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generators
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Abstract. One of the applied branches of mathematics is the entropy
of a dynamical system. In this paper we defined the infinite partition of
an algebraic structure and then we introduce the entropy of a countable
partition of this structure. In this respect, we introduce the generators
of an m-preserving transformation of a discrete dynamical system. At
the end, we prove a version of Kolomogorov-Sinai theorem concerning the
entropy of a dynamical system.
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1 Introduction

We assume that the reader is familiar with the definition of dynamical systems and
ergodic theory. In physics, entropy of a system with a finite quantum states is defined
by S =—k>, foln(fv); >, fo = 1, where k is the Boltzmann constant and the sum is
over all quantum states. This formula can be interpreted as a degree of disordering of
the system. The entropy of an algebraic structure with a finite partition was defined
by Riecan [6]. In this paper we will extend this notion to an algebraic structure with
infinite partition and we discuss ergodic theory properties.

2 Basic concepts

Let F be a non-empty totally ordered set. Also let &, ® be two binary operations on
F and 1 be a constant element of F' such that,

(2.1) lGa=a>a0®b.

Definition 2.1. A function m : FF — [0,1] is called F-measure if for any a,b and
c € F we have,
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(i) m(a®b) =m(b&®a), ma®b) =m(be a);
(i) ma® (b&c) =m((a®@b)dc), m@ao (boc)=m(acb)ocd);
a®(b®c) =m(@ob)®@od), ma®bocd)=ma®b) o (@add);
@7 a;) = S m(as), for any n € N;

(v) If a < b then m(a) < m(b);

Vl

)
)

iii)
(iv) m
)

i)

)

(vil) If m(a) = m(1) then m(a ® b) = m(b);

(viii) If m(a) < m(b) then m(a ®¢) < m(b® c).

Definition 2.2. A countable partition in F' is a sequence &/ = {a;};eny C F such
that,

(i) m(1) = 3272, m(ai);
(ii) Yoo, m(a; ®b) = m(b), for any b € F.
Remark 2.3. It is clear that if a countable partition &/ = {a;};en has more than
one element, then
m(a;) < m(1l),
for any ¢ € N. And therefore,

o0

Z m(a;) < m(1),

i=1i#n
for any n € N.

Definition 2.4. Let &/ = {a;}ieny and #B = {b;};en be two countable partitions in
F. Their join is
AN B = {ainj ta; E«!Z{,bj € RBi,j EN},
if of #+ A, and
N = 4.

Definition 2.5. Let &/ = {a;}ieny and & = {b;}jen be two countable partitions in
F. We say £ is a refinement of <7, and write o/ < 4, if

(i) For each a; € o there exists b;,,...,b;

in,

€ % such that,

Uz

m(a;) =y mib,);

j=1

(i) If a;,ax are two distinct element of & such that m(a;) = 377, m(b;;) and
m(ay) = Z;L"l m(by, ), then b;, # by, forany j € {1,...,n;} andl € {1,...,n4}.

Proposition 2.6. &/VAB with Lexicographic ordering is a countable partition in F.
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Proof. Since @/ VA is given Lexicographic order, we have,
Z m(a; ©b,) = ZZm(ai ©b,).
i,jEN j=1i=1

Therefore,
D> mlai©b) = m(b;) =m(1).
j=11i=1 j=1
So these imply that,
Z m(a; ®b;) = m(1).
i,jEN
On the other hand, for any ¢ € F' we have,
Zi,jeN m((a; ©bj) ©c) = Zjil Doy mla; © (b ©c))

=22 mlb; © ¢) = m(c).

3 Entropy of a countable partition in F

Definition 3.1. Let & = {a;}ien be a countable partition in F. The entropy of o
is defined by

H(o/) = —log slelgm(ai).

Proposition 3.2. Let o = {a;}ien and B = {bj}jen be two countable partitions in
F. If % is a refinement of <f, then for any by, € B there exist some a; € & such that

m(by) < m(ap).
Proof. If it isn’t so, we assume that there exists kg € N such that
m(bg,) > m(a;)

for any i € N.
Since ./ < %, for any a; € <7, there exist b;;, € % and n; € N such that

m(a;) =Y _m(b;,).
So these imply that
m(b,) > > m(bs,).
i=1

Since A is a refinement of &7 we have

o0 ng

(3.1) > mla) =YY m(b;).
=1

i=1 j=1

But, we know that for any i € N,j € {1,...,n;}, we have by, # b;,.
Since otherwise, we would have two cases:
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case(1) If n; = 1, then m(bg,) > m(by,), and this is a contradiction.
case(2) If n; > 2, then 0 > Z;iuj#ko m(b;; ), and this is also a contradiction.

