{A} = \{a_i\}_{i \in \mathbb{N}}$ and $\mathscr{B} = \{b_j\}_{j \in \mathbb{N}}$ be two countable partitions in *F*. If \mathscr{B} is a refinement of \mathscr{A} , then for any $b_k \in \mathscr{B}$ there exist some $a_l \in \mathscr{A}$ such that

$$m(b_k) \le m(a_l).$$

Proof. If it isn't so, we assume that there exists $k_0 \in \mathbb{N}$ such that

$$m(b_{k_0}) > m(a_i)$$

for any $i \in \mathbb{N}$.

Since $\mathscr{A} \prec \mathscr{B}$, for any $a_i \in \mathscr{A}$, there exist $b_{i_j} \in \mathscr{B}$ and $n_i \in \mathbb{N}$ such that

$$m(a_i) = \sum_{i=1}^{n_i} m(b_{i_j}).$$

So these imply that

$$m(b_{k_0}) > \sum_{i=1}^{n_i} m(b_{i_j}).$$

Since ${\mathcal B}$ is a refinement of ${\mathcal A}$ we have

(3.1)
$$\sum_{i=1}^{\infty} m(a_i) = \sum_{i=1}^{\infty} \sum_{j=1}^{n_i} m(b_{i_j}).$$

But, we know that for any $i \in \mathbb{N}, j \in \{1, \ldots, n_i\}$, we have $b_{k_0} \neq b_{i_j}$. Since otherwise, we would have two cases: case(1) If $n_i = 1$, then $m(b_{k_0}) > m(b_{k_0})$, and this is a contradiction.

case(2) If $n_i \ge 2$, then $0 > \sum_{j=1, i_j \ne k_0}^{n_i} m(b_{i_j})$, and this is also a contradiction.

Now, since \mathscr{A} is a countable partition in F, in the right side of the Equation (3.1) we have all $b_{i_j} \in \mathscr{B}$ except for b_{k_0} , and there are no repeated b_{i_j} . Then

$$m(1) = \sum_{j=1, j \neq k_0}^{\infty} m(b_j)$$

But since \mathscr{B} is a countable partition in F, this contradicts the Remark 2.3.

Proposition 3.3. Let $\mathscr{A} = \{a_i\}_{i \in \mathbb{N}}$ and $\mathscr{B} = \{b_j\}_{j \in \mathbb{N}}$ be two countable partitions in *F.If* \mathscr{B} is a refinement of \mathscr{A} , then $H(\mathscr{A}) \leq H(\mathscr{B})$.

Proof. It is clear by using Proposition 3.2.

Definition 3.4. Two countable partitions $\mathscr{A} = \{a_i\}_{i \in \mathbb{N}}$ and $\mathscr{B} = \{b_j\}_{j \in \mathbb{N}}$ in F are called independent if

$$m(a_i \odot b_j) = m(a_i)m(b_j)$$

for any $i, j \in \mathbb{N}$.

Proposition 3.5. Let $\mathscr{A} = \{a_i\}_{i \in \mathbb{N}}$ and $\mathscr{B} = \{b_j\}_{j \in \mathbb{N}}$ be two countable partitions in *F. Then*

- (i) $H(\mathscr{A}\nabla c) \ge H(\mathscr{A})$, for any $c \in F$
- (ii) $H(\mathscr{A}\nabla\mathscr{B}) \geq H(\mathscr{A})$ and $H(\mathscr{A}\nabla\mathscr{B}) \geq H(\mathscr{B})$;
- (iii) If \mathscr{A} and \mathscr{B} are independent, then

$$H(\mathscr{A}\nabla\mathscr{B}) = H(\mathscr{A}) + H(\mathscr{B}).$$

Proof.

(i) For any $i \in \mathbb{N}$ we have $a_i \geq a_i \odot c$. Therefore

 $m(a_i) \ge m(a_i \odot c),$

for any $i \in \mathbb{N}$.

(ii) We have $m(a_i) \ge m(a_i \odot b_j)$, for any $i, j \in \mathbb{N}$. This follows that

 $\sup_{i\in\mathbb{N}} m(a_i) \ge \sup_{j\in\mathbb{N}} \sup_{i\in\mathbb{N}} m(a_i \odot b_j).$

Therefore,

$$H(\mathscr{A}\nabla\mathscr{B}) \geq H(\mathscr{A})$$

Similarly we have, $H(\mathscr{A}\nabla\mathscr{B}) \geq H(\mathscr{B})$.