Now, since 7 is a countable partition in F, in the right side of the Equation (3.1) we
have all b;, € % except for by,, and there are no repeated b;;. Then

m(l) =Y m(b)
Jj=1,j#ko
But since & is a countable partition in F', this contradicts the Remark 2.3. O

Proposition 3.3. Let o = {a;}ien and B = {bj}jen be two countable partitions in
F.If # is a refinement of </, then H(</) < H(AB).

Proof. 1t is clear by using Proposition 3.2. ]

Definition 3.4. Two countable partitions & = {a;},cn and # = {b;}en in F are
called independent if

m(a; © bj) = m(a;)m(b;)
for any i,j € N.

Proposition 3.5. Let & = {a;}ien and B = {bj}jen be two countable partitions in
F.Then

(i) H(«/NVc) > H(&f), for any c € F
(i) H(ANRB) > H() and H(ANRB) > H(B);
(iti) If o and P are independent, then

H(/VB) = H(t) + H(B).

Proof.

(i) For any ¢ € N we have a; > a; ® ¢. Therefore
m(a;) > m(a; © c),
for any ¢ € N.

(ii) We have m(a;) > m(a; ® b;), for any 4,j € N.
This follows that
supm(a;) > supsupm(a; © bj).
i€N jEN ieN
Therefore,
H(o/VAB) > H(A).

Similarly we have, H(«/V%) > H(%).



52 Mohamad Ebrahimi and Nasrin Mohamadi

(iii)

H(«#VAB) = —log ’Sl'le% m(a; ® b;)
i\

= —log sup m(a;)m(b;)
ijeN

= H(«/)+ H(B).

O

Definition 3.6. Let &/ = {a;};en be a countable partition in F' and ¢ € F such that
m(c) # 0. The conditional entropy of & given c is defined by

H(e/ | &) = —logsupmla, | c),
€N

m(a; ® c)'

where m(a; | ¢) = (o)

Proposition 3.7. Let &/ = {a;}ien and B = {b;}jen be two countable partitions in
F.Let ¢ and d be two arbitrary elements in F, such that m(c) # 0 and m(d) # 0. We
have

(i) H(e/Ve) > H(< | c);
(i) If d < c, then H(«/Vd) < H(#Vc);
(iii) If of < B, then H(o/ | c) < H(% | ¢).
Proof.
(i) Since m(c) € (0, 1], we have

m(a; ®c) < W.

It follows that

—logsupm(a; ® ¢) > —logsup M.
i€N ien  m(c)

(ii) Since d < ¢, we have m(a; © d) < m(a; © ¢), for any i € N.
(iii) Since & < 4, for any k € N, there exists [ € N such that
m(bg) < m(ay).

Then we have
m(by ©¢) < m(a; © c).
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Definition 3.8. The entropy function of ¢ € F' is defined by

) =logm(c) if m(c)>0
H(e) = {0 if m(c)=0

Proposition 3.9. Let & = {a;}ien be a countable partition in F' and ¢, d be arbitrary
elements in F such that m(c) # 0. Then

(i) H(c) > 0;

(ii) H(/Ve) 2 H(c)
(11i) If d < ¢, then H(c) < H(d);
(iv) H(e/5¢) = H(el | &) + H(c),

Proof. (i), (i1), (iii) are clear.
(iv)

H( | )+ H(e) = —logsup %29

N m(c) + (_ logm(c))

m(a; ® c)
= —logsup ————=
ien  m(c)

m(c).

O

Definition 3.10. Let & = {a;};en be a countable partition in F. The diameter of
&/ is defined as follows,
diam(&/) = supm(a;).
ieN

Definition 3.11. Let & = {a;}ien and Z = {b;},en be two countable partitions in
F. The conditional entropy of & given % is defined by,

diam(a;VRB)
H(o | %) = —logsup —p =

Remark 3.12. (i) It is easy to see,
o s diam(a;VAB) log st diam(e/'Vb;)
& ieg diam# jen  diam%B
(i) If we set P? = {1}, then P is a countable partition in F' and
H(#|P°) = H().

Proposition 3.13. Let o/ = {a;}ien , # = {bj}jen and € = {cx}ren be countable
partitions in F. We have,

(1) H(< | #) = 0;
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(ii) HANB | €)= H( | €)+ H(B | AVE);

(iii) H(/NB) = H() + H(B | o);

(iv) If o/ < B, then H(o/ | €) < H(Z | €);

(v) If B <€, then H(o | B) < H(AVE).

In particular, H(of | B) < H(o/V B);

(vi) H(/) > H( | B);
(vii) H(o/VB) < H(o) + H(B);
(viii) If o and BNE are independent, then

H(AVB| €)= H () + H(B|C).

Proof.

(i) It is clear.

).

(i)
“ diam((ZVAB)Vey) - diam(«/Vey,) " diam (AN B)Ver,)
keg diam € N keg diam € diam(/Vey,)
= qup 2WPien m(a; © c) o SUPijen m(a; ©bj © cx)
keg diam € sup; ey m(a; © cg)
sup;en m(a; © cx) | SUP; j keny M(ai © b; © c)
— (sup TRt X
keN iam € sup; pen M(a; © cx)
Then,
H(A/VE|€) = —logsup dzam((,‘fzfv%’)Vck)
kEN diam €
C jog sup Ham(@Ver) o diam(b;V(ZVE))
B s keg diam € & jEIN) diam (A NE)

(iii) Set ¢ = PY in (i).
(iv) Since & < A, for any j € N there exists | € N such that,
m(b; © cx) < mla; © cx).
Then,

sup m(b; ® ¢x) < sup m(a; © cx).
j,keN i,jEN
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(v) As B < %, for any k € N there exists [ € N such that,
m(a; © ci) < m(a; © by),

for any ¢ € N.
Therefore,

(3.2) supsupm(a; © ¢;) < supsupm(a; © by).
keN ieN JEN ieN

On the other hand, because & is a countable partition in F) there exists j € N
such that m(b;) > 0. Therefore, 0 < diam% < 1. And it follows that,

SUp ;e SUP;eny Mm(a; © b;)
supsupm(a; ©b;) < -
eN e (a; © bj) diam%B

Sup;en m(a; © by)

= sup

jEN diamAB
di Vb
(3.3) — sup o Vh;)
jen  diamZB
Then we have,
diam(2/'Vb,)
sup m(a; ® ¢x) < sup ————— 97
i,kepN ( ) j€§ diamPB

vi) We have,
m(a;) > m(a; © bj),
for any 4, j € N. Therefore,

sup; jen m(a; © b))

supm(a;) < sup m(a; ® b;) < .
ieN () i,jEN (ai ©;) diam %

(vii) Tt follows immediately from (4i7) and (vi).
(viii) & and BVE are independent, so
m(a; ® (bj Oc)) = m(ai)m(bj ® ck),

for any 4,7,k € N.
Then,

SUp; ; i ©(b; ®
H(#VA|€) = —logsup Sup;,jeN T;.(a (bj ®ck))
keN iam €

1 sup; jen m(ai)m(b; © ci)
= —logsup 7
LEN iam 6

sup; ey m(b; © )
= —1 . J
og(iggm(az))(igg pT—

= —logsupm(a;) — logsu diam(#Ver)
B giell\l) ’ gkeg diam €

)
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4 Entropy of m—preserving transformations
First we give some definitions.

Definition 4.1. Let G be a non-empty subset of F. We say G is m—set if there exists
k € ]0,1] such that m(a) = k, for any a € G. In this case we define m(G) = k.

Definition 4.2. Let G; and G2 be two non-empty subsets of F. We define,
G @Gy ={a1 Das:a € Gy,az € Ga},
G10Gy={a1 ®az:a; € Gy,as € Ga}.
Remark 4.3. If G; and G5 are m—sets, then G; ® G5 is also an m—set.
Definition 4.4. A function u : F' — F is called m—preserving transformation if
(i) u=1(a) is an m-set with k = m(a), for any a € F;
(i) v~ !(a ®b) is an m—set and
m(u”!(a® b)) =m(u""(a) ®u (b)),
for any a,b € F;
(iii) vY(a ®b) and v~ (a) ©® u~1(b) are m—sets and
m(u” (a® b)) =m(u""(a) ©u~ (b)),
for any a,b € F.

Remark 4.5. It is easy to see that for an m-preserving transformation u, and for
any a € F and n € N, we have

(i) m(u="(a)) = m(a);
(if) m(u"(a© b)) =m(u"(a) © u="(b)).

Definition 4.6. Let u : ' — F be an m-preserving transformation, and &/ =
{a};en be a countable partition in F. The inverse image of & by u is the set v~ 1./
containing exactly one element b; of u=!(a;), for any a; € &.

Proposition 4.7. The inverse image u~ '/ is a countable partition in F, for any
countable partition o/ in F, and any m-preserving transformation w. In addition,

h(u™'e) = H().