(iii)

$$H(\mathscr{A}\nabla\mathscr{B}) = -\log \sup_{i,j\in\mathbb{N}} m(a_i \odot b_j)$$
$$= -\log \sup_{i,j\in\mathbb{N}} m(a_i)m(b_j)$$
$$= H(\mathscr{A}) + H(\mathscr{B}).$$

Definition 3.6. Let $\mathscr{A} = \{a_i\}_{i \in \mathbb{N}}$ be a countable partition in F and $c \in F$ such that $m(c) \neq 0$. The conditional entropy of \mathscr{A} given c is defined by

$$H(\mathscr{A} \mid c) = -\log \sup_{i \in \mathbb{N}} m(a_i \mid c),$$

where $m(a_i \mid c) = \frac{m(a_i \odot c)}{m(c)}$.

Proposition 3.7. Let $\mathscr{A} = \{a_i\}_{i \in \mathbb{N}}$ and $\mathscr{B} = \{b_j\}_{j \in \mathbb{N}}$ be two countable partitions in *F.Let c* and *d* be two arbitrary elements in *F*, such that $m(c) \neq 0$ and $m(d) \neq 0$. We have

- (i) $H(\mathscr{A}\nabla c) \ge H(\mathscr{A} \mid c);$
- (ii) If $d \leq c$, then $H(\mathscr{A}\nabla d) \leq H(\mathscr{A}\nabla c)$;
- (iii) If $\mathscr{A} \prec \mathscr{B}$, then $H(\mathscr{A} \mid c) \leq H(\mathscr{B} \mid c)$.

Proof.

(i) Since $m(c) \in (0, 1]$, we have

$$m(a_i \odot c) \le \frac{m(a_i \odot c)}{m(c)}.$$

It follows that

$$-\log \sup_{i \in \mathbb{N}} m(a_i \odot c) \ge -\log \sup_{i \in \mathbb{N}} \frac{m(a_i \odot c)}{m(c)}$$

- (ii) Since $d \leq c$, we have $m(a_i \odot d) \leq m(a_i \odot c)$, for any $i \in \mathbb{N}$.
- (iii) Since $\mathscr{A} \prec \mathscr{B}$, for any $k \in \mathbb{N}$, there exists $l \in \mathbb{N}$ such that

$$m(b_k) \le m(a_l).$$

Then we have

$$m(b_k \odot c) \le m(a_l \odot c)$$

Definition 3.8. The entropy function of $c \in F$ is defined by

$$H(c) = \begin{cases} -\log m(c) & \text{if } m(c) > 0\\ 0 & \text{if } m(c) = 0 \end{cases}$$

Proposition 3.9. Let $\mathscr{A} = \{a_i\}_{i \in \mathbb{N}}$ be a countable partition in F and c, d be arbitrary elements in F such that $m(c) \neq 0$. Then

- (*i*) $H(c) \ge 0;$
- (ii) $H(\mathscr{A}\nabla c) \ge H(c);$
- (iii) If $d \leq c$, then $H(c) \leq H(d)$;
- (iv) $H(\mathscr{A}\nabla c) = H(\mathscr{A} \mid c) + H(c).$

Proof. (i), (ii), (iii) are clear.

(iv)

$$H(\mathscr{A} \mid c) + H(c) = -\log \sup_{i \in \mathbb{N}} \frac{m(a_i \odot c)}{m(c)} + (-\log m(c))$$
$$= -\log \sup_{i \in \mathbb{N}} \frac{m(a_i \odot c)}{m(c)} m(c).$$

Definition 3.10. Let $\mathscr{A} = \{a_i\}_{i \in \mathbb{N}}$ be a countable partition in *F*. The diameter of \mathscr{A} is defined as follows,

$$liam(\mathscr{A}) = \sup_{i \in \mathbb{N}} m(a_i).$$

Definition 3.11. Let $\mathscr{A} = \{a_i\}_{i \in \mathbb{N}}$ and $\mathscr{B} = \{b_j\}_{j \in \mathbb{N}}$ be two countable partitions in *F*. The conditional entropy of \mathscr{A} given \mathscr{B} is defined by,

$$H(\mathscr{A} \mid \mathscr{B}) = -\log \sup_{i \in \mathbb{N}} \frac{diam(a_i \nabla \mathscr{B})}{diam\mathscr{B}}.$$

Remark 3.12. (i) It is easy to see,

$$-\log \sup_{i \in \mathbb{N}} \frac{diam(a_i \nabla \mathscr{B})}{diam \mathscr{B}} = -\log \sup_{j \in \mathbb{N}} \frac{diam(\mathscr{A} \nabla b_j)}{diam \mathscr{B}}$$

(ii) If we set $P^0 = \{1\}$, then P^0 is a countable partition in F and

$$H(\mathscr{A}|P^0) = H(\mathscr{A}).$$

Proposition 3.13. Let $\mathscr{A} = \{a_i\}_{i \in \mathbb{N}}$, $\mathscr{B} = \{b_j\}_{j \in \mathbb{N}}$ and $\mathscr{C} = \{c_k\}_{k \in \mathbb{N}}$ be countable partitions in F. We have,