Proof. Let u='o/ = {b; € F : u(b;) = a;,a; € o/} such that, (u=1a/ \ b;) N
(u=1(a;)) = & . Therefore we have,
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On the other hand, since u~1(b) is an m-set for any b € F, we have

im(bi(bu Zm “(ay) Zm (a; ®b) = m(b).
i=1

Thus v~ 1.7 is a countable partition in F.

Now

H(u 'a) = —logsupm(b;) = —logsupm(u~*(a;)) = —logsupm(a;) = H().
ieN ieN ‘€N

O

Corollary 4.8. Let B = {b; : u(b;) = a;,i € N} and € = {c; : u(c;) = a;,i € N} be
two inverse images of a countable partition & = {a;}ien in F such that b; # ¢;, for
some i € N. Then,

Proof. Tt is clear by using previous proposition. ([

Proposition 4.9. Let &/ and 2B be two countable partitions in F, and u be an m-
preserving transformation. If of < A, then Hu™"</) < H(u "%).

Proof. As m(u="(a;)) =m(a;), for any ¢ € N, we have
Hu"o)=H().

Similarly we have,

H(u™"%) = H(A).
On the other hand, because &7 < %, we have H(«/) < H(A). O

Proposition 4.10. Let u be an m—preserving transformation, and </ and % be two
countable partitions in F. Then for any n € N,

(i) Hu™"o) = H(A);
(i) H(u""(/V %)) = H(u "o/ Vu " 2);
(v |u"B) = H(A|B);
(u™"VE_ 7)) = H(VF_u=a), for any k € N.

(i) We show it by induction. For n = 1 it is obviously true. Suppose it’s true for
n = k. We have,

H(u= " o/) = Hu™ (u™" o)) = Hu™ /) = H(e7).

(ii) It follows immediately from the definition.
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(iii) For any j € N we have m(u~"(b;)) = m(b;). It follows that,
diam(u™"A) = diamAB.

Similarly,
diam(u™"(a;)Vu " RB) = diam(a;VA),

for any ¢ € N.
(iv) By induction,
m(u""(a©---©a)) =mu"(a)©- - ©u"(a)),
for any n € N.
O

Proposition 4.11. Let u be an m-preserving transformation and </ be a countable
partition in F. Then for any n € N we have,

n—1
H(ViZju™'el) = H()+ > H(|V_ju™" o).

=1

Proof. Let us prove it by induction. For n =1 it is obviously clear.
Now assume that this holds for n = k. So we have,

H(V' ju™'et) = H(V u'a/V)

= H(V uw'd)+ HA |V ju'e).
But ' ' ,
H(Viyu™'of) = H(u  (Viigu ') = (Viju ™" o).

1
Then by using induction assumption, the equality is obtained. (Il
Lemma 4.12. Let {a,},en be a sequence of non-negative real numbers such that

Gptp < Ay + ap, for any n,p € N. Then,

R N
lim — = inf —.
n—oo 1 neN n

For the proof see [7], chapter 4.
Proposition 4.13. If u is an m—preserving transformation, and </ is a countable

partition in F, then lim,,_ fH(V?:_()lu*i;z%) exists.
n

Proof. Let us set ‘
an = H(Viju™"e).
Then,

iy = H(VIP W) < H(VIJu' ) + H(VIP ™),

2 3 n
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But,
HVZP w™e/) = —log  sup  m(u "(aj,) @ 0u” P (g, )
Ji€N,0<i<p—1
= —log sup  m(u"(ay 0 0u P V(g )
7i€N,0<i<p—1
= —log  sup  ma;, @ 0u P N (ay,_,))
Ji€N,0<i<p—1
= H(V' u'd).
These imply that a4, < ay + ap, for any n,p € N. O

Definition 4.14. Let u be an m—preserving transformation and & be a countable
partition in F. Entropy of u with respect to 7 is defined by,

1 )
h(u,o/) = lim —H (Vi ju'd).

n—oo N

Proposition 4.15. Let &/ and % be two countable partitions in F, and u be an
m—preserving transformation. Then we have,

(1) h(u, o) < H();
(i) If o < A, then h(u, ) < h(u, B);
(iii) h(u,u=te?) = h(u, o);
() h(u, NVB) < h(u, o)+ h(u, B);
(v) h(u,Vi_ju="e) = h(u, ), for any k <r,r > 0;
(vi) h(u,Vi_qu="a/) = h(u, &);
(vii) If w is invertible and k > 1, then
h(u, Vi u='e?) = h(u, o).
Proof.
(i) Tt is clear.
(ii) Because & < £, for j = jo there exists lp € N such that,
m(bj,) < m(a,).

It follows that,
m(bj, ©u='(b;,)) < m(a ©u"(by,)).