(i) $H(\mathscr{A} \mid \mathscr{B}) \ge 0;$

- $(ii) \ H(\mathscr{A}\nabla\mathscr{B} \mid \mathscr{C}) = H(\mathscr{A} \mid \mathscr{C}) + H(\mathscr{B} \mid \mathscr{A}\nabla\mathscr{C});$
- (*iii*) $H(\mathscr{A}\nabla\mathscr{B}) = H(\mathscr{A}) + H(\mathscr{B} \mid \mathscr{A});$
- (iv) If $\mathscr{A} \prec \mathscr{B}$, then $H(\mathscr{A} \mid \mathscr{C}) \leq H(\mathscr{B} \mid \mathscr{C})$;
- $(v) \ \text{If} \ \mathscr{B} \prec \mathscr{C}, \ then \ H(\mathscr{A} \mid \mathscr{B}) \leq H(\mathscr{A} \nabla \mathscr{C}).$
 - In particular, $H(\mathscr{A} \mid \mathscr{B}) \leq H(\mathscr{A} \nabla \mathscr{B});$
- (vi) $H(\mathscr{A}) \geq H(\mathscr{A} \mid \mathscr{B});$
- (vii) $H(\mathscr{A}\nabla\mathscr{B}) \leq H(\mathscr{A}) + H(\mathscr{B});$
- (viii) If \mathscr{A} and $\mathscr{B}\nabla\mathscr{C}$ are independent, then

$$H(\mathscr{A}\nabla\mathscr{B} \mid \mathscr{C}) = H(\mathscr{A}) + H(\mathscr{B} \mid \mathscr{C}).$$

Proof.

(i) It is clear.

(ii)

$$\begin{split} \sup_{k\in\mathbb{N}} \frac{diam((\mathscr{A}\nabla\mathscr{B})\nabla c_k)}{diam\,\,\mathscr{C}} &= \sup_{k\in\mathbb{N}} \frac{diam(\mathscr{A}\nabla c_k)}{diam\,\,\mathscr{C}} \times \frac{diam((\mathscr{A}\nabla\mathscr{B})\nabla c_k)}{diam(\mathscr{A}\nabla c_k)} \\ &= \sup_{k\in\mathbb{N}} \frac{\sup_{i\in\mathbb{N}} m(a_i\odot c_k)}{diam\,\,\mathscr{C}} \times \frac{\sup_{i,j\in\mathbb{N}} m(a_i\odot b_j\odot c_k)}{\sup_{i\in\mathbb{N}} m(a_i\odot c_k)} \\ &= (\sup_{k\in\mathbb{N}} \frac{\sup_{i\in\mathbb{N}} m(a_i\odot c_k)}{diam\,\,\mathscr{C}}) (\frac{\sup_{i,j,k\in\mathbb{N}} m(a_i\odot b_j\odot c_k)}{\sup_{i,k\in\mathbb{N}} m(a_i\odot c_k)}). \end{split}$$

Then,

$$H(\mathscr{A}\nabla\mathscr{B} \mid \mathscr{C}) = -\log \sup_{k \in \mathbb{N}} \frac{diam((\mathscr{A}\nabla\mathscr{B})\nabla c_k)}{diam \,\mathscr{C}}$$
$$= -\log \sup_{k \in \mathbb{N}} \frac{diam(\mathscr{A}\nabla c_k)}{diam \,\mathscr{C}} - \log \sup_{j \in \mathbb{N}} \frac{diam(b_j \nabla (\mathscr{A}\nabla \mathscr{C}))}{diam(\mathscr{A}\nabla \mathscr{C})}$$

- (iii) Set $\mathscr{C} = P^0$ in (i).
- (iv) Since $\mathscr{A} \prec \mathscr{B}$, for any $j \in \mathbb{N}$ there exists $l \in \mathbb{N}$ such that,

$$m(b_j \odot c_k) \le m(a_l \odot c_k).$$

Then,

$$\sup_{j,k\in\mathbb{N}} m(b_j \odot c_k) \le \sup_{i,j\in\mathbb{N}} m(a_l \odot c_k).$$

(v) As $\mathscr{B} \prec \mathscr{C}$, for any $k \in \mathbb{N}$ there exists $l \in \mathbb{N}$ such that,

$$m(a_i \odot c_k) \le m(a_i \odot b_l),$$

for any $i \in \mathbb{N}$. Therefore,

(3.2)
$$\sup_{k \in \mathbb{N}} \sup_{i \in \mathbb{N}} m(a_i \odot c_k) \le \sup_{j \in \mathbb{N}} \sup_{i \in \mathbb{N}} m(a_i \odot b_j)$$

On the other hand, because \mathscr{B} is a countable partition in F, there exists $j \in \mathbb{N}$ such that $m(b_j) > 0$. Therefore, $0 < diam\mathscr{B} \leq 1$. And it follows that,

Then we have,

$$\sup_{i,k\in\mathbb{N}} m(a_i\odot c_k) \leq \sup_{j\in\mathbb{N}} \frac{diam(\mathscr{A}\nabla b_j)}{diam\mathscr{B}}$$

vi) We have,

$$m(a_i) \ge m(a_i \odot b_j),$$

for any $i, j \in \mathbb{N}$. Therefore,

$$\sup_{i \in \mathbb{N}} m(a_i) \le \sup_{i,j \in \mathbb{N}} m(a_i \odot b_j) \le \frac{\sup_{i,j \in \mathbb{N}} m(a_i \odot b_j)}{diam \ \mathscr{B}}.$$

- (vii) It follows immediately from (iii) and (vi).
- (viii) \mathscr{A} and $\mathscr{B}\nabla\mathscr{C}$ are independent, so

$$m(a_i \odot (b_j \odot c_k)) = m(a_i)m(b_j \odot c_k),$$

for any $i, j, k \in \mathbb{N}$. Then,

$$\begin{aligned} H(\mathscr{A}\nabla\mathscr{B} \mid \mathscr{C}) &= -\log \sup_{k \in \mathbb{N}} \frac{\sup_{i,j \in \mathbb{N}} m(a_i \odot (b_j \odot c_k))}{diam \,\mathscr{C}} \\ &= -\log \sup_{k \in \mathbb{N}} \frac{\sup_{i,j \in \mathbb{N}} m(a_i)m(b_j \odot c_k)}{diam \,\mathscr{C}} \\ &= -\log (\sup_{i \in \mathbb{N}} m(a_i))(\sup_{k \in \mathbb{N}} \frac{\sup_{j \in \mathbb{N}} m(b_j \odot c_k)}{diam \,\mathscr{C}}) \\ &= -\log \sup_{i \in \mathbb{N}} m(a_i) - \log \sup_{k \in \mathbb{N}} \frac{diam(\mathscr{B}\nabla c_k)}{diam \,\mathscr{C}}. \end{aligned}$$

4 Entropy of *m*-preserving transformations

First we give some definitions.

Definition 4.1. Let G be a non-empty subset of F. We say G is m-set if there exists $k \in [0, 1]$ such that m(a) = k, for any $a \in G$. In this case we define m(G) = k.

Definition 4.2. Let G_1 and G_2 be two non-empty subsets of F. We define,

$$G_1 \oplus G_2 = \{a_1 \oplus a_2 : a_1 \in G_1, a_2 \in G_2\},\$$
$$G_1 \odot G_2 = \{a_1 \odot a_2 : a_1 \in G_1, a_2 \in G_2\}.$$

Remark 4.3. If G_1 and G_2 are *m*-sets, then $G_1 \oplus G_2$ is also an *m*-set.

Definition 4.4. A function $u: F \longrightarrow F$ is called *m*-preserving transformation if

- (i) $u^{-1}(a)$ is an *m*-set with k = m(a), for any $a \in F$;
- (ii) $u^{-1}(a \oplus b)$ is an *m*-set and

$$m(u^{-1}(a \oplus b)) = m(u^{-1}(a) \oplus u^{-1}(b)),$$

for any $a, b \in F$;

(iii) $u^{-1}(a \odot b)$ and $u^{-1}(a) \odot u^{-1}(b)$ are *m*-sets and

$$m(u^{-1}(a \odot b)) = m(u^{-1}(a) \odot u^{-1}(b)),$$

for any $a, b \in F$.

Remark 4.5. It is easy to see that for an *m*-preserving transformation u, and for any $a \in F$ and $n \in \mathbb{N}$, we have

(i)
$$m(u^{-n}(a)) = m(a);$$

(ii) $m(u^{-n}(a \odot b)) = m(u^{-n}(a) \odot u^{-n}(b)).$

Definition 4.6. Let $u : F \longrightarrow F$ be an *m*-preserving transformation, and $\mathscr{A} = \{a\}_{i \in \mathbb{N}}$ be a countable partition in *F*. The inverse image of \mathscr{A} by *u* is the set $u^{-1}\mathscr{A}$ containing exactly one element b_i of $u^{-1}(a_i)$, for any $a_i \in \mathscr{A}$.

Proposition 4.7. The inverse image $u^{-1}\mathscr{A}$ is a countable partition in F, for any countable partition \mathscr{A} in F, and any m-preserving transformation u. In addition,

$$h(u^{-1}\mathscr{A}) = H(\mathscr{A}).$$

Proof. Let $u^{-1}\mathscr{A} = \{b_i \in F : u(b_i) = a_i, a_i \in \mathscr{A}\}$ such that, $(u^{-1}\mathscr{A} \setminus b_i) \cap (u^{-1}(a_i)) = \mathscr{A}$. Therefore we have,

$$\sum_{i=1}^{\infty} m(b_i) = \sum_{i=1}^{\infty} m(u^{-1}(a_i)) = \sum_{i=1}^{\infty} m(a_i) = m(1).$$

On the other hand, since $u^{-1}(b)$ is an *m*-set for any $b \in F$, we have

$$\sum_{i=1}^{\infty} m(b_i \odot u^{-1}(b)) = \sum_{i=1}^{\infty} m(u^{-1}(a_i) \odot u^{-1}(b)) = \sum_{i=1}^{\infty} m(a_i \odot b) = m(b).$$

Thus $u^{-1}\mathscr{A}$ is a countable partition in F.