Now for j = j; there exists [; € N such that

m(bj,) < m(ai,).
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These imply that
m(bj, © u”t(bs,)) < mlag, ©u” (ay,)).

Therefore using induction, we may find Iy, ...,l,—1 € N for any jg,...,jn—1 € N
such that,

m(bjo ®u71(bj1)®' ’ '®u7(n71)(bjn—1)) < m(a‘lo ®u71(al1)®' ’ '®u7(n71)(aln—1))'
Note that if m(b;) < m(a;), then m(u='(b;)) < m((u"'(a;)), for any n € N.

(iii)

H(V Ju  (ule)) = —logsupm(u(ai, @u ay)© - 0u " V(g ,)))

= —logsupm(a;, ® u_l(ail) (OXRERNO! u_("_l)(ain,l))

= H(Vju'd).

(2

H(V S u (/Y B) = H(VIS) (™ o/ Vu™i8))

(3

= H(ViZu ()V(ViZgu™ %))

< H(Vigu (o) + H(ViZju™'B).
v)
hu,Vi_ju™'e/) = lim EH(V;’:_Oluﬂ(Vg:kuﬂsz{))

1 )
= lim ~H(VH )

n—oo N

n+r—~k 1 ;
= 1 H(VMHA ey
nico n  n+r—k (Vizo “ )

= h(u, o).

(vi) In (v) we set k = 0.
vil) h(u,VE_ u""e?) = h(u, VEu""a) = h(u, ).
% k =0

O

Definition 4.16. Let u be an m—preserving transformation. Entropy of u is defined

by,
h(u) = sup h(u, ),
of

where supremum is taken over all countable partitions in F.
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Proposition 4.17. If u is identity transformation, then h(u) = 0.

Proof. By definition and using induction we see that V?gold =/, for any n € N.
Therefore,

h(id, <) = lim lJar(v;;—okqf) =0.
n—oo N,

]

Corollary 4.18. If u is an m-preserving transformation such that u* = id, for some
k € N, then h(u) = 0.

Proof. This follows immediately from previous propositions. |
Proposition 4.19. Let u be an m—preserving transformation. Then we have,
(i) h(u*) = kh(u), for any k > 0;
(ii) If u is invertible, then h(u*) = |k|h(u), for any k € Z.
Proof.

(i) For any countable partition & in F' we have,

. 1 . .
Wb Vi uTe) = lim ~H(VIS () (Vb )

n—oo n

1 "
= lim —H(V}Z VIS ju ¥ )

n—oo N

1 )
= lim —H(V™*;lu="er)

n—oo n

= lim ikiH(vnglu*iﬂ)

n—oo N nk
= kh(u, o).
Therefore,

kh(u) = ksup,, h(u, o) = sup,, h(u*, Vi ju='a)
< supy h(uf, B) = h(u").

On the other hand, as
o < AVu LAV -V~ F D g7

we have,
h(u®, o) < h(u*, VEZlu=" A) = kh(u, o).
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(i) We will show that h(u=!) = h(u).

h(u,/) = lim lJar(v;;—olw;qf)

n—oo n

1 ,
= lim —Hu "DV u"e)

n—oo n

1 .
= lim ~H(Vju " Ve)

n—oo N

1 .
= lim —H(V} Ju'e)

n—oo n

= h(u, o).

5 Generators of m-preserving transformations

Definition 5.1. Let u : FF — F be an m—preserving transformation. A countable
partition ¢ in F' is said to be a generator of u if there exists € N such that,

A <V_u™'Y,
for any countable partition .o/ in F.
Proposition 5.2. If ¥ is a generator of u, then
h(u, o) < h(u,9),
for any countable partition o/ in F.
Proof. 4 is a generator of u, so there exists 7 > 0 such that,
o < Vi_ou™'Y,
for any countable partition ./ in F. Therefore,
h(u, ) < h(u, Vi_gu™'9) = h(u,9).
|
Proposition 5.3. Let 4 be a generator of an m-preserving transformation u. Then,
h(u) = h(u,9).
Proof. Since ¥ is a generator of u, we have h(u, &) < h(u,¥). Thus,

sup h(u, &) < h(u,9).
o

And we know, h(u,¥) < sup,, h(u, o). This completes the proof. O
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6 Conclusions

In this paper, we have defined a specific algebraic structure and it’s countable par-
tition.Then we have proved some properties for the entropy of this countable partition,
parallel to the properties of the classical entropy(see [7]). Also, we have represented
the notion of m—preserving transformation. Finally, we have introduced a generator
of a dynamical system and stated a version of Kolomogorov-Sinai theorem.
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