Now

$$H(u^{-1}\mathscr{A}) = -\log \sup_{i \in \mathbb{N}} m(b_i) = -\log \sup_{i \in \mathbb{N}} m(u^{-1}(a_i)) = -\log \sup_{i \in \mathbb{N}} m(a_i) = H(\mathscr{A}).$$

Corollary 4.8. Let $\mathscr{B} = \{b_i : u(b_i) = a_i, i \in \mathbb{N}\}\$ and $\mathscr{C} = \{c_i : u(c_i) = a_i, i \in \mathbb{N}\}\$ be two inverse images of a countable partition $\mathscr{A} = \{a_i\}_{i \in \mathbb{N}}\$ in F such that $b_i \neq c_i$, for some $i \in \mathbb{N}$. Then,

$$H(\mathscr{B}) = H(\mathscr{C}).$$

Proof. It is clear by using previous proposition.

Proposition 4.9. Let \mathscr{A} and \mathscr{B} be two countable partitions in F, and u be an *m*-preserving transformation. If $\mathscr{A} \prec \mathscr{B}$, then $H(u^{-n}\mathscr{A}) \leq H(u^{-n}\mathscr{B})$.

Proof. As $m(u^{-n}(a_i)) = m(a_i)$, for any $i \in \mathbb{N}$, we have

$$H(u^{-n}\mathscr{A}) = H(\mathscr{A}).$$

Similarly we have,

$$H(u^{-n}\mathscr{B}) = H(\mathscr{B}).$$

On the other hand, because $\mathscr{A} \prec \mathscr{B}$, we have $H(\mathscr{A}) \leq H(\mathscr{B})$.

Proposition 4.10. Let u be an m-preserving transformation, and \mathscr{A} and \mathscr{B} be two countable partitions in F. Then for any $n \in \mathbb{N}$,

- (i) $H(u^{-n}\mathscr{A}) = H(\mathscr{A});$
- (*ii*) $H(u^{-n}(\mathscr{A}\nabla\mathscr{B})) = H(u^{-n}\mathscr{A}\nabla u^{-n}\mathscr{B});$

(iii)
$$H(u^{-n}\mathscr{A}|u^{-n}\mathscr{B}) = H(\mathscr{A}|\mathscr{B});$$

(iv)
$$H(u^{-n}\nabla_{i=1}^k\mathscr{A}) = H(\nabla_{i=1}^k u^{-n}\mathscr{A}), \text{ for any } k \in \mathbb{N}.$$

Proof.

(i) We show it by induction. For n = 1 it is obviously true. Suppose it's true for n = k. We have,

$$H(u^{-(k+1)}\mathscr{A}) = H(u^{-1}(u^{-k}\mathscr{A})) = H(u^{-k}\mathscr{A}) = H(\mathscr{A}).$$

(ii) It follows immediately from the definition.

(iii) For any $j \in \mathbb{N}$ we have $m(u^{-n}(b_j)) = m(b_j)$. It follows that,

$$diam(u^{-n}\mathscr{B}) = diam\mathscr{B}.$$

Similarly,

$$diam(u^{-n}(a_i)\nabla u^{-n}\mathscr{B}) = diam(a_i\nabla\mathscr{B}),$$

for any $i \in \mathbb{N}$.

(iv) By induction,

$$m(u^{-n}(a\odot\cdots\odot a))=m(u^{-n}(a)\odot\cdots\odot u^{-n}(a)),$$

for any $n \in \mathbb{N}$.

Proposition 4.11. Let u be an m-preserving transformation and \mathscr{A} be a countable partition in F. Then for any $n \in \mathbb{N}$ we have,

$$H(\nabla_{i=0}^{n-1}u^{-i}\mathscr{A}) = H(\mathscr{A}) + \sum_{j=1}^{n-1} H(\mathscr{A}|\nabla_{i=1}^{j}u^{-i}\mathscr{A}).$$

Proof. Let us prove it by induction. For n = 1 it is obviously clear. Now assume that this holds for n = k. So we have,

$$\begin{split} H(\nabla_{i=0}^{k}u^{-i}\mathscr{A}) &= H(\nabla_{i=1}^{k}u^{-i}\mathscr{A}\nabla\mathscr{A}) \\ &= H(\nabla_{i=1}^{k}u^{-i}\mathscr{A}) + H\mathscr{A}|\nabla_{i=1}^{k}u^{-i}\mathscr{A}). \end{split}$$

But

$$H(\nabla_{i=1}^{k}u^{-i}\mathscr{A}) = H(u^{-1}(\nabla_{i=0}^{k-1}u^{-i}\mathscr{A})) = (\nabla_{i=0}^{k-1}u^{-i}\mathscr{A})$$

Then by using induction assumption, the equality is obtained.

Lemma 4.12. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of non-negative real numbers such that $a_{n+p} \leq a_n + a_p$, for any $n, p \in \mathbb{N}$. Then,

$$\lim_{n \to \infty} \frac{a_n}{n} = \inf_{n \in \mathbb{N}} \frac{a_n}{n}.$$

For the proof see [7], chapter 4.

Proposition 4.13. If u is an m-preserving transformation, and \mathscr{A} is a countable partition in F, then $\lim_{n\to\infty} \frac{1}{n} H(\nabla_{i=0}^{n-1} u^{-i} \mathscr{A})$ exists.

Proof. Let us set

$$a_n = H(\nabla_{i=0}^{n-1} u^{-i} \mathscr{A}).$$

Then,

$$a_{n+p} = H(\nabla_{i=0}^{n+p-1} u^{-i} \mathscr{A}) \le H(\nabla_{i=0}^{n-1} u^{-i} \mathscr{A}) + H(\nabla_{i=n}^{n+p-1} u^{-i} \mathscr{A}).$$

But,

$$\begin{aligned} H(\nabla_{i=n}^{n+p-1}u^{-i}\mathscr{A}) &= -\log \sup_{j_i \in \mathbb{N}, 0 \le i \le p-1} m(u^{-n}(a_{j_0}) \odot \cdots \odot u^{-(n+p-1)}(a_{j_{(p-1)}})) \\ &= -\log \sup_{j_i \in \mathbb{N}, 0 \le i \le p-1} m(u^{-n}(a_{j_0} \odot \cdots \odot u^{-(p-1)}(a_{j_{p-1}}))) \\ &= -\log \sup_{j_i \in \mathbb{N}, 0 \le i \le p-1} m(a_{j_0} \odot \cdots \odot u^{-(p-1)}(a_{j_{p-1}})) \\ &= H(\nabla_{i=0}^{p-1}u^{-i}\mathscr{A}). \end{aligned}$$

These imply that $a_{n+p} \leq a_n + a_p$, for any $n, p \in \mathbb{N}$.

Definition 4.14. Let u be an m-preserving transformation and \mathscr{A} be a countable partition in F. Entropy of u with respect to \mathscr{A} is defined by,

$$h(u,\mathscr{A}) = \lim_{n \to \infty} \frac{1}{n} H(\nabla_{i=0}^{n-1} u^{-i} \mathscr{A}).$$

Proposition 4.15. Let \mathscr{A} and \mathscr{B} be two countable partitions in F, and u be an m-preserving transformation. Then we have,

- (i) $h(u, \mathscr{A}) \leq H(\mathscr{A});$
- (ii) If $\mathscr{A} \prec \mathscr{B}$, then $h(u, \mathscr{A}) \leq h(u, \mathscr{B})$;
- (iii) $h(u, u^{-1}\mathscr{A}) = h(u, \mathscr{A});$
- (iv) $h(u, \mathscr{A}\nabla\mathscr{B}) \leq h(u, \mathscr{A}) + h(u, \mathscr{B});$
- (v) $h(u, \nabla_{i=k}^{r} u^{-i} \mathscr{A}) = h(u, \mathscr{A}), \text{ for any } k \leq r, r \geq 0;$
- $(vi) \ h(u,\nabla_{i=0}^{r}u^{-i}\mathscr{A})=h(u,\mathscr{A});$
- (vii) If u is invertible and $k \ge 1$, then

$$h(u, \nabla_{i=-k}^{k} u^{-i} \mathscr{A}) = h(u, \mathscr{A}).$$

Proof.

- (i) It is clear.
- (ii) Because $\mathscr{A} \prec \mathscr{B}$, for $j = j_0$ there exists $l_0 \in \mathbb{N}$ such that,

$$m(b_{j_0}) \le m(a_{l_0}).$$

It follows that,

$$m(b_{j_0} \odot u^{-1}(b_{j_1})) \le m(a_l \odot u^{-1}(b_{j_1})).$$

Now for $j = j_1$ there exists $l_1 \in \mathbb{N}$ such that

$$m(b_{j_1}) \le m(a_{l_1}).$$

These imply that

$$m(b_{j_0} \odot u^{-1}(b_{j_1})) \le m(a_{l_0} \odot u^{-1}(a_{l_1})).$$

Therefore using induction, we may find $l_0, ..., l_{n-1} \in \mathbb{N}$ for any $j_0, ..., j_{n-1} \in \mathbb{N}$ such that,

$$m(b_{j_0} \odot u^{-1}(b_{j_1}) \odot \cdots \odot u^{-(n-1)}(b_{j_{n-1}})) \le m(a_{l_0} \odot u^{-1}(a_{l_1}) \odot \cdots \odot u^{-(n-1)}(a_{l_{n-1}})).$$

Note that if $m(b_j) \le m(a_l)$, then $m(u^{-1}(b_j)) \le m((u^{-1}(a_l)))$, for any $n \in \mathbb{N}$.

$$\begin{aligned} H(\nabla_{i=0}^{n-1}u^{-i}(u^{-1}\mathscr{A})) &= -\log\sup m(u^{-1}(a_{i_0}\odot u^{-1}(a_{i_1})\odot\cdots\odot u^{-(n-1)}(a_{i_{n-1}}))) \\ &= -\log\sup m(a_{i_0}\odot u^{-1}(a_{i_1})\odot\cdots\odot u^{-(n-1)}(a_{i_{n-1}})) \\ &= H(\nabla_{i=0}^{n-1}u^{-i}\mathscr{A}). \end{aligned}$$

(iv)

$$\begin{split} H(\nabla_{i=0}^{n-1}u^{-i}(\mathscr{A}\nabla\mathscr{B})) &= H(\nabla_{i=0}^{n-1}(u^{-i}\mathscr{A}\nabla u^{-i}\mathscr{B})) \\ &= H((\nabla_{i=0}^{n-1}u^{-i}(\mathscr{A})\nabla(\nabla_{i=0}^{n-1}u^{-i}\mathscr{B})) \\ &\leq H(\nabla_{i=0}^{n-1}u^{-i}(\mathscr{A}) + H(\nabla_{i=0}^{n-1}u^{-i}\mathscr{B}). \end{split}$$

(v)

$$h(u, \nabla_{i=k}^{r} u^{-i} \mathscr{A}) = \lim_{n \to \infty} \frac{1}{n} H(\nabla_{j=0}^{n-1} u^{-j} (\nabla_{i=k}^{r} u^{-i} \mathscr{A}))$$
$$= \lim_{n \to \infty} \frac{1}{n} H(\nabla_{i=0}^{n+r-k-1} u^{-i} \mathscr{A})$$
$$= \lim_{n \to \infty} \frac{n+r-k}{n} \frac{1}{n+r-k} H(\nabla_{i=0}^{n+r-k-1} u^{-i} \mathscr{A})$$
$$= h(u, \mathscr{A}).$$

(vi) In (v) we set k = 0. (vii) $h(u, \nabla_{i=-k}^{k} u^{-i} \mathscr{A}) = h(u, \nabla_{i=0}^{2k} u^{-i} \mathscr{A}) = h(u, \mathscr{A}).$

Definition 4.16. Let u be an m-preserving transformation. Entropy of u is defined by,

$$h(u) = \sup_{\mathscr{A}} h(u, \mathscr{A}),$$

where supremum is taken over all countable partitions in F.

Proposition 4.17. If u is identity transformation, then h(u) = 0.

Proof. By definition and using induction we see that $\nabla_{i=0}^{n-1} \mathscr{A} = \mathscr{A}$, for any $n \in \mathbb{N}$. Therefore,

$$h(id,\mathscr{A}) = \lim_{n \to \infty} \frac{1}{n} H(\nabla_{i=0}^{n-1} \mathscr{A}) = 0.$$

Corollary 4.18. If u is an m-preserving transformation such that $u^k = id$, for some $k \in \mathbb{N}$, then $h(u^k) = 0$.

Proof. This follows immediately from previous propositions.

Proposition 4.19. Let u be an m-preserving transformation. Then we have,

- (i) $h(u^k) = kh(u)$, for any k > 0;
- (ii) If u is invertible, then $h(u^k) = |k|h(u)$, for any $k \in \mathbb{Z}$.

Proof.

(i) For any countable partition \mathscr{A} in F we have,

$$\begin{split} h(u^k, \nabla_{i=0}^{k-1} u^{-i} \mathscr{A}) &= \lim_{n \to \infty} \frac{1}{n} H(\nabla_{j=0}^{n-1} (u^k)^{-j} (\nabla_{i=0}^{k-1} u^{-i} \mathscr{A})) \\ &= \lim_{n \to \infty} \frac{1}{n} H(\nabla_{j=0}^{n-1} \nabla_{i=0}^{k-1} u^{-(kj+i)} \mathscr{A}) \\ &= \lim_{n \to \infty} \frac{1}{n} H(\nabla_{i=0}^{nk-1} u^{-i} \mathscr{A}) \\ &= \lim_{n \to \infty} \frac{nk}{n} \frac{1}{nk} H(\nabla_{i=0}^{nk-1} u^{-i} \mathscr{A}) \\ &= kh(u, \mathscr{A}). \end{split}$$

Therefore,

$$\begin{split} kh(u) &= k \sup_{\mathscr{A}} h(u, \mathscr{A}) = \sup_{\mathscr{A}} h(u^k, \nabla_{i=0}^{k-1} u^{-i} \mathscr{A}) \\ &\leq \sup_{\mathscr{B}} h(u^k, \mathscr{B}) = h(u^k). \end{split}$$

On the other hand, as

$$\mathscr{A} \prec \mathscr{A} \nabla u^{-1} A \nabla \cdots \nabla u^{-(k-1)} \mathscr{A},$$

we have,

$$h(u^k,\mathscr{A}) \le h(u^k, \nabla_{i=0}^{k-1} u^{-i} A) = kh(u, \mathscr{A}).$$

(ii) We will show that $h(u^{-1}) = h(u)$.

$$h(u,\mathscr{A}) = \lim_{n \to \infty} \frac{1}{n} H(\nabla_{i=0}^{n-1} u^{-i} \mathscr{A})$$

$$= \lim_{n \to \infty} \frac{1}{n} H(u^{-(n-1)} \nabla_{i=0}^{n-1} u^{-i} \mathscr{A})$$

$$= \lim_{n \to \infty} \frac{1}{n} H(\nabla_{i=0}^{n-1} u^{i-(n-1)} \mathscr{A})$$

$$= \lim_{n \to \infty} \frac{1}{n} H(\nabla_{i=0}^{n-1} u^{-i} \mathscr{A})$$

$$= h(u,\mathscr{A}).$$

5 Generators of *m*-preserving transformations

Definition 5.1. Let $u: F \longrightarrow F$ be an *m*-preserving transformation. A countable partition \mathscr{G} in *F* is said to be a generator of *u* if there exists $r \in \mathbb{N}$ such that,

$$\mathscr{A} \prec \nabla_{i=0}^{r} u^{-i} \mathscr{G},$$

for any countable partition \mathscr{A} in F.

Proposition 5.2. If \mathscr{G} is a generator of u, then

$$h(u,\mathscr{A}) \le h(u,\mathscr{G}),$$

for any countable partition \mathscr{A} in F.

Proof. \mathscr{G} is a generator of u, so there exists r > 0 such that,

$$\mathscr{A} \prec \nabla_{i=0}^{r} u^{-i} \mathscr{G},$$

for any countable partition \mathscr{A} in F. Therefore,

$$h(u,\mathscr{A}) \le h(u, \nabla_{i=0}^{r} u^{-i} \mathscr{G}) = h(u, \mathscr{G}).$$

Proposition 5.3. Let \mathscr{G} be a generator of an m-preserving transformation u. Then,

$$h(u) = h(u, \mathscr{G}).$$

Proof. Since \mathscr{G} is a generator of u, we have $h(u, \mathscr{A}) \leq h(u, \mathscr{G})$. Thus,

$$\sup_{\mathscr{A}} h(u,\mathscr{A}) \le h(u,\mathscr{G})$$

And we know, $h(u, \mathscr{G}) \leq \sup_{\mathscr{A}} h(u, \mathscr{A})$. This completes the proof.

6 Conclusions

In this paper, we have defined a specific algebraic structure and it's countable partition. Then we have proved some properties for the entropy of this countable partition, parallel to the properties of the classical entropy (see [7]). Also, we have represented the notion of m-preserving transformation. Finally, we have introduced a generator of a dynamical system and stated a version of Kolomogorov-Sinai theorem.

References

- D. Dumitrescu, Entropy of a fuzzy dynamical system, Fuzzy Sets and Systems 70 (1995), 45-57.
- [2] D. Dumitrescu, Entropy of a fuzzy process, Fuzzy Sets and Systems 176 (1993), 169-177.
- [3] D. Dumitrescu, Fuzzy measure and entropy of fuzzy partitions, Journal of Mathematical Analysis 176 (1993), 359-373.
- [4] D. Dumitrescu, C. Hăloiu, A. Dumitrescu, Generators of fuzzy dynamical systems, Fuzzy Sets and Systems 113 (2000), 447-452.
- [5] M. Ebrahimi, Generators of probability dynamical systems, Differ. Geom. Dyn. Syst. 8 (2006), 90-97.
- [6] B. Riecan, D. Markechová, The Entropy of fuzzy dynamical systems, general scheme and generators, Fuzzy Sets and Systems 96 (1993), 191-199.
- [7] P. Walters, An Introduction to Ergodic Theory, Springer Verlag, 1982.

Authors' address:

Mohamad Ebrahimi and Nasrin Mohamadi Department of Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, P.O.Box: 76169133, Kerman, Iran. E-mail: mohamad-ebrahimi@mail.uk.ac.ir, mohamadinasrin@yahoo.com